Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 191: 1075-1082, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29096881

RESUMEN

A dynamic model describing styrene abatement was developed for a two-phase partitioning bioreactor operated as a biotrickling filter (TPPB-BTF). The model was built as a coupled set of two different systems of partial differential equations depending on whether an irrigation or a non-irrigation period was simulated. The maximum growth rate was previously calibrated from a conventional BTF treating styrene (Part 1). The model was extended to simulate the TPPB-BTF based on the hypothesis that the main change associated with the non-aqueous phase is the modification of the pollutant properties in the liquid phase. The three phases considered were gas, a water-silicone liquid mixture, and biofilm. The selected calibration parameters were related to the physical properties of styrene: Henry's law constant, diffusivity, and the gas-liquid mass transfer coefficient. A sensitivity analysis revealed that Henry's law constant was the most sensitive parameter. The model was successfully calibrated with a goodness of fit of 0.94. It satisfactorily simulated the performance of the TPPB-BTF at styrene loads ranging from 13 to 77 g C m-3 h-1 and empty bed residence times of 30-15 s with the mass transfer enhanced by a factor of 1.6. The model was validated with data obtained in a TPPB-BTF removing styrene continuously. The experimental outlet emissions associated to oscillating inlet concentrations were satisfactorily predicted by using the calibrated parameters. Model simulations demonstrated the potential improvement of the mass-transfer performance of a conventional BTF degrading styrene by adding silicone oil.


Asunto(s)
Contaminación del Aire/prevención & control , Restauración y Remediación Ambiental/métodos , Filtración/métodos , Modelos Químicos , Estireno/aislamiento & purificación , Biodegradación Ambiental , Biopelículas , Reactores Biológicos , Modelos Teóricos , Contaminación del Agua/prevención & control
2.
Chemosphere ; 191: 1066-1074, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29102028

RESUMEN

A three-phase dynamic mathematical model based on mass balances describing the main processes in biotrickling filtration: convection, mass transfer, diffusion, and biodegradation was calibrated and validated for the simulation of an industrial styrene-degrading biotrickling filter. The model considered the key features of the industrial operation of biotrickling filters: variable conditions of loading and intermittent irrigation. These features were included in the model switching from the mathematical description of periods with and without irrigation. Model equations were based on the mass balances describing the main processes in biotrickling filtration: convection, mass transfer, diffusion, and biodegradation. The model was calibrated with steady-state data from a laboratory biotrickling filter treating inlet loads at 13-74 g C m-3 h-1 and at empty bed residence time of 30-15 s. The model predicted the dynamic emission in the outlet of the biotrickling filter, simulating the small peaks of concentration occurring during irrigation. The validation of the model was performed using data from a pilot on-site biotrickling filter treating styrene installed in a fiber-reinforced facility. The model predicted the performance of the biotrickling filter working under high-oscillating emissions at an inlet load in a range of 5-23 g C m-3 h-1 and at an empty bed residence time of 31 s for more than 50 days, with a goodness of fit of 0.84.


Asunto(s)
Contaminantes Atmosféricos/aislamiento & purificación , Filtración/métodos , Modelos Teóricos , Estireno/aislamiento & purificación , Contaminantes Atmosféricos/metabolismo , Biodegradación Ambiental , Reactores Biológicos , Calibración , Compuestos Orgánicos Volátiles/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA