Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 11(2)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36838439

RESUMEN

This study evaluated the feasibility of continuous biohythane production from rice straw (RS) using an integrated anaerobic bioreactor (IABR) at thermophilic conditions. NaOH/Urea solution was employed as a pretreatment method to enhance and improve biohythane production. Results showed that the maximum specific biohythane yield was 612.5 mL/g VS, including 104.1 mL/g VS for H2 and 508.4 mL/g VS for CH4, which was 31.3% higher than the control RS operation stage. The maximum total chemical oxygen demand (COD) removal stabilized at about 86.8%. COD distribution results indicated that 2% of the total COD (in the feed) was converted into H2, 85.4% was converted to CH4, and 12.6% was retained in the effluent. Furthermore, carbon distribution analysis demonstrated that H2 production only diverted a small part of carbon, and most of the carbon flowed to the CH4 fermentation process. Upon further energy conversion analysis, the maximum value was 166.7%, 31.7 times and 12.8% higher than a single H2 and CH4 production process. This study provides a new perspective on lignocellulose-to-biofuel recovery.

2.
Bioresour Technol ; 344(Pt B): 126173, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34728354

RESUMEN

Long-term semi-continuous experiments were carried out under three feedstock conditions to study the effects of mixing ratio and total solids (TS) content on temperature-phased anaerobic codigestion of rice straw (RS) and pig manure (PM). The results showed that biohythane only produced from the mixture with 6% TS content and its average content were 12.83 ± 1.19% (hydrogen) and 23.68 ± 1.12% (methane). Increasing mixture TS content and decreasing its RS ratio increased biohythane production and organic matter removal by creating a suitable process pH and increasing the anaerobic reaction rates. The highest biohythane production of the mixture reached 73.09 ± 3.03 ml/g VS (hydrogen) and 235.81 ± 9.30 ml/g VS (methane) at a mixing ratio of 5:1 and TS content of 6%. A variety of hydrogen-producing bacteria were found in the thermophilic reactor and Clostridium_sensu_stricto_1 played an important role. Butyric acid fermentation is the main hydrogen-producing pathway. Methanobacterium and Methanosaeta were dominant archaea in the mesophilic reactor.


Asunto(s)
Estiércol , Oryza , Anaerobiosis , Animales , Biocombustibles , Reactores Biológicos , Metano , Porcinos , Temperatura
3.
Biotechnol Biofuels ; 9: 254, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27895708

RESUMEN

BACKGROUND: Biohythane production via two-stage fermentation is a promising direction for sustainable energy recovery from lignocellulosic biomass. However, the utilization of lignocellulosic biomass suffers from specific natural recalcitrance. Hydrothermal liquefaction (HTL) is an emerging technology for the liquefaction of biomass, but there are still several challenges for the coupling of HTL and two-stage fermentation. One particular challenge is the limited efficiency of fermentation reactors at a high solid content of the treated feedstock. Another is the conversion of potential inhibitors during fermentation. Here, we report a novel strategy for the continuous production of biohythane from cornstalk through the integration of HTL and two-stage fermentation. Cornstalk was converted to solid and liquid via HTL, and the resulting liquid could be subsequently fed into the two-stage fermentation systems. The systems consisted of two typical high-rate reactors: an upflow anaerobic sludge blanket (UASB) and a packed bed reactor (PBR). The liquid could be efficiently converted into biohythane via the UASB and PBR with a high density of microbes at a high organic loading rate. RESULTS: Biohydrogen production decreased from 2.34 L/L/day in UASB (1.01 L/L/day in PBR) to 0 L/L/day as the organic loading rate (OLR) of the HTL liquid products increased to 16 g/L/day. The methane production rate achieved a value of 2.53 (UASB) and 2.54 L/L/day (PBR), respectively. The energy and carbon recovery of the integrated HTL and biohythane fermentation system reached up to 79.0 and 67.7%, respectively. The fermentation inhibitors, i.e., 5-hydroxymethyl furfural (41.4-41.9% of the initial quantity detected) and furfural (74.7-85.0% of the initial quantity detected), were degraded during hydrogen fermentation. Compared with single-stage fermentation, the methane process during two-stage fermentation had a more efficient methane production rate, acetogenesis, and COD removal. The microbial distribution via Illumina MiSeq sequencing clarified that the biohydrogen process in the two-stage systems functioned not only for biohydrogen production, but also for the degradation of potential inhibitors. The higher distribution of the detoxification family Clostridiaceae, Bacillaceae, and Pseudomonadaceae was found in the biohydrogen process. In addition, a higher distribution of acetate-oxidizing bacteria (Spirochaetaceae) was observed in the biomethane process of the two-stage systems, revealing improved acetogenesis accompanied with an efficient conversion of acetate. CONCLUSIONS: Biohythane production could be a promising process for the recovery of energy and degradation of organic compounds from hydrothermal liquefied biomass. The two-stage process not only contributed to the improved quality of the gas fuels but also strengthened the biotransformation process, which resulted from the function of detoxification during biohydrogen production and enhanced acetogenesis during biomethane production.

4.
Bioresour Technol ; 220: 312-322, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27591517

RESUMEN

The continuous production of biohythane (mixture of biohydrogen and methane) from food waste using an integrated system of a continuously stirred tank reactor (CSTR) and anaerobic fixed bed reactor (AFBR) was carried out in this study. The system performance was evaluated for an operation period of 200days, by stepwise shortening the hydraulic retention time (HRT). An increasing trend of biohydrogen in the CSTR and methane production rate in the AFBR was observed regardless of the HRT shortening. The highest biohydrogen yield in the CSTR and methane yield in the AFBR were 115.2 (±5.3)L H2/kgVSadded and 334.7 (±18.6)L CH4/kgCODadded, respectively. The AFBR presented a stable operation and excellent performance, indicated by the increased methane production rate at each shortened HRT. Besides, recirculation of the AFBR effluent to the CSTR was effective in providing alkalinity, maintaining the pH in optimal ranges (5.0-5.3) for the hydrogen producing bacteria.


Asunto(s)
Biocombustibles , Reactores Biológicos/microbiología , Hidrógeno/metabolismo , Metano/biosíntesis , Administración de Residuos/métodos , Anaerobiosis , Bacterias/metabolismo , Biopelículas , Alimentos , Residuos de Alimentos , Administración de Residuos/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA