Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Biomed Mater Res B Appl Biomater ; 111(7): 1386-1397, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36891913

RESUMEN

In this study, nano-gold (nAu) and nano-silver (nAg) were doped at the molar ratios of Molar5-Molar30 to the Hydroxyapatite (HAp)-based bioceramic bone graft synthesized by the sol-gel method. The effects of nAu and nAg on structural, mechanical, cell viability, and nuclear abnormality of the synthesized bioceramic grafts were evaluated. The chemical and morphological properties of the bone grafts after production were examined through XRD and SEM-EDX analyses and mechanical tests. To determine the biocompatibility of the bone grafts, cell viability tests were performed using human fibroblast cells. In the cytotoxicity analyses, only HAp and HAp-nAu5 grafts did not show toxicological properties at any concentration, while HAp-nAg5 among the nAg-containing grafts gave the best results at the 200-100 µg/mL concentrations and showed significant cytotoxicity in human fibroblast cells. The other nAu-containing grafts showed toxicological properties in the concentration range of 200-50 µg/mL and nAg-containing grafts in the concentration range of 200-100 µg/mL against the negative control. The micronucleus (MN) analyses showed that the lowest total MN and L (lobbed) amounts, while the lowest total N (notched) amount, was obtained from the only HAp graft. It was found that the nAg-doped bone grafts gave higher total MN, L, and N amounts compared to the nAu-doped bone grafts. Furthermore, while the mean nuclear abnormality (NA) values of all grafts gave close results, the highest values were again obtained from the nAg-doped bone grafts.


Asunto(s)
Durapatita , Humanos , Durapatita/farmacología , Durapatita/química , Supervivencia Celular
2.
Int J Mol Sci ; 24(3)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36769321

RESUMEN

The goal of bone tissue engineering is to build artificial bone tissue with properties that closely resemble human bone and thereby support the optimal integration of the constructs (biografts) into the body. The development of tissues in 3D scaffolds includes several complex steps that need to be optimized and monitored. In particular, cell-material interaction during seeding, cell proliferation and cell differentiation within the scaffold pores play a key role. In this work, we seeded two types of 3D-printed scaffolds with pre-osteoblastic MC3T3-E1 cells, proliferated and differentiated the cells, before testing and adapting different assays and imaging methods to monitor these processes. Alpha-TCP/HA (α-TCP with low calcium hydroxyapatite) and baghdadite (Ca3ZrSi2O9) scaffolds were used, which had comparable porosity (~50%) and pore sizes (~300-400 µm). Cell adhesion to both scaffolds showed ~95% seeding efficiency. Cell proliferation tests provided characteristic progression curves over time and increased values for α-TCP/HA. Transmitted light imaging displayed a homogeneous population of scaffold pores and allowed us to track their opening state for the supply of the inner scaffold regions by diffusion. Fluorescence labeling enabled us to image the arrangement and morphology of the cells within the pores. During three weeks of osteogenesis, ALP activity increased sharply in both scaffolds, but was again markedly increased in α-TCP/HA scaffolds. Multiphoton SHG and autofluorescence imaging were used to investigate the distribution, morphology, and arrangement of cells; collagen-I fiber networks; and hydroxyapatite crystals. The collagen-I networks became denser and more structured during osteogenic differentiation and appeared comparable in both scaffolds. However, imaging of the HA crystals showed a different morphology between the two scaffolds and appeared to arrange in the α-TCP/HA scaffolds along collagen-I fibers. ALP activity and SHG imaging indicated a pronounced osteo-inductive effect of baghdadite. This study describes a series of methods, in particular multiphoton imaging and complementary biochemical assays, to validly measure and track the development of bone tissue in 3D scaffolds. The results contribute to the understanding of cell colonization, growth, and differentiation, emphasizing the importance of optimal media supply of the inner scaffold regions.


Asunto(s)
Osteogénesis , Andamios del Tejido , Humanos , Andamios del Tejido/química , Diferenciación Celular , Ingeniería de Tejidos/métodos , Durapatita/farmacología , Durapatita/química , Colágeno/química , Proliferación Celular
3.
Int. j. morphol ; 38(5): 1398-1404, oct. 2020. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1134455

RESUMEN

SUMMARY: The objective of this study were bone defect complications that occur due to traumas or infections. Bone grafts are required to provide support, fill gaps and improve biological repair in skeletal damage. Dexamethasone plays role in calcium signaling modulation and used in diseases. Aim of this study was to evaluate osteonectin and osteopontin expressions in new bone development after dexamethasone application on tibial bone defects. Rats were divided into defect, defect+graft and defect+graft+dexamethasone treated groups. Tibial bone defect created, and rats were kept immobile for 28 days. Alloplastic material was placed in defect area in second and group third groups. 2.5 mg/kg Dex and normal saline were injected to dexamethasone and defect groups twice a week for 56 days. Inflammation and congestion were increased in defect and defect+graft groups. Defect+graft+dexamethasone group; increased number of osteoblast and osteocyte cells, dense bone matrix, formation of new bone trabeculae was observed. Defect+graft group; osteonectin expression in graft regions, osteoblast cells, some connective tissue cells and fibers were seen whereas in defect+graft+dexamethasone group; osteopontin expression in osteoblast and osteocyte cells of new bone trabeculae were observed. Dexamethasone may lead to formation of new bone trabeculae into the graft material resulting in increased osteoconduction and osteoinductive effect for differentiation of osteon.


RESUMEN: Los defectos óseos son complicaciones que ocurren debido a traumas o infecciones. Se requieren injertos óseos para proporcionar apoyo, llenar los espacios y mejorar la reparación biológica en el hueso dañado. La dexametasona desempeña un papel importante en la modulación de la señalización del calcio y se usa en enfermedades. El objetivo de este estudio fue evaluar las expresiones de osteonectina y osteopontina en el desarrollo óseo después de la aplicación de dexametasona en defectos óseos tibiales. Las ratas se dividieron en grupos: defecto, defecto + injerto y defecto + injerto + grupos tratados con dexametasona. Se creó un defecto óseo tibial, y las ratas se mantuvieron inmóviles durante 28 días. El material aloplástico se colocó en el área del defecto en el segundo y tercer grupo. Se inyectaron 2,5 mg / kg de dexametasona y solución salina normal a grupos de defectos dos veces por semana durante 56 días. La inflamación y la congestión aumentaron en los grupos de defectos y defectos + injerto; En el grupo defecto + injerto + grupo tratado con dexametasona se observó un aumento en el número de osteoblastos y osteocitos, de matriz ósea densa y en la formación de nuevas trabéculas óseas. En el grupo defecto + grupo de injerto se observó la expresión de osteonectina en las áreas de injerto, osteoblastos, algunas células y fibras de tejido conectivo, mientras que en el grupo defecto + injerto + dexametasona se observó la expresión de osteopontina en osteoblastos y osteocitos y formación de nuevas trabéculas óseas . En conclusión la dexametasona puede conducir a la formación de nuevas trabéculas óseas en el material de injerto, lo que resulta en un aumento de la osteoconducción y un efecto osteoinductivo para la diferenciación del osteón.


Asunto(s)
Animales , Masculino , Ratas , Tibia/cirugía , Tibia/efectos de los fármacos , Dexametasona/administración & dosificación , Trasplante Óseo , Tibia/patología , Regeneración Ósea , Inmunohistoquímica , Osteonectina/fisiología , Remodelación Ósea , Ratas Wistar , Modelos Animales de Enfermedad , Osteopontina/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA