Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
FEMS Microbiol Ecol ; 100(7)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38866720

RESUMEN

Many R packages provide statistical approaches for elucidating the diversity of soil microbes, yet they still struggle to visualize microbial traits on a geographical map. This creates challenges in interpreting microbial biogeography on a regional scale, especially when the spatial scale is large or the distribution of sampling sites is uneven. Here, we developed a lightweight, flexible, and user-friendly R package called microgeo. This package integrates many functions involved in reading, manipulating, and visualizing geographical boundary data; downloading spatial datasets; and calculating microbial traits and rendering them onto a geographical map using grid-based visualization, spatial interpolation, or machine learning. Using this R package, users can visualize any trait calculated by microgeo or other tools on a map and can analyze microbiome data in conjunction with metadata derived from a geographical map. In contrast to other R packages that statistically analyze microbiome data, microgeo provides more-intuitive approaches in illustrating the biogeography of soil microbes on a large geographical scale, serving as an important supplement to statistically driven comparisons and facilitating the biogeographic analysis of publicly accessible microbiome data at a large spatial scale in a more convenient and efficient manner. The microgeo R package can be installed from the Gitee (https://gitee.com/bioape/microgeo) and GitHub (https://github.com/ChaonanLi/microgeo) repositories. Detailed tutorials for the microgeo R package are available at https://chaonanli.github.io/microgeo.


Asunto(s)
Microbiota , Programas Informáticos , Microbiología del Suelo , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Filogeografía
2.
Virus Res ; 336: 199226, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37739268

RESUMEN

Stutzerimonas stutzeri is an opportunistic pathogenic bacterium belonging to the Gammaproteobacteria, exhibiting wide distribution in the environment and playing significant ecological roles such as nitrogen fixation or pollutant degradation. Despite its ecological importance, only two S. stutzeri phages have been isolated to date. Here, a novel S. stutzeri phage, vB_PstS_ZQG1, was isolated from the surface seawater of Qingdao, China. Transmission electron microscopy analysis indicates that vB_PstS_ZQG1 has a morphology characterized by a long non-contractile tail. The genomic sequence of vB_PstS_ZQG1 contains a linear, double-strand 61,790-bp with the G+C content of 53.24% and encodes 90 putative open reading frames. Two auxiliary metabolic genes encoding TolA protein and nucleotide pyrophosphohydrolase were identified, which are likely involved in host adaptation and phage reproduction. Phylogenetic and comparative genomic analyses demonstrated that vB_PstS_ZQG1 exhibits low similarity with previously isolated phages or uncultured viruses (average nucleotide identity values range from 21.7 to 29.4), suggesting that it represents a novel viral genus by itself, here named as Fuevirus. Biogeographic analysis showed that vB_PstS_ZQG1 was only detected in epipelagic and mesopelagic zone with low abundance. In summary, our findings of the phage vB_PstS_ZQG1 will provide helpful insights for further research on the interactions between S. stutzeri phages and their hosts, and contribute to discovering unknown viral sequences in the metagenomic database.


Asunto(s)
Bacteriófagos , Filogenia , Análisis de Secuencia de ADN , Genoma Viral , Myoviridae , Genómica , Nucleótidos
3.
Biology (Basel) ; 12(2)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36829510

RESUMEN

Bentinckia is a genus of flowering plants which is an unplaced member of the tribe Areceae (Arecaceae). Two species are recognized in the genus, viz. B. condapanna Berry ex Roxb. from the Western Ghats, India, and B. nicobarica (Kurz) Becc. from the Nicobar Islands. This work constitutes taxonomic revision, cytogenetics, molecular phylogeny, and biogeography of the Indian endemic palm genus Bentinckia. The present study discusses the ecology, morphology, taxonomic history, distribution, conservation status, and uses of Bentinckia. A neotype was designated for the name B. condapanna. Cytogenetical studies revealed a new cytotype of B. condapanna representing 2n = 30 chromosomes. Although many phylogenetic reports of the tribe Areceae are available, the relationship within the tribe is still ambiguous. To resolve this, we carried out Bayesian Inference (BI) and Maximum Likelihood (ML) analysis using an appropriate combination of chloroplast and nuclear DNA regions. The same phylogeny was used to study the evolutionary history of Areceae. Phylogenetic analysis revealed that Bentinckia forms a clade with other unplaced members, Clinostigma and Cyrostachys, and together they show a sister relationship with the subtribe Arecinae. Biogeographic analysis shows Bentinckia might have originated in Eurasia and India.

4.
J Plant Res ; 136(2): 159-177, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36520246

RESUMEN

Coryphoideae are palmate-leaved palms from the family Arecaceae consisting of 46 genera representing 421 species. Although several phylogenetic analyses based on different genomic regions have been carried out on Coryphoideae, a fully resolved molecular phylogenetic tree has not been reported yet. To achieve this, we applied two phylogenetic reconstruction methods: Maximum Likelihood and Bayesian Inference, using amplified sampling by retrieving chloroplast and nuclear DNA sequences from NCBI and adding newly produced sequences from Indian accession into the dataset. The same dataset (chloroplast + nuclear DNA sequences) was used to estimate divergence times and the evolutionary history of Coryphoideae with a Bayesian uncorrelated, lognormal relaxed-clock approach and a Statistical Divergence-Vicariance Analysis method, respectively. The phylogenetic analyses based on a combined chloroplast and nuclear DNA sequence dataset showed well-resolved relationships within the subfamily. Both phylogenetic trees divide Coryphoideae into two main groups: CSPT (Crysophileae, Sabaleae, Phoeniceae, and Trachycarpeae) and the Syncarpous group. These main groups are segregated into eight tribes (Trachycarpeae, Phoeniceae, Sabaleae, Crysophileae, Borasseae, Corypheae, Caryoteae, and Chuniophoeniceae) and four subtribes (Rhapidine, Livistoninae, Hyphaeninae, and Lataniinae) with strong support-values. Most previously unresolved and doubtful relationships within tribes Trachycarpeae and Crysophilieae are now resolved and well-supported. The reconstructed phylogenetic trees support all previous systematic revisions of the subfamily. All Indian sampled species of Arenga, Bentinckia, Hyphaene, and Trachycarpus show close relation with their respective congeneric species. Molecular dating results and integration of biogeography suggest that Coryphoideae originated in Laurasia at ~95.12 Ma and then diverged into the tropical and subtropical regions of the whole world. This study offers the correct combination of nuclear and plastid regions to test the current and future systematic revisions.


Asunto(s)
Arecaceae , Filogenia , Teorema de Bayes , Evolución Biológica , ADN , ADN de Cloroplastos , Plastidios/genética
5.
Microbiome ; 8(1): 126, 2020 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-32867860

RESUMEN

BACKGROUND: Bacterial predation is an important selective force in microbial community structure and dynamics. However, only a limited number of predatory bacteria have been reported, and their predatory strategies and evolutionary adaptations remain elusive. We recently isolated a novel group of bacterial predators, Bradymonabacteria, representative of the novel order Bradymonadales in δ-Proteobacteria. Compared with those of other bacterial predators (e.g., Myxococcales and Bdellovibrionales), the predatory and living strategies of Bradymonadales are still largely unknown. RESULTS: Based on individual coculture of Bradymonabacteria with 281 prey bacteria, Bradymonabacteria preyed on diverse bacteria but had a high preference for Bacteroidetes. Genomic analysis of 13 recently sequenced Bradymonabacteria indicated that these bacteria had conspicuous metabolic deficiencies, but they could synthesize many polymers, such as polyphosphate and polyhydroxyalkanoates. Dual transcriptome analysis of cocultures of Bradymonabacteria and prey suggested a potential contact-dependent predation mechanism. Comparative genomic analysis with 24 other bacterial predators indicated that Bradymonabacteria had different predatory and living strategies. Furthermore, we identified Bradymonadales from 1552 publicly available 16S rRNA amplicon sequencing samples, indicating that Bradymonadales was widely distributed and highly abundant in saline environments. Phylogenetic analysis showed that there may be six subgroups in this order; each subgroup occupied a different habitat. CONCLUSIONS: Bradymonabacteria have unique living strategies that are transitional between the "obligate" and the so-called facultative predators. Thus, we propose a framework to categorize the current bacterial predators into 3 groups: (i) obligate predators (completely prey-dependent), (ii) facultative predators (facultatively prey-dependent), and (iii) opportunistic predators (prey-independent). Our findings provide an ecological and evolutionary framework for Bradymonadales and highlight their potential ecological roles in saline environments. Video abstract.


Asunto(s)
Deltaproteobacteria/fisiología , Ecosistema , Viabilidad Microbiana , Salinidad , Deltaproteobacteria/clasificación , Deltaproteobacteria/genética , Filogenia , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA