Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pathogens ; 13(7)2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39057778

RESUMEN

Bacterial adhesion to biotic and abiotic surfaces under fluid shear stress plays a major role in the pathogenesis of infections linked to medical implants and tissues. This study employed an automated BioFlux 200 microfluidic system and video microscopy to conduct real-time adhesion assays, examining the influence of shear stress on adhesion kinetics and spatial distribution of Staphylococcus aureus on glass surfaces. The adhesion rate exhibited a non-linear relationship with shear stress, with notable variations at intermediate levels. Empirical adhesion events were simulated with COMSOL Multiphysics® and Python. Overall, COMSOL accurately predicted the experimental trend of higher rates of bacterial adhesion with decreasing shear stress but poorly characterized the plateauing phenomena observed over time. Python provided a robust mathematical representation of the non-linear relationship between cell concentration, shear stress, and time but its polynomial regression approach was not grounded on theoretical physical concepts. These insights, combined with advancements in AI and machine learning, underscore the potential for synergistic computational techniques to enhance our understanding of bacterial adhesion to surfaces, offering a promising avenue for developing novel therapeutic strategies.

2.
Eur J Pharm Sci ; 188: 106513, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37423577

RESUMEN

Along with the increasing demand for complex formulations comes the need for appropriate in vitro methodologies capable of predicting their corresponding in vivo performance and the mechanisms controlling the drug release which can impact on in vivo drug absorption. In vitro dissolution-permeation (D/P) methodologies that can account for the effects of enabling formulations on the permeability of drugs are increasingly being used in performance ranking during early development stages. This work comprised the application of two different cell-free in vitro D/P setups: BioFLUX™ and PermeaLoop™ to evaluate the dissolution-permeation interplay upon drug release from itraconazole (ITZ)- HPMCAS amorphous solid dispersions (ASDs) of different drug loads. A solvent-shift approach was employed, from a simulated gastric environment to a simulated intestinal environment in the donor compartment. PermeaLoop™ was then combined with microdialysis sampling to separate the dissolved (free) drug from other species present in solution, like micelle-bound drug and drug-rich colloids, in real time. This setup was applied to clarify the mechanisms for drug release and permeation from these ASDs. In parallel, a pharmacokinetic study (dog model) was conducted to assess the drug absorption from these ASDs and to compare the in vivo results with the data obtained from each in vitro D/P setup, allowing to infer which would be the most adequate setup for ASD ranking. Even though both D/P systems resulted in the same qualitative ranking, BioFLUX™ overpredicted the difference between the in vivo AUC of two ASDs, whereas PermeaLoop™ permeation flux resulted in a good correlation with the AUC observed in pharmacokinetic studies (dog model) (R2 ≈ 0.98). Also, PermeaLoop™ combined with a microdialysis sampling probe clarified the mechanisms for drug release and permeation from these ASDs. It demonstrated that the free drug was the only driving force for permeation, while the drug-rich colloids kept permeation active for longer periods by acting as drug reservoirs and maintaining constant high levels of free drug in solution, which are then immediately able to permeate. Hence, the data obtained points BioFLUX™ and PermeaLoop™ applications to different momentums in the drug product development pipeline: while BioFLUX™, an automated standardized method, poses as a valuable tool for initial ASD ranking during the early development stages, PermeaLoop™ combined with microdialysis sampling allows to gain mechanistic understanding of the dissolution-permeation interplay, being crucial to fine tune and identify leading ASD candidates prior to in vivo testing.


Asunto(s)
Coloides , Itraconazol , Animales , Perros , Solubilidad , Disponibilidad Biológica , Liberación de Fármacos , Itraconazol/farmacocinética
3.
Antibiotics (Basel) ; 12(6)2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37370395

RESUMEN

Because of the close connection between adhesion and many vital cellular functions, the search for new compounds modulating the adhesion of bacteria belonging to the intestinal microbiota is a great challenge and a clinical need. Based on our previous studies, we discovered that O-lkyl naringenin derivatives and their oximes exhibit antimicrobial activity against antibiotic-resistant pathogens. The current study was aimed at determining the modulatory effect of these compounds on the adhesion of selected representatives of the intestinal microbiota: Escherichia coli, a commensal representative of the intestinal microbiota, and Enterococcus faecalis, a bacterium that naturally colonizes the intestines but has disease-promoting potential. To better reflect the variety of real-life scenarios, we performed these studies using two different intestinal cell lines: the physiologically functioning ("healthy") 3T3-L1 cell line and the disease-mimicking, cancerous HT-29 line. The study was performed in vitro under static and microfluidic conditions generated by the Bioflux system. We detected the modulatory effect of the tested O-alkyl naringenin derivatives on bacterial adhesion, which was dependent on the cell line studied and was more significant for E. coli than for E. faecalis. In addition, it was noticed that this activity was affected by the concentration of the tested compound and its structure (length of the carbon chain). In summary, O-alkyl naringenin derivatives and their oximes possess a promising modulatory effect on the adhesion of selected representatives of the intestinal microbiota.

4.
Materials (Basel) ; 16(5)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36903065

RESUMEN

The present paper investigates the viscoelastic stress-strain responses of laboratory and plant produced warm mix asphalt mixtures containing basalt fiber dispersed reinforcement. The investigated processes and mixture components were evaluated for their efficacy in producing highly performing asphalt mixtures with decreased mixing and compaction temperatures. Surface course asphalt concrete (AC-S 11 mm) and high modulus asphalt concrete (HMAC 22 mm) conventionally and using a warm mix asphalt technique with foamed bitumen and a bio-derived fluxing additive. The warm mixtures included lowered production temperature (by 10 °C) and lowered compaction temperatures (by 15 °C and 30 °C). The complex stiffness moduli of the mixtures were assessed under cyclic loading tests at combinations of four temperatures and five loading frequencies. It was found that the warm produced mixtures were characterized by lower dynamic moduli than the reference mixtures in the whole spectrum of loading conditions, however, the mixtures compacted at the 30 °C lower temperature performed better than the mixtures compacted at 15 °C lower temperature, specifically when highest testing temperatures are considered. The differences in the performance of plant and laboratory produced mixtures were ascertained to be nonsignificant. It was concluded that the differences in stiffness of hot mix and warm mixtures can be attributed to the inherent properties of foamed bitumen mixtures and that these differences should shrink in time.

5.
Int J Mol Sci ; 23(22)2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36430935

RESUMEN

In recent years, clinicians and doctors have become increasingly interested in fungal infections, including those affecting the mucous membranes. Vulvovaginal candidiasis (VVC) is no exception. The etiology of this infection remains unexplained to this day, as well as the role and significance of asymptomatic vaginal Candida colonization. There are also indications that in the case of VVC, standard methods of determining drug susceptibility to antifungal drugs may not have a real impact on their clinical effectiveness-which would explain, among other things, treatment failures and relapse rates. The aim of the study was to verify the promising results obtained previously in vitro using standard methods, in a newly developed ex vivo model, using tissue fragments of the mouse vagina. The main goal of the study was to determine whether the selected ultrashort cyclic lipopeptides (USCLs) and their combinations with fluconazole at specific concentrations are equally effective against Candida forming a biofilm directly on the surface of the vaginal epithelium. In addition, the verification was also performed with the use of another model for the study of microorganisms (biofilms) in vitro-the BioFlux system, under microfluidic conditions. The obtained results indicate the ineffectiveness of the tested substances ex vivo at concentrations eradicating biofilm in vitro. Nevertheless, the relatively most favorable and promising results were still obtained in the case of combination therapy-a combination of low concentrations of lipopeptides (mainly linear analogs) with mycostatic fluconazole. Additionally, using BioFlux, it was not possible to confirm the previously obtained results. However, an inhibiting effect of the tested lipopeptides on the development of biofilm under microfluidic conditions was demonstrated. There is an incompatibility between the classic in vitro methods, the newer BioFlux method of biofilm testing, offering many advantages postulated elsewhere, and the ex vivo method. This incompatibility is another argument for the need, on the one hand, to intensify research on the pathomechanism of VVC, and, on the other hand, to verify and maybe modify the standard methods used in the determination of Candida susceptibility.


Asunto(s)
Candidiasis Vulvovaginal , Ratones , Humanos , Femenino , Animales , Candidiasis Vulvovaginal/tratamiento farmacológico , Candidiasis Vulvovaginal/microbiología , Candida albicans , Proyectos Piloto , Fluconazol/farmacología , Biopelículas , Candida , Vagina/microbiología , Modelos Animales de Enfermedad , Antibacterianos/farmacología , Lipopéptidos/farmacología , Lipopéptidos/uso terapéutico
6.
Cells ; 11(16)2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-36010646

RESUMEN

This paper analyses the impact of the diatomaceous earth/peat (DEP; 3:1) microbial carrier on changes in the bacterial microbiome and the development of biofilm in the anaerobic digestion (AD) of confectionery waste, combined with digested sewage sludge as inoculum. The physicochemical properties of the carrier material are presented, with particular focus on its morphological and dispersion characteristics, as well as adsorption and thermal properties. In this respect, the DEP system was found to be a suitable carrier for both mesophilic and thermophilic AD. The evaluation of quantitative and qualitative changes in the genetic diversity of bacterial communities, carried out using next-generation sequencing (NGS), showed that the material has a modifying effect on the bacterial microbiome. While Actinobacteria was the most abundant cluster in the WF-control sample (WF-waste wafers), Firmicutes was the dominant cluster in the digested samples without the carrier (WF-dig.; dig.-digested) and with the carrier (WF + DEP). The same was true for the count of Proteobacteria, which decreased twofold during biodegradation in favor of Synergistetes. The Syntrophomonas cluster was identified as the most abundant genus in the two samples, particularly in WF + DEP. This information was supplemented by observations of morphological features of microorganisms carried out using fluorescence microscopy. The biodegradation process itself had a significant impact on changes in the microbiome of samples taken from anaerobic bioreactors, reducing its biodiversity. As demonstrated by the results of this innovative method, namely the BioFlux microfluidic flow system, the decrease in the number of taxa in the digested samples and the addition of DEP contributed to the microbial adhesion in the microfluidic system and the formation of a stable biofilm.


Asunto(s)
Tierra de Diatomeas , Suelo , Anaerobiosis , Bacterias/metabolismo , Reactores Biológicos/microbiología , Tierra de Diatomeas/metabolismo , Variación Genética , Aguas del Alcantarillado/química , Aguas del Alcantarillado/microbiología
7.
Front Cell Infect Microbiol ; 12: 868905, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35402304

RESUMEN

It is widely accepted that production of biofilm is a protective mechanism against various type of stressors, including exposure to antibiotics. However, the impact of this structure on the spread of antibiotic resistance in Helicobacter pylori is still poorly understood. Therefore, the aim of the current research was to determine the relationship between biofilm formation and antibiotic resistance of H. pylori. The study was carried out on 24 clinical strains with different resistance profiles (antibiotic-sensitive, mono-resistant, double-resistant and multidrug-resistant) against clarithromycin (CLR), metronidazole (MTZ) and levofloxacin (LEV). Using static conditions and a crystal violet staining method, a strong correlation was observed between biofilm formation and resistance to CLR but not MTZ or LEV. Based on the obtained results, three the strongest and three the weakest biofilm producers were selected and directed for a set of microfluidic experiments performed in the Bioflux system combined with fluorescence microscopy. Under continuous flow conditions, it was observed that strong biofilm producers formed twice as much of biofilm and created significantly more eDNA and in particular proteins within the biofilm matrix when compared to weak biofilm producers. Additionally, it was noticed that strong biofilm producers had higher tendency for autoaggregation and presented morphostructural differences (a greater cellular packing, shorter cells and a higher amount of both OMVs and flagella) in relation to weak biofilm counterparts. In conclusion, resistance to CLR in clinical H. pylori strains was associated with a broad array of phenotypical features translating to the ability of strong biofilm formation.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Biopelículas , Claritromicina/farmacología , Farmacorresistencia Bacteriana , Infecciones por Helicobacter/tratamiento farmacológico , Helicobacter pylori/genética , Humanos , Levofloxacino/farmacología , Metronidazol/farmacología , Pruebas de Sensibilidad Microbiana , Microfluídica
8.
Pathogens ; 10(8)2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34451497

RESUMEN

Helicobacter pylori is a Gram-negative bacterium that colonizes the stomach of about 60% of people worldwide. The search for new drugs with activity against H. pylori is now a hotspot in the effective and safe control of this bacterium. Therefore, the aim of this research was to determine the antibacterial activity of extracts from selected plants of the Papaveraceae family against planktonic and biofilm forms of the multidrug-resistant clinical strain of H. pylori using a broad spectrum of analytical in vitro methods. It was revealed that among the tested extracts, those obtained from Corydalis cheilanthifolia and Chelidonium majus were the most active, with minimal inhibitory concentrations (MICs) of 64 µg/mL and 128 µg/mL, respectively. High concentrations of both extracts showed cytotoxicity against cell lines of human hepatic origin. Therefore, we attempted to lower their MICs through the use of a synergistic combination with synthetic antimicrobials as well as by applying cellulose as a drug carrier. Using checkerboard assays, we determined that both extracts presented synergistic interactions with amoxicillin (AMX) and 3-bromopyruvate (3-BP) (FICI = 0.5) and additive relationships with sertraline (SER) (FICI = 0.75). The antibiofilm activity of extracts and their combinations with AMX, 3-BP, or SER, was analyzed by two methods, i.e., the microcapillary overgrowth under flow conditions (the Bioflux system) and assessment of the viability of lawn biofilms after exposure to drugs released from bacterial cellulose (BC) carriers. Using both methods, we observed a several-fold decrease in the level of H. pylori biofilm, indicating the ability of the tested compounds to eradicate the microbial biofilm. The obtained results indicate that application of plant-derived extracts from the Papaveraceae family combined with synthetic antimicrobials, absorbed into organic BC carrier, may be considered a promising way of fighting biofilm-forming H. pylori.

9.
Molecules ; 27(1)2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-35011255

RESUMEN

Helicobacter pylori is one of the most frequent human pathogens and a leading etiological agent of various gastric diseases. As stringent response, coordinated by a SpoT protein, seems to be crucial for the survivability of H. pylori, the main goal of this article was to use in silico computational studies to find phytochemical compounds capable of binding to the active site of SpoT from H. pylori and confirm the ability of the most active candidates to interfere with the virulence of this bacterium through in vitro experiments. From 791 natural substances submitted for the virtual screening procedure, 10 were chosen and followed for further in vitro examinations. Among these, dioscin showed the most interesting parameters (the lowest MIC, the highest anti-biofilm activity in static conditions, and a relatively low stimulation of morphological transition into coccoids). Therefore, in the last part, we extended the research with a number of further experiments and observed the ability of dioscin to significantly reduce the formation of H. pylori biofilm under Bioflux-generated flow conditions and its capacity for additive enhancement of the antibacterial activity of all three commonly used antibiotics (clarithromycin, metronidazole, and levofloxacin). Based on these results, we suggest that dioscin may be an interesting candidate for new therapies targeting H. pylori survivability and virulence.


Asunto(s)
Antibacterianos/química , Productos Biológicos/química , Diosgenina/análogos & derivados , Infecciones por Helicobacter/tratamiento farmacológico , Helicobacter pylori/efectos de los fármacos , Pirofosfatasas/química , Virulencia/efectos de los fármacos , Secuencia de Aminoácidos , Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Dominio Catalítico , Claritromicina/farmacología , Diosgenina/química , Diosgenina/farmacología , Evaluación Preclínica de Medicamentos , Humanos , Levofloxacino/farmacología , Metronidazol/farmacología , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Unión Proteica , Conformación Proteica
10.
Mol Pharm ; 16(10): 4121-4130, 2019 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-31525051

RESUMEN

In this work, two different approaches have been developed to predict the food effect and the bioequivalence of marketed itraconazole (ITRA) formulations. Kinetic solubility and simultaneous dissolution-permeation tests of three (ITRA) formulations (Sporanox capsules and solution and SUBA-ITRA capsules) were carried out in simulated fasted and fed states. Fraction of dose absorbed ratios estimating food effect and bioequivalence were calculated based on these results and were compared to the in vivo study results published by Medicines Agencies. The comparison demonstrated that kinetic solubility and flux values could be used as input parameters for biopharmaceutics modeling and simulations to estimate food effect and bioequivalence. Both prediction methods were able to determine a slightly negative food effect in the case of the Sporanox solution and also a pronounced positive food effect for the Sporanox capsule. Superior bioavailability was predicted when the Sporanox solution was compared to the Sporanox capsule (in agreement with in vivo data).


Asunto(s)
Química Farmacéutica , Composición de Medicamentos , Tracto Gastrointestinal/efectos de los fármacos , Secreciones Intestinales/efectos de los fármacos , Itraconazol/farmacología , Antifúngicos/farmacología , Disponibilidad Biológica , Humanos , Modelos Teóricos , Solubilidad , Equivalencia Terapéutica
11.
Biotechniques ; 66(5): 235-239, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31050304

RESUMEN

Bacteria often live in communities of mixed species embedded in a self-produced extracellular matrix of polysaccharides, proteins and DNA, termed biofilms. The BioFlux microfluidic flow system is useful for studying biofilm formation in different media under flow. However, analyzing the architecture and maturation of biofilms under flow requires a proper seeding, which can prove difficult when working with bacteria of different sizes, motile bacteria or aiming for a high number of replicates. Here we developed an efficient protocol that exploits viscosity tuning and seeding indicator dyes to improve seeding and allow for high-throughput examination and visualization of consistent mono- and mixed-species biofilm developments under flow.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Microbiota/genética , Microfluídica , Pseudomonas aeruginosa/crecimiento & desarrollo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidad , Resistencia al Corte , Estrés Mecánico
12.
FEMS Microbiol Lett ; 366(6)2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30927413

RESUMEN

The objective of this study was to investigate biofilm formation by Lactobacillus fermentum under physiologically relevant shear conditions both in the presence and absence of a food matrix and under simulated conditions of digestion. This was done using batch and flow biofilms of L. fermentum strains under conditions simulating digestion in the human gastrointestinal tract and shear flow using a high throughput platform BioFlux 1000Z system. The putative probiotic strain, PL29, was found to be capable of adhesion and biofilm formation in mucin-coated microfluidic channels under liquid flow conditions mimicking those of the GIT. Based on these in vitro measurements, we conclude that L. fermentum strain PL29 could be an effective probiotic for human consumption.


Asunto(s)
Biopelículas , Tracto Gastrointestinal/microbiología , Limosilactobacillus fermentum/fisiología , Adhesión Bacteriana , Células CACO-2 , Humanos , Modelos Biológicos
13.
Methods Mol Biol ; 1946: 167-176, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30798554

RESUMEN

The ability of A. baumannii to develop biofilms on a wide range of surfaces can be associated to its persistence in hospital settings and the emergence of recalcitrant and chronic infections. Few compounds are available to eradicate A. baumannii biofilms, and most of them have been tested for their antibiofilm properties in static conditions. Microfluidics systems as BioFlux™ system are now available for studying A. baumannii biofilm formation in dynamic conditions. Here, we described the use of this system for studying the biofilm development of the reference strain A. baumannii ATCC 17978 in a dynamic mode. We showed how to test the activity of an antibiotic (colistin at the MIC concentration, 0.5 µg/mL) in these conditions of growth.


Asunto(s)
Acinetobacter baumannii/fisiología , Biopelículas/crecimiento & desarrollo , Técnicas Analíticas Microfluídicas , Microfluídica , Acinetobacter baumannii/efectos de los fármacos , Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Microfluídica/instrumentación , Microfluídica/métodos , Imagen de Lapso de Tiempo
14.
Artículo en Inglés | MEDLINE | ID: mdl-29084746

RESUMEN

Pseudomonas aeruginosa is a major cause of morbidity and mortality in chronically infected cystic fibrosis patients. Novel in vitro biofilm models which reliably predict the therapeutic success of antimicrobial therapies against biofilm bacteria should be implemented. The activity of fosfomycin, tobramycin, and the fosfomycin-tobramycin combination against 6 susceptible P. aeruginosa strains isolated from respiratory samples from cystic fibrosis patients was tested by using two in vitro biofilm models: a closed system (Calgary device) and an open model based on microfluidics (BioFlux). All but one of the isolates formed biofilms. The fosfomycin and tobramycin minimal biofilm inhibitory concentrations (MBIC) were 1,024 to >1,024 µg/ml and 8 to 32 µg/ml, respectively. According to fractional inhibitory concentration analysis, the combination behaved synergistically against all the isolates except the P. aeruginosa ATCC 27853 strain. The dynamic formation of the biofilm was also studied with the BioFlux system, and the MIC and MBIC of each antibiotic were tested. For the combination, the lowest tobramycin concentration that was synergistic with fosfomycin was used. The captured images were analyzed by measuring the intensity of the colored pixels, which was proportional to the biofilm biomass. A statistically significant difference was found when the intensity of the inoculum was compared with the intensity of the microchannel in which the MBIC of tobramycin, fosfomycin, or their combination was used (P < 0.01) but not when the MIC was applied (P > 0.01). Fosfomycin-tobramycin was demonstrated to be synergistic against cystic fibrosis P. aeruginosa strains in the biofilm models when both the Calgary and the microfluidic BioFlux systems were tested. These results support the clinical use of this combination.


Asunto(s)
Antibacterianos/farmacología , Fibrosis Quística/microbiología , Fosfomicina/farmacología , Pruebas de Sensibilidad Microbiana/instrumentación , Pruebas de Sensibilidad Microbiana/métodos , Pseudomonas aeruginosa/efectos de los fármacos , Tobramicina/farmacología , Biopelículas/efectos de los fármacos , Combinación de Medicamentos , Sinergismo Farmacológico , Humanos , Microfluídica , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología
15.
Materials (Basel) ; 10(9)2017 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-28891929

RESUMEN

Bitumen is a commonly used material for road construction. According to environmental regulations, vegetable-based materials are applied for binder modification. Fluxed road bitumen containing a bio-flux oxidation product increases the consistency over time. The efficiency of crosslinking depends on the number of double bonds and their position in the aliphatic chain of fatty acid. The main goal of this paper was to examine the structural changes taking place during hardening bitumen with bio-flux additives. Two types of road bitumens fluxed with two different oxidized methyl esters of rapeseed oil were used in this study. Various chemical and rheological tests were applied for the fluxed-bitumen at different stages of oxygen exposure. The oxidation of rapeseed oil methyl ester reduced the iodine amount by about 10%-30%. Hardening of the fluxed bitumen generally results in an increase of the resins content and a reduction of the aromatics and asphaltenes. In the temperature range of 0 °C to 40 °C, bio-flux results with a much higher increase in the phase angle than in temperatures above 40 °C in the bitumen binder. The increase in the proportion of the viscous component in the low and medium binder temperature is favorable due to the potential improvement of the fatigue resistance of the asphalt mixture with such binders.

16.
Appl Microbiol Biotechnol ; 100(13): 5773-9, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26825819

RESUMEN

Recent studies have indicated that biosurfactants play a role both in maintaining channels between multicellular structures in biofilms and in dispersal of cells from biofilms. A combination of caprylic acid (0.01 % v/v) together with rhamnolipids (0.04 % v/v) was applied to biofilms of Pseudomonas aeruginosa ATCC 15442, Staphylococcus aureus ATCC 9144 and a mixed culture under BioFlux flowthrough conditions and caused disruption of the biofilms. The biofilms were also treated with a combination of rhamnolipids (0.04 % v/v) and sophorolipids (0.01 %). Control treatments with PBS 1× had no apparent effect on biofilm disruption. The Gram-positive bacterium (S. aureus ATCC 9144) was more sensitive than P. aeruginosa ATCC 15442 in terms of disruption and viability as shown by Live/Dead staining. Disruption of biofilms of P. aeruginosa ATCC 15442 was minimal. Oxygen consumption by biofilms, after different treatments with biosurfactants, confirms that sophorolipid on its own is unable to kill/inhibit cells of P. aeruginosa ATCC 15442, and even when used in combination with rhamnolipids, under static conditions, no decrease in the cell viability was observed. Cells in biofilms exposed to mono-rhamnolipids (0.04 % v/v) showed behaviour typical of exposure to bacteriostatic compounds, but when exposed to di-rhamnolipids (0.04 % v/v), they displayed a pattern characteristic of bactericidal compounds.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Tensoactivos/farmacología , Antibacterianos/análisis , Caprilatos/análisis , Caprilatos/farmacología , Glucolípidos/análisis , Glucolípidos/farmacología , Pseudomonas aeruginosa/fisiología , Staphylococcus aureus/fisiología , Tensoactivos/análisis
17.
Methods Mol Biol ; 1356: 95-105, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26519068

RESUMEN

Development of Candida spp. biofilms on medical devices such as catheters and voice prosthesis has been recognized as an increasing clinical problem. Different in vitro models are presented with increasing complexity. Each model system can be utilized for analysis of new active compounds to prevent or treat Candida biofilms as well as to study molecular processes involved in biofilm formation. Susceptibility studies of clinical isolates are generally performed in a simple 96-well model system similar to the CLSI standard. In the present chapter, optimized conditions that promote biofilm formation within individual wells of microtiter plates are described. In addition, the method has proven useful in preparing C. albicans biofilms for investigation by a variety of microscopic and molecular techniques. A more realistic and more complex biofilm system is presented by the Amsterdam Active Attachment (AAA) model. In this 24-well model all crucial steps of biofilm formation: adhesion, proliferation, and maturation, can be simulated on various surfaces, while still allowing a medium throughput approach. This model has been applied to study susceptibility, complex molecular mechanisms as well as interspecies (Candida-bacterium) interactions. Finally, a realistic microfluidics channel system is presented to follow dynamic processes in biofilm formation. In this Bioflux-based system, molecular mechanisms as well as dynamic processes can be studied at a high time-resolution.


Asunto(s)
Biopelículas , Candida/fisiología , Antifúngicos/farmacología , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Candida/efectos de los fármacos , Candida albicans/fisiología , Técnicas In Vitro , Pruebas de Sensibilidad Microbiana
18.
Int J Immunopathol Pharmacol ; 28(1): 104-13, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25816412

RESUMEN

Staphylococcus epidermidis is recognized as cause of biofilm-associated infections and interest in the development of new approaches for S. epidermidis biofilm treatment has increased. In a previous paper we reported that the supernatant of Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 presents an anti-biofilm activity against S. epidermidis and preliminary physico-chemical characterization of the supernatant suggested that this activity is due to a polysaccharide. In this work we further investigated the chemical nature of the anti-biofilm P. haloplanktis TAC125 molecule. The production of the molecule was evaluated in different conditions, and reported data demonstrated that it is produced in all P. haloplanktis TAC125 biofilm growth stages, also in minimal medium and at different temperatures. By using a surface coating assay, the surfactant nature of the anti-biofilm compound was excluded. Moreover, a purification procedure was set up and the analysis of an enriched fraction demonstrated that the anti-biofilm activity is not due to a polysaccharide molecule but that it is due to small hydrophobic molecules that likely work as signal. The enriched fraction was also used to evaluate the effect on S. epidermidis biofilm formation in dynamic condition by BioFlux system.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Pseudoalteromonas/fisiología , Staphylococcus epidermidis/fisiología , Regiones Antárticas , Polisacáridos/metabolismo , Pseudoalteromonas/metabolismo , Staphylococcus epidermidis/metabolismo , Tensoactivos/metabolismo
19.
Biol Reprod ; 91(4): 96, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25210128

RESUMEN

Mitochondria are home to many cellular processes, including oxidative phosphorylation and fatty acid metabolism, and in steroid-synthesizing cells, they are involved in cholesterol import and metabolism, which is the initiating step in steroidogenesis. The formation of macromolecular protein complexes aids in the regulation and efficiency of these mitochondrial functions, though because of their dynamic nature, they are hard to identify. To overcome this problem, we used Blue-Native PAGE with whole-gel mass spectrometry on isolated mitochondria from control and hormone-treated MA-10 mouse tumor Leydig cells. The presence of multiple mitochondrial protein complexes was shown. Although these were qualitatively similar under control and human chorionic gonadotropin (hCG)-stimulated conditions, quantitative differences in the components of the complexes emerged after hCG treatment. A prominent decrease was observed with proteins involved in fatty acid import into the mitochondria, implying that mitochondrial beta-oxidation is not essential for steroidogenesis. To confirm this observation, we inhibited fatty acid import utilizing the CPT1a inhibitor etomoxir, resulting in increased steroid production. Conversely, stimulation of mitochondrial beta-oxidation with metformin resulted in a dose-dependent reduction in steroidogenesis. These changes were accompanied by changes in mitochondrial respiration and in the lactic acid formed during glycolysis. Taken together, these results suggest that upon hormonal stimulation, mitochondria efficiently import cholesterol for steroid production at the expense of other lipids necessary for energy production, specifically fatty acids required for beta-oxidation.


Asunto(s)
Ácidos Grasos/metabolismo , Células Intersticiales del Testículo/metabolismo , Mitocondrias/metabolismo , Esteroides/biosíntesis , Animales , Transporte Biológico , Línea Celular , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Hipoglucemiantes/farmacología , Masculino , Metformina/farmacología , Ratones , Oxidación-Reducción , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA