Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ann Bot ; 131(4): 655-666, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-36694346

RESUMEN

BACKGROUND AND AIMS: Polyploidization can improve plant mass yield for bioenergy support, yet few studies have investigated ozone (O3) sensitivity linked to internal regulatory mechanisms at different ploidy levels. METHODS: Diploid and triploid Populus tomentosa plants were exposed to ambient and ambient plus 60 ppb [O3]. We explored their differences in sensitivity (leaf morphological, physiological and biochemical traits, and plant mass) as well as mechanisms of avoidance (stomatal conductance, xanthophyll cycle, thermal dissipation) and tolerance (ROS scavenging system) in response to O3 at two developmental phases. KEY RESULTS: Triploid plants had the highest plant growth under ambient O3, even under O3 fumigation. However, triploid plants were the most sensitive to O3 and under elevated O3 showed the largest decreases in photosynthetic capacity and performance, as well as increased shoot:root ratio, and the highest lipid peroxidation. Thus, plant mass production could be impacted in triploid plants under long-term O3 contamination. Both diploid and triploid plants reduced stomatal aperture in response to O3, thereby reducing O3 entrance, yet only in diploid plants was reduced stomatal aperture associated with minimal (non-significant) damage to photosynthetic pigments and lower lipid peroxidation. CONCLUSIONS: Tolerance mechanisms of plants of both ploidy levels mainly focused on the enzymatic reduction of hydrogen peroxide through catalase and peroxidase, yet these homeostatic regulatory mechanisms were higher in diploid plants. Our study recommends triploid white poplar as a bioenergy species only under short-term O3 contamination. Under continuously elevated O3 over the long term, diploid white poplar may perform better.


Asunto(s)
Ozono , Populus , Ozono/farmacología , Populus/genética , Triploidía , Fotosíntesis/fisiología , Hojas de la Planta/genética , Ploidias
2.
Chemosphere ; 313: 137534, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36521744

RESUMEN

Soil pollution and heavy metals (HMs) contamination caused by the improper management of mine soil is a major concern for the environment and the associated living beings. The present study was carried out for 90 days with iron mine soil (MS) amendment with different ratios of garden soil (GS) (0, 25, 50, 75 and 100%). The study investigates the growth performance, metal tolerance, metal accumulation (Fe, Pb, Cu and Ni) ability of R. communis L. and the improvement in soil health after harvesting the plants. The MS had a high level of Fe, Pb, Cu and Ni (2017.17, 65.34, 34.02 and 69.15 mg kg-1 respectively) with significantly low pH, water holding capacity (WHC), organic carbon (OC), organic matter (OM) and nutrients along with microbial biomass carbon and nitrogen (Cmic and Nmic). The study found that there are higher growth rates and biomass for plants grown in all GS treatments compared to 100% MS. The relative water content (%), tolerance index and carotenoid content exhibit upwards trends with the increasing growing period. The HMs accumulation in shoot and root was found highest for Fe (1354.44 and 3989.61 mg kg-1) and Pb (31.88 and 34.83 mg kg-1). The metal extraction ratio for all studied metals was found maximum in 50 and 75% GS treatment plants. Further, the HMs removal percentage was recorded between 14.82 and 54.86%. The soil physicochemical and biological properties like electrical conductivity, total nitrogen, Cmic and Nmic increased up to 50% and the OC and OM improved manyfold in 100% MS. Based on the findings, it is concluded that R. communis L. has the potential to easily cultivate in mine abandoned soil and tolerate high concentrations of HMs.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Suelo/química , Hierro , Jardines , Plomo , Contaminantes del Suelo/análisis , Metales Pesados/análisis , Carbono , Ricinus
3.
Int J Phytoremediation ; 22(12): 1313-1320, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32425052

RESUMEN

Heavy metal contamination of agricultural lands may give rise to health risks by cultivation and consumption of food crops from such lands, as well as result in economic loss. Phytoremediation is an eco-friendly and cost-effective approach to restore contaminated soil. However, the restoration process is slow and its sustainability is difficult to maintain. Bioenergy crops may provide alternative economic benefits to agriculture sector and reduce the risks associated with transfering heavy metals into food webs. In this study, a field experiment was carried out to determine the level of reclamation that would be attained in severely heavy metal-contaminated land by planting cassava (Manihot esculenta), a bioenergy crop. The results showed that cassava could grow well on the derelict land, with a fresh tuber yield of 23.13-26.22 t ha-1 in one growing season, which could potentially produce 3680-4160 L ha-1 bioethanol. The economic income of the cassava was estimated to be 11.6-13.1 × 103 CNY ha-1. Among the cassava tissues, metal concentrations were lowest in the tuber. The soil fertility and acidity were ameliorated after cassava plantation, and the mobile and bioavailable metal fractions in the soils were decreased. The cultivation of cassava as a renewable energy crop appears applicable for sustainable utilization and reclamation of heavy metal-contaminated land.


Asunto(s)
Manihot , Metales Pesados , Contaminantes del Suelo/análisis , Biodegradación Ambiental , Productos Agrícolas , Suelo
4.
Environ Sci Pollut Res Int ; 26(13): 13320-13333, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30903469

RESUMEN

Contamination of soil by heavy metals is among the important environmental problems due to their toxicity and negative impact to human health and the environment. An effective method for cleaning the soil from heavy metals is phytoremediation using the second-generation bioenergy species Miscanthus × giganteus. The purpose of this research is to study the benefits of M. × giganteus cultivation at the soils taken from the mining and former military sites contaminated by As, Pb, Zn, Co, Ni, Cr, Cu, V, Mn, Sr, and U as well as at the soil artificially contaminated by Zn and Pb, to evaluate the physiological parameters of the plant, to establish peculiarities of the phytoremediation process, and to characterize the behavior of the plant in relation to the nature and concentrations of the metals in the soils. Results showed that M. × giganteus was resistant to heavy metals (tolerance index ≥ 1) and that the greatest portion of metals accumulated in the root system. The morphological parameters of the plant while grown on different soils are influenced by soil type and the content of contaminants. The stress effect while growing M. × giganteus on soil artificially contaminated by Zn and Pb was evaluated by measuring the content of pigments (chlorophylls a, b, and carotenoids) in the plant's leaves. The decrease in the total content of chlorophylls, Сa + b/Сcar and transpiration rate of water along with the increase in the water absorbing capacity were observed. The accumulation of heavy metals in different parts of the plant was determined; bioaccumulation coefficient and values of translocation factor were calculated. The obtained results showed that M. × giganteus was an excluder plant for nine highly toxic elements (As, Pb, Zn, Co, Ni, Cr, Cu, V, U) and an accumulator species for the moderately dangerous elements (Mn, Sr). Further research will be focused on the extraction of stable stimulated plant-growth-promoting rhizobacteria from the rhizosphere of M. × giganteus and formulation on that base the plant-bacterial associations as well as on the comparison of the plant physiological parameters, biochemical soil activity, and accumulation of heavy metals in the Miscanthus tissues between first and second vegetations.


Asunto(s)
Metales Pesados/análisis , Poaceae/fisiología , Contaminantes del Suelo/análisis , Suelo/química , Biodegradación Ambiental , Metales Pesados/química , Personal Militar , Minería , Plantas , Poaceae/química , Rizosfera
5.
BMC Plant Biol ; 18(1): 96, 2018 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-29848288

RESUMEN

BACKGROUND: Sapium sebiferum, whose seeds contain high level of fatty acids, has been considered as one of the most important oil plants. However, the high male to female flower ratio limited the seed yield improvement and its industrial potentials. Thus, the study of the sex determination in S. sebiferum is of significant importance in increasing the seed yield. RESULTS: In this study, we demonstrated that in S. sebiferum, cytokinin (CK) had strong feminization effects on the floral development. Exogenous application with 6-benzylaminopurine (6-BA) or thidiazuron (TDZ) significantly induced the development of female flowers and increased the fruit number. Interestingly, the feminization effects of cytokinin were also detected on the androecious genotype of S. sebiferum which only produce male flowers. To further investigate the mechanism underlying the role of cytokinin in the flower development and sex differentiation, we performed the comparative transcriptome analysis of the floral buds of the androecious plants subjected to 6-BA. The results showed that there were separately 129, 352 and 642 genes differentially expressed at 6 h, 12 h and 24 h after 6-BA treatment. Functional analysis of the differentially expressed genes (DEGs) showed that many genes are related to the hormonal biosynthesis and signaling, nutrients translocation and cell cycle. Moreover, there were twenty one flowering-related genes identified to be differentially regulated by 6-BA treatment. Specifically, the gynoecium development-related genes SPATULA (SPT), KANADI 2 (KAN2), JAGGED (JAG) and Cytochrome P450 78A9 (CYP79A9) were significantly up-regulated, whereas the expression of PISTILLATA (PI), TATA Box Associated Factor II 59 (TAFII59) and MYB Domain Protein 108 (MYB108) that were important for male organ development was down-regulated in response to 6-BA treatment, demonstrating that cytokinin could directly target the floral organ identity genes to regulate the flower sex. CONCLUSIONS: Our work demonstrated that cytokinin is a potential regulator in female flower development in S. sebiferum. The transcriptome analysis of the floral sex transition from androecious to monoecious in response to cytokinin treatment on the androecious S. sebiferum provided valuable information related to the mechanism of sex determination in the perennial woody plants.


Asunto(s)
Citocininas/farmacología , Flores/genética , Redes Reguladoras de Genes , Reguladores del Crecimiento de las Plantas/farmacología , Sapium/genética , Transcriptoma , Compuestos de Bencilo/farmacología , Flores/efectos de los fármacos , Flores/crecimiento & desarrollo , Perfilación de la Expresión Génica , Compuestos de Fenilurea/farmacología , Purinas/farmacología , Sapium/efectos de los fármacos , Sapium/crecimiento & desarrollo , Tiadiazoles/farmacología
6.
Plant Biotechnol (Tokyo) ; 34(3): 143-150, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-31275020

RESUMEN

Napier grass (Pennisetum purpureum Schumach.) is a highly productive C4 tropical forage grass that has been targeted as a potential bioenergy crop. To further increase the efficiency of bioethanol production by molecular breeding, a reliable protocol for genetically transforming napier grass is essential. In this study, we report the creation of transgenic napier grass plants derived from embryogenic callus cultures of shoot apices. Embryogenic callus was initiated in three accessions of napier grass and a napier grass×pearl millet hybrid using Murashige and Skoog (MS) medium supplemented with 2.0 mg L-1 2,4-dichlorophenoxyacetic acid (2,4-D), 0.5 mg L-1 6-benzylaminopurine (BAP) and 50 µM copper sulfate (CuSO4). Of the accessions tested, a dwarf type with late-heading (DL line) had the best response for embryogenic callus formation. Highly regenerative calli that formed dense polyembryogenic clusters were selected as target tissues for transformation. A plasmid vector, pAHC25, containing an herbicide-resistance gene (bar) and the ß-glucuronidase (GUS) reporter gene was used in particle bombardment experiments. Target tissues treated with 0.6 M osmoticum were bombarded, and transgenic plants were selected under 5.0 mg L-1 bialaphos selection. Although a total of 1400 target tissues yielded nine GUS-positive bialaphos-resistant calli, only one transgenic line that was derived from target tissue with the shortest culture term produced four transgenic plants. Thus, the length of time that the target tissue is in callus culture was one of the most important factors for acquiring transgenic plants in napier grass. This is the first report of successfully producing transgenic napier grass plants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA