Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biodegradation ; 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39001976

RESUMEN

Acetaminophen [N-(4-hydroxyphenyl) acetamide, APAP] is an extensively and frequently consumed over-the-counter analgesic and antiphlogistic medication. It is being regarded as an emerging pollutant due to its continuous increment in the environment instigating inimical impacts on humans and the ecosystem. Considering its wide prevalence in the environment, there is an immense need of appropriate methods for the removal of APAP. The present study indulged screening and isolation of APAP degrading bacterial strains from pharmaceuticals-contaminated sites, followed by their molecular characterization via 16S rRNA sequencing. The phylogenetic analyses assigned the isolates to the genera Pseudomonas, Bacillus, Paracoccus, Agrobacterium, Brucella, Escherichia, and Enterobacter based on genetic relatedness. The efficacy of these strains in batch cultures tested through High-performance Liquid Chromatography (HPLC) revealed Paracoccus sp. and Enterobacter sp. as the most promising bacterial isolates degrading up to 88.96 and 85.92%, respectively of 300 mg L-1 of APAP within 8 days of incubation. Michaelis-Menten kinetics model parameters also elucidated the high degradation potential of these isolates. The major metabolites identified through FTIR and GC-MS analyses were 4-aminophenol, hydroquinone, and 3-hydroxy-2,4-hexadienedioic. Therefore, the outcomes of this comprehensive investigation will be of paramount significance in formulating strategies for the bioremediation of acetaminophen-contaminated sites through a natural augmentation process via native bacterial strains.

2.
Trop Life Sci Res ; 34(2): 197-222, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38144383

RESUMEN

A bacterium was isolated from sludge-contaminated soil in a petroleum refinery and tested for its ability to degrade aliphatic hydrocarbon compounds present in petroleum sludge. The isolate was grown on minimal salt media agar supplemented with 1% (w/v) petroleum sludge. The isolate was tentatively identified as Methylobacterium s p. s t rain ZASH based on the partial 16s rDNA molecular phylogeny. The bacterium grew optimally between the temperatures of 30°C and 35°C, pH 7 and 7.5, 0.5% and 1.5% (v/v) Tween 80 as the surfactant, and between 1% and 2% (w/v) peptone as the nitrogen source. The constants derived from the Haldane equation were µmax = 0.039 hr-1, Ks = 0.385% (w/v) total petroleum hydrocarbons (TPH) or 3,850 mg/L TPH, and Ki =1.12% (w/v) TPH or 11,200 mg/L. The maximum biodegradation rate exhibited by this strain was 19 mg/L/hr at an initial TPH concentration of 10,000 mg/L. Gas chromatography analysis revealed that after 15 days the strain was able to degrade all aliphatic n-alkanes investigated with different efficiencies. Shorter n-alkanes were generally degraded more rapidly than longer n-alkanes with 90% removal for C-12 compared to only 30% removal for C-36. The addition of sawdust did not improve bacterial degradation of petroleum hydrocarbons, but it assisted in the removal of remaining undegraded hydrocarbons through adsorption.

3.
Polymers (Basel) ; 15(14)2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37514482

RESUMEN

This work studied the effect of cellulose nanocrystal (NCC) content on the biodegradation kinetics of PLA-based multiscale cellulosic biocomposites (PLAMCBs). To facilitate biodegradation, the materials were subjected to thermo-oxidation before composting. Biodegradation was carried out for 180 days under controlled thermophilic composting conditions according to the ASTM D 5338 standard. A first-order model based on Monod's kinetics under limiting substrate conditions was used to study the effect of cellulose nanocrystal (NCC) content on the biodegradation kinetics of multiscale composite materials. It was found that thermo-oxidation at 70 °C for 160 h increased the biodegradability of PLA. Also, it was found that the incorporation of cellulosic fibrous reinforcements increased the biodegradability of PLA by promoting hydrolysis during the first stage of composting. Likewise, it was found that partial substitution of micro cellulose (MFC) by cellulose nanocrystals (NCCs) increased the biodegradability of the biocomposite. This increase was more evident as the NCC content increased, which was attributed to the fact that the incorporation of cellulose nanocrystals facilitated the entry of water into the material and therefore promoted the hydrolytic degradation of the most recalcitrant fraction of PLA from the bulk and not only by surface erosion.

4.
Environ Res ; 233: 116445, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37356523

RESUMEN

The catering industry's growth has resulted in cooking fume pollution becoming a major concern in people's lives. As a result, its removal has become a core research focus. Natural loofah is an ideal biofilm carrier, providing a conducive environment for microorganisms to grow. This study utilized natural loofah to fill domesticated activated sludge in a bioscrubber, forming biofilms that enhance the ability to purify cooking fume. This study found that the biomass of loofah biofilms per gram is 104.56 mg. The research also determined the removal efficiencies for oils, Non-methane total hydrocarbons (NMHC), PM2.5, and PM10 from cooking fumes, which were 91.53%, 67.53%, 75.25%, and 82.23%, respectively. The maximum elimination capacity for cooking fumes was found to be 20.7 g/(m3·h). Additionally, the study determined the kinetic parameters for the biodegradation of oils (Kc and Vmax) to be 4.69 mg L-1 and 0.026 h-1, respectively, while the enzyme activities of lipase and catalase stabilized at 75.50 U/mgprots and 67.95 U/mgprots. The microbial consortium identified in the biofilms belonged to the phylum Proteobacteria and consisted mainly of Sphingomonas, Mycobacterium, and Lactobacillus, among others.


Asunto(s)
Luffa , Aguas del Alcantarillado , Humanos , Aceites , Hidrocarburos , Gases , Culinaria
5.
Chemosphere ; 314: 137697, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36586449

RESUMEN

Polybrominated diphenyl ethers (PBDEs) are a group of organic pollutants that have attracted much concerns of scientific community over the ubiquitous distribution, chemical persistence and toxicological risks in the environment. Though a great number of aerobic bacteria have been isolated for the rapid removal of PBDEs, the knowledge about biodegradation characteristics and mechanism is less provided yet. Herein, the congener-specificity of aerobic biodegradation of PBDEs by typical bacteria, i.e. B. xenovorans LB400 was identified with the different biodegradation kinetics, of which the changes were largely hinged on the bromination pattern. The more bromination isomerically at ortho-sites other than meta-sites or the single bromination at one of aromatic rings might always exert the positive effect. The biodegradation of PBDEs should be thermodynamically constrained to some extent because the calculated Gibbs free energy changes of initial dioxygenation by quantum chemical method increased with the increase of bromination. Within the transition state theory, the high correlativity between the apparent biodegradation rates and Gibbs free energy changes implied the predominance and rate-limiting character of initial dioxygenation, while the regioselectivity of dioxygenation at the ortho/meta-sites was also manifested for the more negative charge population. The molecular binding with the active domain of dioxygenase BphA1 in aerobe was firstly investigated using docking approach. As significantly illustrated with the positive relationship, the higher binding affinity with BphA1 should probably signify the more rapid biodegradation. Besides the edge-on π-π stacking of PBDEs with F227 or Y277 and π-cation formulation with histidines (H233, H239) in BphA1, the reticular hydrophobic contacts appeared as the major force to underpin the high binding affinity and rapid biodegradation of PBDEs. Overall, the experimental and theoretical results would not only help understand the aerobic biodegradation mechanism, but facilitate enhancing applicability or strategy development of engineering bacteria for bioremediation of PBDEs in the environment.


Asunto(s)
Bacterias Aerobias , Éteres Difenilos Halogenados , Biodegradación Ambiental , Éteres Difenilos Halogenados/análisis , Bacterias Aerobias/metabolismo , Unión Proteica , Modelos Teóricos
6.
Sci Total Environ ; 838(Pt 4): 156526, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-35679938

RESUMEN

Organic micropollutants (OMPs) need to be removed from wastewater as they can negatively affect aquatic organisms. It has been demonstrated that microalgae-based technologies are efficient in removing OMPs from wastewater. In this study, the removal processes and kinetics of six persistent OMPs (diclofenac, clarithromycin, benzotriazole, metoprolol, carbamazepine and mecoprop) were studied during cultivation of Scenedesmus obliquus in batch mode. These OMPs were added as individual compounds and in a mixture. Short experiments (8 days) were performed to avoid masking of OMP removal processes by light and nutrient limitation. The results show that diclofenac, clarithromycin, and benzotriazole were mainly removed by photodegradation (diclofenac), biodegradation (benzotriazole), or a combination of these two processes (clarithromycin). Peroxidase was involved in intracellular and extracellular biodegradation when benzotriazole was present as individual compound. Carbamazepine, metoprolol and mecoprop showed no biodegradation or photodegradation, and neglectable removal (<5%) by bioadsorption and bioaccumulation. Using an OMP mixture had an adverse effect on the photodegradation of clarithromycin and diclofenac, with reduced first-order kinetic constants compared to the individual compounds. Benzotriazole biodegradation was inhibited by the presence of the OMP mixture. This indicates that the presence of OMPs inhibits the photodegradation and biodegradation of some individual OMPs. These results will improve our understanding of removal processes of individual and mixtures of OMPs by microalgae-based technologies for wastewater treatment.


Asunto(s)
Chlorophyceae , Microalgas , Scenedesmus , Contaminantes Químicos del Agua , Carbamazepina , Claritromicina , Diclofenaco , Metoprolol , Aguas Residuales , Contaminantes Químicos del Agua/análisis
7.
Sci Total Environ ; 778: 146235, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-33721653

RESUMEN

Geothermal or ground source heat pumps (GSHPs) are among the highest growing renewable energy technologies used for heating and cooling of buildings. However, despite being a well-established technology, their geo-environmental effects such as impact of the heat on the biosphere is still not thoroughly understood. This study uses FEFLOW software, to simulate heat and mass transport of a vertical closed-loop GSHP system. Transient flow and heat transport results for a multiple borehole system are presented which indicate long-term effects on subsurface temperature. Moreover, the impact of temperature change in a contaminated granular porous subsurface during remediation applications is examined. In particular, as subsurface temperatures are elevated due to geothermal heating, sorption will decrease and biodegradation rates will increase. These effects are examined in the context of contaminant transport, to evaluate the possibility of utilizing geothermal heating as a remediation strategy. The results revealed that temperature changes caused by GSHP operation can significantly enhance biodegradation of hydrocarbon contaminants. For instance, elevated subsurface temperature resulted in 97% reduction in benzene total mass, after one year of GSHP operation for a typical office building in Toronto.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Biodegradación Ambiental , Calor , Hidrocarburos , Tecnología , Tolueno , Contaminantes Químicos del Agua/análisis
8.
Front Microbiol ; 11: 2107, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32983068

RESUMEN

The objective of our study was to test whether limited microbial degradation at low pesticide concentrations could explain the discrepancy between overall degradability demonstrated in laboratory tests and their actual persistence in the environment. Studies on pesticide degradation are often performed using unrealistically high application rates seldom found in natural environments. Nevertheless, biodegradation rates determined for higher pesticide doses cannot necessarily be extrapolated to lower concentrations. In this context, we wanted to (i) compare the kinetics of pesticide degradation at different concentrations in arable land and (ii) clarify whether there is a concentration threshold below which the expression of the functional genes involved in the degradation pathway is inhibited without further pesticide degradation taking place. We set up an incubation experiment for four weeks using 14C-ring labeled 2-methyl-4-chlorophenoxyacetic acid (MCPA) as a model compound in concentrations from 30 to 20,000 µg kg-1 soil. To quantify the abundance of putative microorganisms involved in MCPA degradation and their degradation activity, tfdA gene copy numbers (DNA) and transcripts (mRNA) were determined by quantitative real-time PCR. Mineralization dynamics of MCPA derived-C were analyzed by monitoring 14CO2 production and 14C assimilation by soil microorganisms. We identified two different concentration thresholds for growth and activity with respect to MCPA degradation using tfdA gene and mRNA transcript abundance as growth and activity indices, respectively. The tfdA gene expression started to increase between 1,000 and 5,000 µg MCPA kg-1 dry soil, but an actual increase in tfdA sequences could only be determined at a concentration of 20,000 µg. Accordingly, we observed a clear shift from catabolic to anabolic utilization of MCPA-derived C in the concentration range of 1,000 to 5,000 µg kg-1. Concentrations ≥1,000 µg kg-1 were mainly associated with delayed mineralization, while concentrations ≤1,000 µg kg-1 showed rapid absolute dissipation. The persistence of pesticides at low concentrations cannot, therefore, be explained by the absence of functional gene expression. Nevertheless, significant differences in the degradation kinetics of MCPA between low and high pesticide concentrations illustrate the need for studies investigating pesticide degradation at environmentally relevant concentrations.

9.
J Environ Manage ; 273: 111170, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32763746

RESUMEN

Antibiotic compounds, notably sulfamethoxazole (SMX) and ciprofloxacin (CIP), are ubiquitous emerging contaminants (ECs), which are often found in domestic sewage. They are associated with the development of antimicrobial resistance. Operational parameters, e.g. organic loading rate (OLR), hydraulic retention time (HRT) and sludge retention time, may influence EC biodegradation in wastewater treatment plants. This study assessed the impact of the OLR variation on the biodegradation of CIP and SMX, applying two configurations of anaerobic fixed bed reactors: anaerobic packed bed biofilm reactor (APBBR) and anaerobic structured bed biofilm reactor (ASBBR). A significant reduction in the biodegradation of SMX (APBBR: 93-69%; ASBBR: 94-81%) and CIP (APBBR: 85-66%; ASBBR: 85-64%) was observed increasing OLR from 0.6 to 2.0 kgCOD m-3 d-1. The decrease in the HRT from 12 to 4 h resulted in higher liquid-phase mass transfer coefficient (APBBR: ks from 0.01 to 0.05 cm h-1; ASBBR: ks from 0.07 to 0.24 cm h-1), but this was not enough to overcome the decrease in the antibiotic-biomass contact time on biofilm, thus reducing the bioreactors' performance. The ASBBR favored biomethane production (from 7 to 17 mLCH4 g-1VSS L-1 d-1) and biodegradation kinetics (kbio from 1.7 to 4.2 and for SMX and from 2.1 to 4.8 L g-1VSS d-1 for CIP) due to the higher relative abundance of the archaea community in the biofilm and the lower liquid-phase mass transfer resistance in the structured bed. CIP and SMX cometabolic biodegradation was associated to the hydrogenotrophic methanogenesis (mainly Methanobacterium genus) in co-culture with fermentative bacteria (notably the genera Clostridium, Bacillus, Lactivibrio, Syntrophobacter and Syntrophorhabdus). The anaerobic fixed bed biofilm reactors proved to be highly efficient in biodegrading the antibiotics, preventing them from spreading to the environment.


Asunto(s)
Ciprofloxacina , Sulfametoxazol , Anaerobiosis , Bacterias Anaerobias , Biodegradación Ambiental , Biopelículas , Reactores Biológicos , Aguas del Alcantarillado , Eliminación de Residuos Líquidos
10.
J Environ Manage ; 270: 110937, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32721355

RESUMEN

Anaerobic-digestion-based technology is key to achieving sustainable water management and resource recovery. It is essential to understand the material flux and kinetics involved in methanogenesis to optimize the organic matter removal and methane production. In this sense, specific methanogenic activity is a cost-effective tool to characterize the biological activity of anaerobic biosludge, to monitor the performance of reactors, and study the kinetics of acetate and H2 conversion to methane. Established protocols are applied for the acetoclastic activity test. However, hydrogenotrophic activity assay remains less widespread and is not standardized. In this work, the assay design for hydrogenotrophic activity is discussed and full calculation is presented, based on the kinetics for the H2/CO2 conversion to methane. An equation to calculate the inoculum size is proposed, suitable for a wide variety of types of biosludge: from a wastewater treatment plant to solid digesters, from a high-rate reactor to lagoons. The applied zero-order model fitted adequately to data for pilot-scale and full-scale anaerobic reactors: the p-values from the ANOVA F-test were below 1E-03; standard deviations for triplicate experiments were between 3 and 12%, coherent with the values found in the literature. Microbial growth during the test was negligible, below 1.2% of the biomass dosed in the vial. As a complement, acetoclastic activity was determined for each sample. The use of both acetoclastic and hydrogenotrophic activity is relevant for the study of the methanogenesis and gives a better characterization of the performance of the biosludge in anaerobic reactors rather than only using the specific acetoclastic methanogenic activity.


Asunto(s)
Reactores Biológicos , Euryarchaeota , Anaerobiosis , Cinética , Metano
11.
Artículo en Inglés | MEDLINE | ID: mdl-32406803

RESUMEN

The ability of white-rot fungus, Trametes hirsuta AK04, to utilize phenolics as single and mixed substrates was determined in mineral medium and palm oil mill effluent (POME). The strain AK04 was able to rapidly metabolize all ten phenolics as single and mixed substrates at all test concentrations. With single substrates, between 78 and 98% removal was achieved within seven days. The biomass yield increased with increasing concentration from 100 to 500 mg L-1 but slightly decreased when the concentration was increased up to 1,000 mg L-1. When fitted to a Haldane model, the groups of benzoic and cinnamic acid derivatives gave significantly higher maximum specific growth rates than other phenolics. Phenol exhibited the lowest affinity and highest inhibitory effects on fungal metabolism. In mixed substrates, the total concentration ranges of phenolics mixtures between 1,000 and 6,000 mg L-1 did not affect the fungal growth rate and the strain AK04 showed a high degree of resistance to their toxic effects. The addition of glucose and yeast extract enhanced the degradation rates of individual phenolics in the substrate mixtures, demonstrating the advantage of this strain for treating complex media, such as industrial wastewater.


Asunto(s)
Residuos Industriales/análisis , Aceite de Palma , Fenoles/metabolismo , Trametes/crecimiento & desarrollo , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis , Biodegradación Ambiental , Biomasa , Cinética , Modelos Teóricos , Fenoles/análisis , Tailandia , Trametes/metabolismo , Purificación del Agua/métodos
12.
Artículo en Inglés | MEDLINE | ID: mdl-31707907

RESUMEN

Among three monofluoroanilines, 2-fluoroaniline (2-FA) and 3-fluoroaniline (3-FA) exhibit relatively poor biodegradability. This work examined their degradation characteristics in a mixed culture system and also analyzed the microorganism community. After acclimation for 58 d and 43 d, the high removal efficiency of 100% of 2-FA and 95.3% of 3-FA was obtained by adding 25 mg L-1 of 2-FA or 3-FA to the two reactors, respectively. In addition, the high defluorination rates of 2-FA and 3-FA were observed to be 87.0% and 89.3%, respectively. The degradation kinetics showed that the maximum specific degradation rates of 2-FA and 3-FA were (21.23 ± 0.91) mg FA (g•VSS·h)-1, and (11.75 ± 0.99) mg FA (g•VSS·h)-1, respectively. PCR-DGGE analysis revealed that the unique bacteria degrading 2-FA were mainly composed of six genera (Novosphingobium, Bradyrhizobium, Aquaspirillum, Aminobacter, Ochrobactrum, and Labrys), and five genera that degraded 3-FA (Ochrobactrum, Aquaspirillum, Lachnobacterium, Bradyrhizobium, and Variovorax). Analysis of the key catabolic enzyme activities indicated that the simultaneous hydroxylation and dehalogenation were involved in monooxygenase elimination of 2-FA and conversion of 3-FA to 4-fluorocatechol by dioxygenase, indicating that enriched mixed cultures were effective to metabolize 2-FA or 3-FA by unconventional pathways to prevent the accumulation of toxic metabolites.


Asunto(s)
Compuestos de Anilina/metabolismo , Fluorobencenos/metabolismo , Microbiota , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Biodegradación Ambiental , Reactores Biológicos/microbiología , Halogenación , Hidroxilación , Cinética , Microbiota/genética
13.
Chemosphere ; 241: 125071, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31683420

RESUMEN

The ready biodegradability of twenty food additives, belonging to the classes of artificial sweeteners, natural sweeteners, preservatives and colorings, was investigated using activated sludge as inoculum and OECD 301F respirometric test. According to the results, saccharin, aspartame, sodium cyclamate, xylitol, erythritol, maltitol, potassium sorbate, benzoic acid and sodium ascorbate are characterized as readily biodegradable compounds, partial biodegradation (<60% during the test) was noticed for steviol, inulin, alitame, curcumin, ponceau 4R and tartrazine, while no biodegradation was observed for the other five compounds. The duration of lag phase before the start of biodegradation varied between the target compounds, while their ultimate biodegradation half-life values ranged between 0.7 ±â€¯0.1 days (benzoic acid) and 24.6 ±â€¯1.0 days (curcumin). The expected removal of target compounds due to ultimate biodegradation mechanism was estimated for a biological wastewater treatment system operated at a retention time of one day and percentages higher than 40% were calculated for sodium cyclamate, potassium sorbate and benzoic acid. Higher removal percentages are expected in full-scale Sewage Treatment Plants (STPs) due to the contribution of other mechanisms such as sorption to suspended solids, (bio)transformation and co-metabolic phenomena. Further biodegradation experiments should be conducted under different experimental conditions for the food additives that did not fulfill the requirements of the applied protocol. Future studies should also focus on the occurrence and fate of food colorants and natural sweeteners in full-scale STPs.


Asunto(s)
Biodegradación Ambiental , Aditivos Alimentarios , Ácido Benzoico , Organización para la Cooperación y el Desarrollo Económico , Aguas del Alcantarillado , Edulcorantes , Aguas Residuales
14.
Environ Pollut ; 258: 113703, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31818627

RESUMEN

2,6-Dichloro-4-nitrophenol (2,6-DCNP) is an emerging chlorinated nitroaromatic pollutant, and its fate in the environment is an important question. However, microorganisms with the ability to utilize 2,6-DCNP have not been reported. In this study, Cupriavidus sp. CNP-8 having been previously reported to degrade various halogenated nitrophenols, was verified to be also capable of degrading 2,6-DCNP. Biodegradation kinetics assay showed that it degraded 2,6-DCNP with the specific growth rate of 0.124 h-1, half saturation constant of 0.038 mM and inhibition constant of 0.42 mM. Real-time quantitative PCR analyses indicated that the hnp gene cluster was involved in the catabolism of 2,6-DCNP. The hnpA and hnpB gene products were purified to homogeneity by Ni-NTA chromatography. Enzymatic assays showed that HnpAB, a FAD-dependent two-component monooxygenase, converted 2,6-DCNP to 6-chlorohydroxyquinol with a Km of 3.9 ± 1.4 µM and a kcat/Km of 0.12 ± 0.04 µΜ-1 min-1. As the oxygenase component encoding gene, hnpA is necessary for CNP-8 to grow on 2,6-DCNP by gene knockout and complementation. The phylogenetic analysis showed that the hnp cluster originated from the cluster involved in the catabolism of chlorophenols rather than nitrophenols. To our knowledge, CNP-8 is the first bacterium with the ability to utilize 2,6-DCNP, and this study fills a gap in the microbial degradation mechanism of this pollutant at the molecular, biochemical and genetic levels. Moreover, strain CNP-8 could degrade three chlorinated nitrophenols rapidly from the synthetic wastewater, indicating its potential in the bioremediation of chlorinated nitrophenols polluted environments.


Asunto(s)
Biodegradación Ambiental , Cupriavidus/metabolismo , Nitrofenoles/metabolismo , Cinética , Filogenia
15.
Environ Monit Assess ; 191(9): 565, 2019 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-31414303

RESUMEN

This research compared the effects of biosurfactant on the biodegradation of biodiesel and vegetable oils while validating two conceptually diverging methodologies. The two experimental setups were successfully modeled towards the effects of biosurfactants during biodegradation. We established the equivalence of both methodologies from the data output. As expected, the biosurfactants caused an increased oil uptake, thus increasing biodegradation performance. Cooking oils were favored by the microbial consortium as a carbon source when compared with biodiesel fuel, especially after use in food preparation. However, we found that biodiesel substrate standout with the highest biodegradation rates. Our results might indicate that a rapid metabolic change from the original compound initially favored biodiesels during the assimilation of organic carbon for a set specialized microbial inoculum. The data output was successfully combined with mathematical models and statistical tools to describe and predict the actual environmental behavior of biodiesel and vegetable oils. The models confirmed and predicted the biodegradation effectiveness with biosurfactants and estimated the required timeframe to achieve satisfactory contaminant removal.


Asunto(s)
Biodegradación Ambiental , Biocombustibles/análisis , Monitoreo del Ambiente/métodos , Consorcios Microbianos/fisiología , Aceites de Plantas/análisis , Tensoactivos/química , Carbono , Aceites de Plantas/metabolismo , Verduras/metabolismo
16.
J Environ Manage ; 245: 322-329, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31158684

RESUMEN

Dimethylamine (DMA) possesses an obnoxious odor which has resulted in public concern during the past several decades. A rare bacterial species proficient to degrade DMA, designated IR-26, was isolated from Indian Oil Corporation Limited (IOCL) and identified as Agromyces and Ochrobactrum sp., which has presented a rapid degradation when compared to other bacterial species which were capable to degrade DMA. The removal efficiency of 100% has been calculated in different concentration of DMA. The kinetic study reveals the maximum reduction rate of DMA was 0.11 per hour and the maximum growth rate of biomass was 0.013 per hour respectively. The saturation constant of DMA was around 1.96 mg/L which shows a high affinity of DMA. The importance of these analyses is offered and conversed in this paper.


Asunto(s)
Actinomycetales , Ochrobactrum , Biodegradación Ambiental , Dimetilaminas , Cinética
17.
J Environ Manage ; 246: 840-848, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31229766

RESUMEN

Bioremediation is a soil clean-up technique which exploits the metabolic capacity of microorganisms to degrade soil contaminants. A model was developed to simulate the ex situ bioremediation of a diesel-contaminated soil in a bio-slurry reactor inoculated with a diesel-degrading bacterial strain. Mass transfer processes involving desorption of diesel from soil to water and volatilization of diesel from water, and biodegradation by the bacterial inoculant were included in the model by using Weibull sigmoid kinetics and logistic/Monod kinetics respectively. Model parameters were estimated in batch-based abiotic and biodegradation experiments. Sensitivity analysis revealed the importance of maintaining a high bacterial density in the system for maximum bioremediation efficiency. The model was validated using a pilot bioreactor monitored for 528 h, which removed almost 90% of the diesel present in the system. The results revealed the capacity of the model to predict the bioremediation efficiency under different scenarios by adapting the input parameters to each system.


Asunto(s)
Contaminantes del Suelo , Biodegradación Ambiental , Reactores Biológicos , Gasolina , Hidrocarburos , Suelo , Microbiología del Suelo
18.
Waste Manag ; 89: 345-353, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-31079748

RESUMEN

The literature is conflicted on the influence of ammonium on the kinetics and microbial ecology of methanotrophy. In this study, methanotrophic cultures were enriched, under ammonium concentrations ranging from 0 to 200 mM, from an inoculum comprising leachate and top-cover soil from a landfill. Specific CH4 biodegradation rates were highest (7.8 × 10-4 ±â€¯6.0 × 10-5 gCH4 gX-1 h-1) in cultures enriched at 4 mM NH4+, which were mainly dominated by type II methanotrophs belonging to Methylocystis spp. Lower specific CH4 oxidation rates (average values of 1.8-3.6 × 10-4 gCH4 gX-1 h-1) were achieved by cultures enriched at higher NH4+ concentrations (20 and 80 mM), and had higher affinity for CH4 compared to 4 mM enrichments. These lower affinities were attributed to lower diversity dominated by type I methanotrophs, of the Methylosarcina, Methylobacter and Methylomicrobium genera, encountered with increasing concentrations of NH4+. The study indicates that CH4 oxidation biotechnologies applied at low NH4+ concentrations can support efficient abatement of CH4 and high diversity of methanotrophic consortia, whilst enriching type II methanotrophs.


Asunto(s)
Compuestos de Amonio , Methylococcaceae , Cinética , Metano , Oxidación-Reducción , Microbiología del Suelo
19.
Biotechnol Lett ; 41(4-5): 555-563, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30941602

RESUMEN

OBJECTIVES: Single chamber air cathode microbial fuel cells (MFCs) were investigated with sodium-acetate and peptone as test substrates to assess the potential for application as biosensor to determine the concentration of biodegradable organics in water/wastewater samples. RESULTS: MFCs provided well-reproducible performance at high (> 2000 mg COD l-1-Chemical Oxygen Demand) acetate concentration values. Current in the cells proved to be steady from 25 to 35 °C, significant decrease was, however, revealed in the current below 20 °C. Direct calculation of non-toxic biodegradable substrate concentration in water/wastewater from the current in MFCs is possible only in the non-saturated substrate concentration range due to the Monod-like dependence of the current. This range was determined by a fitted and verified Monod-based kinetic model. Half saturation constant (KS) values were calculated at 30 °C applying different external resistance values (100 Ω, 600 Ω and 1000 Ω, respectively). In each case KS remained below 10 mg COD l-1. CONCLUSIONS: Biosensors with this particular MFC design and operation are potentially applicable for detecting as low as 5 mg COD l-1 readily biodegradable substrates, and measuring the concentration of these substances up to ~ 50-70 mg COD l-1.


Asunto(s)
Aire , Plásticos Biodegradables/análisis , Fuentes de Energía Bioeléctrica/microbiología , Técnicas Biosensibles/métodos , Electricidad , Electrodos , Compuestos Orgánicos/análisis , Peptonas/análisis , Reproducibilidad de los Resultados , Acetato de Sodio/análisis , Temperatura
20.
Environ Pollut ; 245: 735-745, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30500753

RESUMEN

The degradation of metformin (MET) and guanylurea (GUA) fortified separately in freshly collected two top soils (0-10 cm) from New Zealand's pastoral region was studied under controlled laboratory conditions. Incubation studies were carried at 30 °C under aerobic conditions at 60% of maximum water holding capacity and at two (0.5 mg/kg and 5 mg/kg) nominal soil concentrations. Degradation profiles revealed a bi-phasic pattern of both the compounds with an initial rapid degradation followed by slow dissipation rate, resulting in poor fits by simple first order kinetics. However, the use of three non-linear mathematical models sufficiently described the measured data and well supported by an array of statistical indices to judge model's ability to fit the measured datasets. Further evaluation using box-whisker plots showed that double first-order in parallel (DFOP) and first-order two-compartment (FOTC) models best fitted the data points followed by the Bi-exponential (BEXP) model. Mechanistic assumptions from DFOP and FOTC suggest that degradation of MET and GUA proceeds at two different rates, possibly in two compartments. The calculated DT50 using both models were in the range of 2.7-15.5 days and 0.9-4 days, while 90% dissipation time (DT90) varied between 91 and 123 days and 44 and 137 days for MET and GUA, respectively. Degradation of both compounds were dependent on soil types and properties, incubation conditions and initial substrate concentration. Formation of GUA with decrease in MET concentration over time confirmed that GUA is a transformation product concomitantly formed from aerobic degradation of MET in soil.


Asunto(s)
Biodegradación Ambiental , Metformina/metabolismo , Modelos Teóricos , Contaminantes del Suelo/metabolismo , Suelo/química , Cinética , Metformina/análisis , Metformina/química , Nueva Zelanda , Dinámicas no Lineales , Microbiología del Suelo , Contaminantes del Suelo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA