RESUMEN
The NS2B-NS3 protease (NS2B-NS3pro) is regarded as an interesting molecular target for drug design, discovery, and development because of its essential role in the Zika virus (ZIKV) cycle. Although no NS2B-NS3pro inhibitors have reached clinical trials, the employment of drug-like scaffolds can facilitate the screening process for new compounds. In this study, we performed a combination of ligand-based and structure-based in silico methods targeting two known non-peptide small-molecule scaffolds with micromolar inhibitory activity against ZIKV NS2B-NS3pro by a virtual screening (VS) of promising compounds. Based on these two scaffolds, we selected 13 compounds from an initial library of 509 compounds from ZINC15's similarity search. These compounds exhibited structural modifications that are distinct from previously known compounds yet keep pertinent features for binding. Despite promising outcomes from molecular docking and initial enzymatic assays against NS2B-NS3pro, confirmatory assays with a counter-screening enzyme revealed an artifactual inhibition of the assessed compounds. However, we report two compounds, 9 and 11, that exhibited antiviral properties at a concentration of 50 µM in cellular-based assays. Overall, this study provides valuable insights into the ongoing research on anti-ZIKV compounds to facilitate and improve the development of new inhibitors.
RESUMEN
Degradation of the hybrid layer created in dentin by dentin adhesives is caused by enzyme activities present within the dentin matrix that destroy unprotected collagen fibrils. The aim of the present study was to evaluate the effect of a one-step self-etch adhesive system on dentinal matrix metalloproteinases 2 and 4 (MMP-2 and MMP-9, respectively) using in situ zymography and an enzymatic activity assay. The null hypothesis tested was that there are no differences in the activities of dentinal MMPs before and after treatment with a one-step adhesive system. The MMP-2 and MMP-9 activities in dentin treated with the one-step adhesive, Adper Easy Bond, were quantified using an enzymatic activity assay system. The MMP activities within the hybrid layer created by the one-step adhesive tested were also evaluated using in situ zymography. The enzymatic assay revealed an increase in MMP-2 and MMP-9 activities after treatment with adhesive. In situ zymography indicated that gelatinolytic activity is present within the hybrid layer created with the one-step self-etch adhesive. The host-derived gelatinases were localized within the hybrid layer and remained active after the bonding procedure. It is concluded that the one-step self-etch adhesive investigated activates endogenous MMP-2 and MMP-9 with the dentin matrix, which may cause collagen degradation over time.