Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros











Intervalo de año de publicación
1.
Biotechnol Prog ; : e3513, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39366919

RESUMEN

Tryptamines play diverse roles as neurotransmitters and psychoactive compounds found in various organisms. Psilocybin, a notable tryptamine, has garnered attention for its therapeutic potential in treating mental health disorders like depression and anxiety. Despite its promising applications, current extraction methods for psilocybin are labor-intensive and economically limiting. We suggest biocatalysis as a sustainable alternative, leveraging enzymes to synthesize psilocybin and other tryptamines efficiently. By elucidating psilocybin biosynthesis pathways, researchers aim to advance synthetic methodologies and industrial applications. This review underscores the transformative potential of biocatalysis in enhancing our understanding of tryptamine biosynthesis and facilitating the production of high-purity psilocybin and other tryptamines for therapeutic and research use.

2.
Arch Microbiol ; 206(9): 377, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39141120

RESUMEN

The high content and quality of protein in Andean legumes make them valuable for producing protein hydrolysates using proteases from bacteria isolated from extreme environments. This study aimed to carry out a single-step purification of a haloprotease from Micrococcus sp. PC7 isolated from Peru salterns. In addition, characterize and apply the enzyme for the production of bioactive protein hydrolysates from underutilized Andean legumes. The PC7 protease was fully purified using only tangential flow filtration (TFF) and exhibited maximum activity at pH 7.5 and 40 °C. It was characterized as a serine protease with an estimated molecular weight of 130 kDa. PC7 activity was enhanced by Cu2+ (1.7-fold) and remained active in the presence of most surfactants and acetonitrile. Furthermore, it stayed completely active up to 6% NaCl and kept Ì´ 60% of its activity up to 8%. The protease maintained over 50% of its activity at 25 °C and 40 °C and over 70% at pH from 6 to 10 for up to 24 h. The determined Km and Vmax were 0.1098 mg mL-1 and 273.7 U mL-1, respectively. PC7 protease hydrolyzed 43%, 22% and 11% of the Lupinus mutabilis, Phaseolus lunatus and Erythrina edulis protein concentrates, respectively. Likewise, the hydrolysates from Lupinus mutabilis and Erythrina edulis presented the maximum antioxidant and antihypertensive activities, respectively. Our results demonstrated the feasibility of a simple purification step for the PC7 protease and its potential to be applied in industrial and biotechnological processes. Bioactive protein hydrolysates produced from Andean legumes may lead to the development of nutraceuticals and functional foods contributing to address some United Nations Sustainable Development Goals (SDGs).


Asunto(s)
Fabaceae , Micrococcus , Hidrolisados de Proteína , Micrococcus/metabolismo , Micrococcus/enzimología , Concentración de Iones de Hidrógeno , Hidrolisados de Proteína/química , Hidrolisados de Proteína/metabolismo , Peso Molecular , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/aislamiento & purificación , Perú , Temperatura , Serina Proteasas/metabolismo , Serina Proteasas/aislamiento & purificación , Serina Proteasas/química , Estabilidad de Enzimas , Cloruro de Sodio/metabolismo , Cloruro de Sodio/farmacología , Hidrólisis , Cinética
3.
Molecules ; 29(14)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39064875

RESUMEN

This study presents the potential role of deep eutectic solvents (DESs) in a lipase-catalyzed hydrolysis reaction as a co-solvent in an aqueous solution given by a phosphate buffer. Ammonium salts, such as choline chloride, were paired with hydrogen bond donors, such as urea, 1,2,3-propanetriol, and 1,2 propanediol. The hydrolysis of p-nitrophenyl laureate was carried out with the lipase Candida antarctica Lipase B (CALB) as a reaction model to evaluate the solvent effect and tested in different DES/buffer phosphate mixtures at different % w/w. The results showed that two mixtures of different DES at 25 % w/w were the most promising solvents, as this percentage enhanced the activities of CALB, as evidenced by its higher catalytic efficiency (kcatKM). The solvent analysis shows that the enzymatic reaction requires a reaction media rich in water molecules to enable hydrogen-bond formation from the reaction media toward the enzymatic reaction, suggesting a better interaction between the substrate and the enzyme-active site. This interaction could be attributed to high degrees of freedom influencing the enzyme conformation given by the reaction media, suggesting that CALB acquires a more restrictive structure in the presence of DES or the stabilized network given by the hydrogen bond from water molecules in the mixture improves the enzymatic activity, conferring conformational stability by solvent effects. This study offers a promising approach for applications and further perspectives on genuinely green industrial solvents.


Asunto(s)
Disolventes Eutécticos Profundos , Proteínas Fúngicas , Enlace de Hidrógeno , Lipasa , Agua , Lipasa/química , Lipasa/metabolismo , Agua/química , Disolventes Eutécticos Profundos/química , Proteínas Fúngicas/química , Catálisis , Hidrólisis , Solventes/química , Biocatálisis , Cinética
4.
Biomolecules ; 14(7)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-39062466

RESUMEN

Dihydroxyacetone phosphate (DHAP)-dependent aldolases catalyze the aldol addition of DHAP to a variety of aldehydes and generate compounds with two stereocenters. This reaction is useful to synthesize chiral acyclic nucleosides, which constitute a well-known class of antiviral drugs currently used. In such compounds, the chirality of the aliphatic chain, which mimics the open pentose residue, is crucial for activity. In this work, three DHAP-dependent aldolases: fructose-1,6-biphosphate aldolase from rabbit muscle, rhanmulose-1-phosphate aldolase from Thermotoga maritima, and fuculose-1-phosphate aldolase from Escherichia coli, were used as biocatalysts. Aldehyde derivatives of thymine and cytosine were used as acceptor substrates, generating new acyclic nucleoside analogues containing two new stereocenters with conversion yields between 70% and 90%. Moreover, structural analyses by molecular docking were carried out to gain insights into the diasteromeric excess observed.


Asunto(s)
Aldehído-Liasas , Escherichia coli , Fructosa-Bifosfato Aldolasa , Simulación del Acoplamiento Molecular , Nucleósidos de Pirimidina , Thermotoga maritima , Animales , Escherichia coli/enzimología , Nucleósidos de Pirimidina/química , Nucleósidos de Pirimidina/síntesis química , Aldehído-Liasas/metabolismo , Aldehído-Liasas/química , Conejos , Fructosa-Bifosfato Aldolasa/química , Fructosa-Bifosfato Aldolasa/metabolismo , Thermotoga maritima/enzimología , Dihidroxiacetona Fosfato/metabolismo , Dihidroxiacetona Fosfato/química , Estereoisomerismo
5.
Artículo en Inglés | MEDLINE | ID: mdl-38865045

RESUMEN

Recognized for its bioactive compounds, açaí has become a functional food, but it has a low pulp yield, and the seeds are the main waste. This study investigates the potential of açaí seeds (Euterpe oleracea Mart.) to produce mannooligosaccharides (MOS) through enzymatic hydrolysis. Using response surface methodology (RSM), the research optimizes MOS extraction while minimizing mannose production and reducing processing time, achieving MOS production of about 10 g/L, a value within the range of similar investigations. The RSM quadratic models establish correlations between MOS production (M2-M5) and enzymatic hydrolysis conditions, with R2 values ranging from 0.6136 to 0.9031. These models are used to emphasize MOS performance (M2-M5) while reducing mannose production, which also promotes profitability by reducing time. Experimental validation agrees with model predictions, highlighting optimal conditions near 40 °C, intermediate enzyme loading, and basic pH that effectively promotes MOS generation on mannose within an accelerated processing time frame. With predictions of experimental results within a margin of error of < 9%, the validity of the models was acceptable. This research contributes to the advancement of the understanding of the enzymatic hydrolysis of açaí seeds, which is a step toward the sustainable use of resources with a focus on process engineering aspects.

6.
Environ Sci Pollut Res Int ; 31(19): 28632-28643, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38558334

RESUMEN

Lipases represent versatile biocatalysts extensively employed in transesterification reactions for ester production. Ethyl oleate holds significance in biodiesel production, serving as a sustainable alternative to petroleum-derived diesel. In this study, our goal was to prospect lipase and assess its efficacy as a biocatalyst for ethyl oleate synthesis. For quantitative analysis, a base medium supplemented with Rhodamine B, olive oil, and Tween 80 was used. Solid-state fermentation utilized crambe seeds of varying particle sizes and humidity levels as substrates. In the synthesis of ethyl oleate, molar ratios of 1:3, 1:6, and 1:9, along with a total enzymatic activity of 60 U in n-heptane, were utilized at temperatures of 30 °C, 37 °C, and 44 °C. Reactions were conducted in a shaker at 200 rpm for 60 min. As a result, we first identified Penicillium polonicum and employed the method of solid-state fermentation using crambe seeds as a substrate to produce lipase. Our findings revealed heightened lipolytic activity (22.5 Ug-1) after 96 h of fermentation using crambe cake as the substrate. Optimal results were achieved with crambe seeds at a granulometry of 0.6 mm and a fermentation medium humidity of 60%. Additionally, electron microscopy suggested the immobilization of lipase in the substrate, enabling enzyme reuse for up to 4 cycles with 100% enzymatic activity. Subsequently, we conducted applicability tests of biocatalysts for ethyl oleate synthesis, optimizing parameters such as the acid/alcohol molar ratio, temperature, and reaction time. We attained 100% conversion within 30 min at 37 °C, and our results indicated that the molar ratio proportion did not significantly influence the outcome. These findings provide a methodological alternative for the utilization of biocatalysts in ethyl oleate synthesis.


Asunto(s)
Fermentación , Lipasa , Ácidos Oléicos , Penicillium , Ácidos Oléicos/biosíntesis , Ácidos Oléicos/metabolismo , Penicillium/metabolismo , Lipasa/metabolismo , Esterificación , Biocatálisis , Lipólisis
7.
Environ Sci Pollut Res Int ; 31(18): 26737-26746, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38456978

RESUMEN

Protein hydrolysates might display diverse bioactivities with potential relevance to human and animal health and food technology. Enzymatic hydrolysis of agro-industrial by-products is increasingly focused. In this study, a crude protease from Bacillus sp. CL18 was applied to obtain antioxidant protein hydrolysates from porcine, bovine, poultry, and fish by-products. The crude enzyme hydrolyzed all the twelve investigated by-products, as detected by increased soluble protein contents after 4 h of proteolysis. Hydrolysates exhibited higher radical-scavenging, Fe2+-chelating and reducing power capacities than non-hydrolyzed by-products. Hydrolysis times (0-8 h) and enzyme-to-substrate (E/S) ratios (384, 860, and 1,400 U/g) were assessed to produce antioxidant bovine lung hydrolysates. The highest E/S ratio accelerated both hydrolysis and increases in antioxidant activities; however, it did not result in bioactivities higher than hydrolysates obtained with the intermediate E/S ratio. Optimal antioxidant activities could be reached after 6 h of hydrolysis using 860 U/g. Animal by-products are interesting sources of bioactive protein hydrolysates, which could be produced with a non-commercial bacterial protease. This might represent a promising strategy for the valorization of animal by-products generated in large amounts by the agri-food sector.


Asunto(s)
Antioxidantes , Bacillus , Péptido Hidrolasas , Hidrolisados de Proteína , Antioxidantes/metabolismo , Animales , Péptido Hidrolasas/metabolismo , Hidrólisis , Bovinos , Porcinos
8.
Bioprocess Biosyst Eng ; 47(5): 697-712, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38536484

RESUMEN

Mono- and diglycerides play a crucial role in the food industry as multifunctional food additives and emulsifiers. Their importance stems from their unique properties, which allow them to improve the quality, texture, and stability of various food products. Here, results of the kinetic modeling of the mono- and diglycerides synthesis mediated by the lipase Lipozyme® TL 100 L immobilized on the clayey support Spectrogel® type C are reported. The support was characterized by TEM, SEM, and FTIR. Firstly, the influence of pH and lipase load on the immobilization process was analyzed, resulting in an enzymatic activity of 93.2 ± 0.7 U g-1 under optimized conditions (170.9 U g-1 of lipase and pH of 7.1). Afterward, the effects of reaction temperature and concentration of immobilized biocatalyst in the feedstock conversion were evaluated. At optimized parameters, a triglycerides conversion of 97% was obtained at 36.5 °C, 7.9 vol.% of enzyme, a glycerol to feedstock molar ratio of 2:1, and 2 h. The optimized conditions were used to determine the kinetic constants of the elementary reactions involved in the glycerolysis, where a fit superior to 0.99 was achieved between experimental values and predicted data.


Asunto(s)
Enzimas Inmovilizadas , Lipasa , Lipasa/química , Lipasa/metabolismo , Enzimas Inmovilizadas/química , Cinética , Diglicéridos/química , Diglicéridos/biosíntesis , Arcilla/química , Concentración de Iones de Hidrógeno , Temperatura , Modelos Químicos
9.
Polymers (Basel) ; 15(11)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37299313

RESUMEN

Bacterial immobilization is regarded as an enabling technology to improve the stability and reusability of biocatalysts. Natural polymers are often used as immobilization matrices but present certain drawbacks, such as biocatalyst leakage and loss of physical integrity upon utilization in bioprocesses. Herein, we prepared a hybrid polymeric matrix that included silica nanoparticles for the unprecedented immobilization of the industrially relevant Gluconobacter frateurii (Gfr). This biocatalyst can valorize glycerol, an abundant by-product of the biodiesel industry, into glyceric acid (GA) and dihydroxyacetone (DHA). Different concentrations of siliceous nanosized materials, such as biomimetic Si nanoparticles (SiNps) and montmorillonite (MT), were added to alginate. These hybrid materials were significantly more resistant by texture analysis and presented a more compact structure as seen by scanning electron microscopy. The preparation including 4% alginate with 4% SiNps proved to be the most resistant material, with a homogeneous distribution of the biocatalyst in the beads as seen by confocal microscopy using a fluorescent mutant of Gfr. It produced the highest amounts of GA and DHA and could be reused for up to eight consecutive 24 h reactions with no loss of physical integrity and negligible bacterial leakage. Overall, our results indicate a new approach to generating biocatalysts using hybrid biopolymer supports.

10.
Appl Microbiol Biotechnol ; 107(11): 3459-3478, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37099059

RESUMEN

The tropane alkaloids hyoscyamine, anisodamine, and scopolamine are extensively used medicines. In particular, scopolamine has the greatest value in the market. Hence, strategies to enhance its production have been explored as an alternative to traditional field-plant cultivation. In this work, we developed biocatalytic strategies for the transformation of hyoscyamine into its products utilizing a recombinant Hyoscyamine 6ß-hydroxylase (H6H) fusion protein to the chitin-binding domain of the chitinase A1 from Bacillus subtilis (ChBD-H6H). Catalysis was carried out in batch, and recycling of H6H constructions was performed via affinity-immobilization, glutaraldehyde crosslinking, and adsorption-desorption of the enzyme to different chitin matrices. ChBD-H6H utilized as free enzyme achieved complete conversion of hyoscyamine in 3- and 22-h bioprocesses. Chitin particles demonstrated to be the most convenient support for ChBD-H6H immobilization and recycling. Affinity-immobilized ChBD-H6H operated in a three-cycle bioprocess (3 h/cycle, 30 °C) yielded in the first and third reaction cycle 49.8% and 22.2% of anisodamine and 0.7% and 0.3% of scopolamine, respectively. However, glutaraldehyde crosslinking decreased enzymatic activity in a broad range of concentrations. Instead, the adsorption-desorption approach equaled the maximal conversion of the free enzyme in the first cycle and retained higher enzymatic activity than the carrier-bound strategy along the consecutive cycles. The adsorption-desorption strategy permitted the reutilization of the enzyme in a simple and economical manner while exploiting the maximal conversion activity displayed by the free enzyme. This approach is valid since other enzymes present in the E. coli lysate do not interfere with the reaction. KEY POINTS: • A biocatalytic system for anisodamine and scopolamine production was developed. • Affinity-immobilized ChBD-H6H in ChP retained catalytic activity. • Enzyme-recycling by adsorption-desorption strategies improves product yields.


Asunto(s)
Hiosciamina , Escopolamina , Escopolamina/metabolismo , Hiosciamina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Glutaral
11.
Environ Res ; 229: 115892, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37084948

RESUMEN

The COVID-19 pandemic has brought increments in market sales and prescription of medicines commonly used to treat mental health disorders, such as depression, anxiety, stress, and related problems. The increasing use of these drugs, named psychiatric drugs, has led to their persistence in aquatic systems (bioaccumulation), since they are recalcitrant to conventional physical and chemical treatments typically used in wastewater treatment plants. An emerging environmental concern caused by the bioaccumulation of psychiatric drugs has been attributed to the potential ecological and toxicological risk that these medicines might have over human health, animals, and plants. Thus, by the application of biocatalysis-assisted techniques, it is possible to efficiently remove psychiatric drugs from water. Biocatalysis, is a widely employed and highly efficient process implemented in the biotransformation of a wide range of contaminants, since it has important differences in terms of catalytic behavior, compared to common treatment techniques, including photodegradation, Fenton, and thermal treatments, among others. Moreover, it is noticed the importance to monitor transformation products of degradation and biodegradation, since according to the applied removal technique, different toxic transformation products have been reported to appear after the application of physical and chemical procedures. In addition, this work deals with the discussion of differences existing between high- and low-income countries, according to their environmental regulations regarding waste management policies, especially waste of the drug industry.


Asunto(s)
COVID-19 , Contaminantes Químicos del Agua , Animales , Humanos , Biocatálisis , Bioacumulación , Pandemias , Agua , Contaminantes Químicos del Agua/análisis , Biodegradación Ambiental
12.
iScience ; 26(4): 106449, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37020966

RESUMEN

Soil biota has a crucial impact on soil ecology, global climate changes, and effective crop management and studying the diverse ecological roles of dipteran larvae deepens the understanding of soil food webs. A multi-omics study of Pseudolycoriella hygida comb. nov. (Diptera: Sciaroidea: Sciaridae) aimed to characterize carbohydrate-active enzymes (CAZymes) for litter degradation in this species. Manual curation of 17,881 predicted proteins in the Psl. hygida genome identified 137 secreted CAZymes, of which 33 are present in the saliva proteome, and broadly confirmed by saliva CAZyme catalytic profiling against plant cell wall polysaccharides and pNP-glycosyl substrates. Comparisons with two other sciarid species and the outgroup Lucilia cuprina (Diptera: Calliphoridae) identified 42 CAZyme families defining a sciarid CAZyme profile. The litter-degrading potential of sciarids corroborates their significant role as decomposers, yields insights to the evolution of insect feeding habits, and highlights the importance of insects as a source of biotechnologically relevant enzymes.

13.
Biotechnol Appl Biochem ; 70(3): 1291-1301, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36576317

RESUMEN

The present study consists of developing an enzymatic process for the production of wax esters (lauryl stearate and cetyl stearate) by esterification in a heptane medium. Lipase from Thermomyces lanuginosus (TLL) immobilized via interfacial activation on silica particles from rice husks functionalized with triethoxy(octyl)silane (TLL-Octyl-SiO2 ) was used as biocatalyst. Maximum immobilized protein loading of around 22 mg g-1 (that corresponds to an immobilization yield of ≈55%) of support was observed using an initial protein loading of 40 mg g-1 of Octyl-SiO2 . Its hydrolytic activity (olive oil emulsion hydrolysis) was of 620 U g-1 of biocatalyst. The effect of certain factors on the cetyl estearate production was evaluated using a central composite rotatable design (CCDR). Under optimal conditions (64°C, 21% of mass of biocatalyst per volume of reaction mixture, 170 rpm, and stoichiometric acid:alcohol molar ratio 1 mol L-1 of each reactant), maximum acid conversion percentage of 91% was observed after 60 min of reaction. Lauryl stearate was also produced under such conditions, and an acid conversion of 93% after 60 min of reaction was also achieved. Free lipase exhibited acid conversion of only 15%-20% for both reaction mixtures. After nine successive esterification batches, TLL-Octyl-SiO2 retained 85%-90% of its original activity. These results show the promising use of the prepared biocatalyst in wax esters production due to its high catalytic activity and reusability.


Asunto(s)
Lipasa , Oryza , Lipasa/metabolismo , Esterificación , Ésteres , Dióxido de Silicio , Adsorción , Estearatos , Enzimas Inmovilizadas/metabolismo , Biocatálisis
14.
Crit Rev Food Sci Nutr ; : 1-32, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36377687

RESUMEN

Enzymatic hydrolysis is the most prominent strategy to release bioactive peptides from different food proteins and protein-rich by-products. Unconventional microbial proteases (UMPs) have gaining increased attention for such purposes, particularly from the 2010s. In this review, we present and discuss aspects related to UMPs production, and their use to obtain bioactive protein hydrolysates. Antioxidant and anti-hypertensive potentials, commonly evaluated through in vitro testing, are mainly reported. The in vivo bioactivities of protein hydrolysates and peptides produced through UMPs action are highlighted. In addition to bioactivities, enzymatic hydrolysis acts by modulating the functional properties of proteins for potential food uses. The compiled literature indicates that UMPs are promising biocatalysts to generate bioactive protein hydrolysates, adding up to commercially available enzymes. From the recent interest on this topic, continuous and in-depth research is needed to advance toward the applicability and commercial utility of both UMPs and obtained hydrolysates.

15.
Molecules ; 27(21)2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36364329

RESUMEN

Several microorganisms have been reported as capable of acting on poly(ethylene terephthalate) (PET) to some extent, such as Yarrowia lipolytica, which is a yeast known to produce various hydrolases of industrial interest. The present work aims to evaluate PET depolymerization by Y. lipolytica using two different strategies. In the first one, biocatalysts were produced during solid-state fermentation (SSF-YL), extracted and subsequently used for the hydrolysis of PET and bis(2-hydroxyethyl terephthalate) (BHET), a key intermediate in PET hydrolysis. Biocatalysts were able to act on BHET, yielding terephthalic acid (TPA) (131.31 µmol L-1), and on PET, leading to a TPA concentration of 42.80 µmol L-1 after 168 h. In the second strategy, PET depolymerization was evaluated during submerged cultivations of Y. lipolytica using four different culture media, and the use of YT medium ((w/v) yeast extract 1%, tryptone 2%) yielded the highest TPA concentration after 96 h (65.40 µmol L-1). A final TPA concentration of 94.3 µmol L-1 was obtained on a scale-up in benchtop bioreactors using YT medium. The conversion obtained in bioreactors was 121% higher than in systems with SSF-YL. The results of the present work suggest a relevant role of Y. lipolytica cells in the depolymerization process.


Asunto(s)
Yarrowia , Hidrólisis , Tereftalatos Polietilenos , Extractos Celulares , Fermentación , Etilenos
16.
Int J Mol Sci ; 23(20)2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36293414

RESUMEN

Indigoids are natural pigments obtained from plants by ancient cultures. Romans used them mainly as dyes, whereas Asian cultures applied these compounds as treatment agents for several diseases. In the modern era, the chemical industry has made it possible to identify and develop synthetic routes to obtain them from petroleum derivatives. However, these processes require high temperatures and pressures and large amounts of solvents, acids, and alkali agents. Thus, enzyme engineering and the development of bacteria as whole-cell biocatalysts emerges as a promising green alternative to avoid the use of these hazardous materials and consequently prevent toxic waste generation. In this research, we obtained two novel variants of phenylacetone monooxygenase (PAMO) by iterative saturation mutagenesis. Heterologous expression of these two enzymes, called PAMOHPCD and PAMOHPED, in E. coli was serendipitously found to produce indigoids. These interesting results encourage us to characterize the thermal stability and enzyme kinetics of these new variants and to evaluate indigo and indirubin production in a whole-cell system by HPLC. The highest yields were obtained with PAMOHPCD supplemented with L-tryptophan, producing ~3000 mg/L indigo and ~130.0 mg/L indirubin. Additionally, both enzymes could oxidize and produce several indigo derivatives from substituted indoles, with PAMOHPCD being able to produce the well-known Tyrian purple. Our results indicate that the PAMO variants described herein have potential application in the textile, pharmaceutics, and semiconductors industries, prompting the use of environmentally friendly strategies to obtain a diverse variety of indigoids.


Asunto(s)
Oxigenasas de Función Mixta , Petróleo , Oxigenasas de Función Mixta/metabolismo , Biocatálisis , Carmin de Índigo/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Triptófano/metabolismo , Indoles/metabolismo , Colorantes/metabolismo , Solventes/metabolismo , Petróleo/metabolismo , Sustancias Peligrosas , Álcalis/metabolismo
17.
Chembiochem ; 23(22): e202200354, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-35781918

RESUMEN

Feruloyl esterases (FAEs) are versatile enzymes able to release hydroxycinnamic acids or synthesize their ester derivatives, both molecules with interesting biological activities such as: antioxidants, antifungals, antivirals, antifibrotic, anti-inflammatory, among others. The importance of these molecules in medicine, food or cosmetic industries provides FAEs with several biotechnological applications as key industrial biocatalysts. However, FAEs have some operational limitations that must be overcome, which can be addressed through different protein engineering approaches to enhance their thermal stability, catalytic efficiencies, and selectivity. This review aims to present a brief historical tour through the mutagenesis strategies employed to improve enzymes performance and analyze the current protein engineering strategies applied to FAEs as interesting biocatalysts. Finally, an outlook of the future of FAEs protein engineering approaches to achieve successful industrial biocatalysts is given.


Asunto(s)
Hidrolasas de Éster Carboxílico , Ingeniería de Proteínas , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Ácidos Cumáricos/metabolismo , Biotecnología , Catálisis , Biocatálisis , Enzimas/metabolismo
18.
Biotechnol Lett ; 44(7): 867-878, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35723788

RESUMEN

Monoterpenes, such as beta-pinene, are secondary metabolites widely used in the flavors and fragrance industries and can have their structure altered to enhance their applicability, such as producing epoxides, which are used as intermediaries for pharmaceuticals. Epoxides are commonly synthesized by the use of inorganic acids as catalysts, although the acid medium induces epoxide degradation. To overcome these limitations biocatalysis is shown as an alternative. Related to, this work aimed to perform the synthesis of ß-Pinene epoxide using Pseudozyma antarctica lipase B (Novozym®435) as a biocatalyst, while determining the independent variables that influence the reaction using experimental design tools. Different solvent systems were evaluated (cyclohexane, acetonitrile, ethyl acetate, and dichloromethane) until 72 h reaction time, from which ethyl acetate showed higher conversion into the epoxidized product (40% in 24 h). Under the other solvents systems, several oxidized by-products were obtained, such as ketones and aldehydes. Moreover, applying metrics of green chemistry, ethyl acetate was also corroborated as the most promising solvent, with a higher atom economy (66.8%) in comparison to the others (41.3%), and a smaller E-value (1.19). Ethyl acetate was the solvent/acyl donor of choice and had the molar ratio and percentage of biocatalyst increased, which resulted in 80% of the product after 3 h of reaction. To obtain an optimized model, four independent variables (temperature, stirring, molar ratio, percentage of biocatalyst) were evaluated using experimental design tools, Fractional Factorial Design and Central Composite Rotatable Design, with conversions ranging from 23 to 95% after 3 h. All the independent variables were statistically significant (p < 0.05) and had different degrees of impact on the conversion. Kinetic parameters of the reaction were determined using the Lineweaver-Burk model (results under 30.1 mmol for Km and 10.7 mmol.min-1 for Vmax). In conclusion, the combination of two different tools of experimental design provided the development of an optimized model for beta-Pinene epoxidation, achieving high conversion to the epoxidized product after 3 h.


Asunto(s)
Enzimas Inmovilizadas , Compuestos Epoxi , Monoterpenos Bicíclicos , Biocatálisis , Enzimas Inmovilizadas/metabolismo , Solventes/química
19.
ChemSusChem ; 15(9): e202102674, 2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35084121

RESUMEN

The combination of deep eutectic solvents (DESs, ChCl/glycerol 1 : 2) with buffer (up to 15 % v/v) leads to solvent mixtures that exert viscosities below 25 mPa s-1 at 45 °C while keeping their non-aqueous nature. This enables the setup of efficient enzymatic esterifications, which can also be applied in different continuous systems. Following those premises, the use of microreactors in biocatalytic reactions was explored using (low-viscous) DES-buffer media, showing that reactions could be performed efficiently. Under non-optimized conditions, the microreactor devices led to specific productivities considerably higher than those observed in the batch reactor (14 vs. 0.24 mgproduct min-1 mgbiocat -1 ) at the same enzyme loadings and conversion of 6 % (to assure a fair comparison). Looking beyond, the combination of several microchannels (e. g., in scale-out fashion) with DES-water media may lead to powerful, sustainable, and efficient tools for industrial synthesis.


Asunto(s)
Disolventes Eutécticos Profundos , Lipasa , Biocatálisis , Dispositivos Laboratorio en un Chip , Lipasa/metabolismo , Solventes , Viscosidad
20.
Int J Mol Sci ; 23(2)2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35054965

RESUMEN

Amine transaminases (ATAs) are pyridoxal-5'-phosphate (PLP)-dependent enzymes that catalyze the transfer of an amino group from an amino donor to an aldehyde and/or ketone. In the past decade, the enzymatic reductive amination of prochiral ketones catalyzed by ATAs has attracted the attention of researchers, and more traditional chemical routes were replaced by enzymatic ones in industrial manufacturing. In the present work, the influence of the presence of an α,ß-unsaturated system in a methylketone model substrate was investigated, using a set of five wild-type ATAs, the (R)-selective from Aspergillus terreus (Atr-TA) and Mycobacterium vanbaalenii (Mva-TA), the (S)-selective from Chromobacterium violaceum (Cvi-TA), Ruegeria pomeroyi (Rpo-TA), V. fluvialis (Vfl-TA) and an engineered variant of V. fluvialis (ATA-256 from Codexis). The high conversion rate (80 to 99%) and optical purity (78 to 99% ee) of both (R)- and (S)-ATAs for the substrate 1-phenyl-3-butanone, using isopropylamine (IPA) as an amino donor, were observed. However, the double bond in the α,ß-position of 4-phenylbut-3-en-2-one dramatically reduced wild-type ATA reactivity, leading to conversions of <10% (without affecting the enantioselectivity). In contrast, the commercially engineered V. fluvialis variant, ATA-256, still enabled an 87% conversion, yielding a corresponding amine with >99% ee. Computational docking simulations showed the differences in orientation and intermolecular interactions in the active sites, providing insights to rationalize the observed experimental results.


Asunto(s)
Aminas/química , Modelos Moleculares , Conformación Molecular , Transaminasas/química , Aminas/metabolismo , Sitios de Unión , Biocatálisis , Dominio Catalítico , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Unión Proteica , Relación Estructura-Actividad , Especificidad por Sustrato , Transaminasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA