Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 365: 121300, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38955041

RESUMEN

Chromium contamination from abandoned industrial sites and inadequately managed waste disposal areas poses substantial environmental threat. Microbially induced carbonate precipitation (MICP) has shown promising, eco-friendly solution to remediate Cr(VI) and divalent heavy metals. In this study, MICP was carried out for chromium immobilization by an ureolytic bacterium Arthrobacter creatinolyticus which is capable of reducing Cr(VI) to less toxic Cr(III) via extracellular polymeric substances (EPS) production. The efficacy of EPS driven reduction was confirmed by cellular fraction analysis. MICP carried out in aqueous solution with 100 ppm of Cr(VI) co-precipitated 82.21% of chromium with CaCO3 and the co-precipitation is positively correlated with reduction of Cr(VI). The organism was utilized to remediate chromium spiked sand and found that MICP treatment decreased the exchangeable fraction of chromium to 0.54 ±â€¯0.11% and increased the carbonate bound fraction to 26.1 ±â€¯1.15% compared to control. XRD and SEM analysis revealed that Cr(III) produced during reduction, influenced the polymorph selection of vaterite during precipitation. Evaluation of MICP to remediate Cr polluted soil sample collected from Ranipet, Tamil Nadu also showed effective immobilization of chromium. Thus, A. creatinolyticus proves to be viable option for encapsulating chromium contaminated soil via MICP process, and effectively mitigating the infiltration of Cr(VI) into groundwater and adjacent water bodies.


Asunto(s)
Arthrobacter , Carbonatos , Cromo , Arthrobacter/metabolismo , Cromo/química , Carbonatos/química , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/química , Carbonato de Calcio/química
2.
PeerJ ; 11: e15904, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37744221

RESUMEN

Background: This article presents a detailed analysis of a dataset consisting of 27 elements found in soils, soil eluates, and vegetables from private gardens in a region with a long history of coal mining and burning. With coal being one of the world's most significant energy sources, and previous studies highlighting elevated element levels in vegetables from this region, the objective of this study was to identify the factors that impact soil geochemistry and metal(loid) uptake in plants. Methods: Total major and trace element concentrations were analyzed in soils, soil eluates and vegetables by high resolution inductively coupled plasma mass spectrometry. The vegetable samples included six species: fennel, garlic, lettuce, parsley, onion, and radicchio. Each plant was divided into roots, stems, leaves, and/or bulbs and analyzed separately. In addition, the soil pollution status, bioavailable fractions and transfer factors from soil and soil eluates to different plant parts were determined. Results: The comprehensive dataset revealed that, apart from the substrate enriched with various elements (Al, As, Co, Cr, Mo, Ni, Pb, Sb, Sn, Ti, U, V, and Zn), other anthropogenic factors such as the legacy of coal mining and combustion activities, associated industries in the area, transport, and agricultural practices, also influence the elevated element concentrations (Cd, Cu, Fe, Mn, and Se) in locally grown vegetables. The transfer factors based on element concentrations in aqueous soil eluates and element bioavailable fractions confirmed to be an effective tool for evaluating metal uptake in plants, emphazising to some extent the effects of plant species and revealing unique patterns for each pollution source within its environmental context (e.g., Cd, Mo, S, and Se in this case). The study highlights the crucial importance of utilizing comprehensive datasets that encompass a multitude of factors when interpreting the impacts of element uptake in edible plants.


Asunto(s)
Cadmio , Ajo , Verduras , Lactuca , Cebollas
3.
Sci Total Environ ; 857(Pt 2): 159516, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36270356

RESUMEN

Eleven potentially toxic metal(loid)s (Al, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn), proven source markers of mineral based coal-fired industrial emissions and vehicular exhausts, were analysed using the four steps sequential extraction method to evaluate metal(loid)s concentration, in total and fractions of bioavailable and non-bioavailable for fine (PM2.5) and coarse (PM10-2.5) particulate modes. A total of 26-day-wise samples with three replications (total number of samples = 78) were collected in January-December 2019 for each PM10 and PM2.5 at an urban-residential site in India. In both the coarse and fine particulate modes, Pb and Cr have respectively shown the highest and lowest total concentrations of the measured metal(loid)s, indicating the presence of coal-fired power plants and heavy vehicular activities near to study area. In addition, Mn has shown highest bioavailable fraction for both coarse and fine particulate modes. More than 50 % of metal(loid)s concentration, in total to a bioavailable fraction (BAF) were observed in case of As, Cd, Cr, Co, Mn, Ni, and Pb of PM2.5. Mn and Zn have shown similar behaviour in the case of coarse particulate mode. Source apportionment of metal(loid)s bioavailable fractions using positive matrix factorization (PMF 5.0) has found three significant sources: crustal and natural dust (30.04 and 39 %), road traffic (49.57 and 20 %), and industrial emission (20.39 and 41 %) for coarse and fine particulate mode, respectively. Cancer risk through the inhalation pathway was high in total concentration but lower in BAF concentration in both age groups (children and adults).


Asunto(s)
Contaminantes Atmosféricos , Metales Pesados , Neoplasias , Niño , Adulto , Humanos , Material Particulado/análisis , Monitoreo del Ambiente/métodos , Disponibilidad Biológica , Cadmio/análisis , Plomo/análisis , Polvo/análisis , Fraccionamiento Químico , Carbón Mineral/análisis , India , Medición de Riesgo , Metales Pesados/análisis , Contaminantes Atmosféricos/análisis
4.
Environ Res ; 214(Pt 1): 113772, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35792168

RESUMEN

Toxic heavy metals pollution in urban soil has become a major global issue due to its adverse effects on the environment and human health. In this paper, 26 soil samples were analyzed to assess the speciation, bioavailability and human health risk of Arsenic (As), Mercury (Hg), Lead (Pb) and Cadmium (Cd) in urban soils of a heavy industrial city in NE China by using a Monte Carlo simulation approach. The results showed that As, Hg, Pb and Cd concentrations in the soil all exceed the corresponding background value of study area. Mercury displays the highest value of geo-accumulation index (Igeo), followed by Cd, Pb and As. The pollution load index (PLI) value (>2) indicates a moderate pollution level in the study area. The chemical speciation of HMs mainly exists in residual fraction except Cd. The probabilistic health risk assessment demonstrated that the mean values of Total Carcinogenic Risk (TCR) and Hazard Index (HI) calculated with total concentration are at the unacceptable level, with a higher risk to children than adults. However, the mean values calculated with bioavailable fraction are all within the acceptable level. The mean value of TCR and HI obtained by bioavailable fraction is about 96% and 95% lower than that obtained by total concentration, respectively. Thus, this study suggested that the bioavailable fraction of HMs is a more reliable parameter for health risk assessment, while the total concentration of HMs can overestimate the true risk. The results of this study provide some insight into the speciation, bioavailability and health risks of toxic heavy metals in urban soils in those heavy industrial cities.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Adulto , Arsénico/farmacocinética , Disponibilidad Biológica , Cadmio/farmacocinética , Niño , China , Monitoreo del Ambiente , Humanos , Plomo/farmacocinética , Mercurio/farmacocinética , Metales Pesados/farmacocinética , Método de Montecarlo , Receptores de Antígenos de Linfocitos T , Medición de Riesgo , Suelo , Contaminantes del Suelo/farmacocinética
5.
Environ Sci Pollut Res Int ; 29(33): 49672-49683, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35218496

RESUMEN

Mobility and toxicity of heavy metal contamination in the environment are highly dependent on its bioavailability. Most of previous studies focused on total heavy metal contents and their influence on microbial community in soils and sediments. Little were concerned about bioavailable fractions. In the current study, soil and sediment samples were collected near an abandoned realgar mine in Shimen County, China. Bioavailable heavy metals including Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Cd, Sb, and Pb in the samples were extracted using three-step sequential extraction method. Interactions among physicochemical parameters, total and bioavailable heavy metals, and microbial community in the collected samples were investigated. The study area has been severely contaminated by As with a concentration up to 2158 mg·kg-1 detected. The result of principal component analysis showed that the abundance of operational taxonomic units (OTUs) in the soils were obviously different from those in the sediments. In the soil samples, pH made a dominant contribution on the OTU abundance of microbial community. Correlation analyses revealed that the alpha diversity indices and microbial taxon were most correlated with bioavailable fractions of heavy metals in all the samples. That means bioavailable heavy metals rather than total heavy metals or physicochemical parameters played a more important role on richness and diversity of microbial community. Little connections were observed between microbial community and As no matter total concentration or bioavailable fraction. However, bioavailable Fe and Mn were recognized as the major driving force shaping the taxonomic structure of microbial community due to their relatively high concentrations and high affinity to other heavy metal contamination in soils and sediments.


Asunto(s)
Arsénico , Metales Pesados , Microbiota , Contaminantes del Suelo , Arsénico/análisis , China , Monitoreo del Ambiente , Residuos Industriales/análisis , Metales Pesados/análisis , Suelo/química , Contaminantes del Suelo/análisis
6.
Int J Phytoremediation ; 24(1): 47-58, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34061696

RESUMEN

Two of the multiple limitations of phytoextraction efficiency (PE %) of TSW polluted soils are: (i) low growth of plant performance, (ii) poor bioavailability of excessive essential and heavy metals (ascribed as Category-I and II metals respectively) The current study reports biostimulant role of allochthonous Trichoderma harzianum (F1) and autochthonous Trichoderma pseudokoningii (F2) in growth of Tagetes patula L. and uptake of Category-I & II metals from TSW-soil (0, 5 & 10%). Significantly higher growth (27.5-47.8% dry wt. than Control) and highly significantly higher uptake of Category-I & II metals (72-80% Ca, 32-69% K, 72-76% Na & 73-86% Cd, 63-100% Cr, 72-77% Cu, 73-78% Fe, 43-77% Mg, 22-33% Ni, 70-73% Zn) was observed in T. patula applied with F1 + F2 treatment. The PE (%) parameters viz.specific extraction yield, tolerance and translocation index of Category-I & II metals were higher in plants cultivated on fungal inoculated TSW:soil. The Trichoderma spp. acted as strong biostimulants for enhancing plant growth and conc. of catalase (CAT, 44-52% than control), superoxide dismutase (SOD, 37-43%), soluble proteins (37-68%) and total chlorophyll (10-26%) in T. patula during metal phytoextraction of TSW:soil. Novelty statement Due to multiple socio-economic constraints for effective management of tannery solid waste (TSW), the heavy metal phytoextraction seems to be one of the promising approaches. However, due to complex composition of TSW, that is, with more than 37 components, high pH, multiple types and high conc. of metals; there lies huge challenge of enhancing phytoextraction efficiency (PE %). This can be done by enhancing growth of hyperaccumulator plants and increasing bioavailable fraction of metals. The current study suggests application of selected fungal biostimulants for increasing growth of T. patula while improving bioavailable fraction of the total metal contents of the TSW: soil.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Biodegradación Ambiental , Metales Pesados/análisis , Suelo , Contaminantes del Suelo/análisis , Residuos Sólidos
7.
Chemosphere ; 251: 126302, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32146184

RESUMEN

The concentration of the bioavailable uranium fraction (Ubio) at the European scale was deduced by geochemical modelling considering several definitions found in the literature and the FOREGS European stream waters geochemical atlas dataset to produce a Ubio baseline. A sensitivity analysis was performed using three thermodynamic databases. We also investigated the link between total dissolved uranium (Uaq) concentrations, speciation and global stream water chemistry on the one hand, and the lithology and ages of the surrounding rocks on the other. The more U-enriched the stream sediments or rock type contexts are, which tends to be the case with rocks containing silicates (4.1 mg/kg), the less U-concentrated the stream waters are (0.15 µg/L). Sedimentary rocks lead to slightly higher Uaq concentrations (0.34 µg/L) even if the concentration in sediment (Used) is relatively low (1.6 mg/kg). This trend is reversed for Ubio, with higher concentrations in a crystalline context. The mean estimated Ubio value ranges from 1.5.10-3 to 65.3 ng/L and can fluctuate by 3 orders of magnitude depending on the considered definition as opposed to by 2 orders of magnitude accountable to differences between thermodynamic databases. The classification of the water in relation to the two surrounding rock lithologies makes it possible to reduce the mean variability for the Ubio concentrations. Irrespective of the definition of Ubio considered, in 59% of cases the Ubio fraction represents less than 1% of Uaq. Several threshold values relating to Ubio were proposed, assuming knowledge only of the aqueous concentrations of the major elements and Uaq.


Asunto(s)
Monitoreo del Ambiente , Uranio/análisis , Contaminantes Radiactivos del Agua/análisis , Disponibilidad Biológica , Agua Dulce/química , Sedimentos Geológicos/química , Ríos , Agua/análisis , Contaminantes Químicos del Agua/análisis
8.
Ecotoxicol Environ Saf ; 180: 632-645, 2019 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-31132559

RESUMEN

Increasing concentrations of metals in soil have posed a serious threat to the soil environment. The control and evaluation of soil metal hazards demand the establishment of soil ecological criteria, which is mainly based on the obtainment of toxicity thresholds. As the most typical representative of soil-dwelling springtails, Folsomia candida performs numerous essential ecological functions in soil and has been extensively used to investigate metal toxicity effects and thresholds. This review outlined the current state of knowledge on the metal toxicity thresholds to Folsomia candida, including (1) toxicity thresholds of soil metals for the different endpoints, (2) the influence factors of metal toxicity thresholds including the test conditions, the chemical forms of metal, the soil physicochemical properties, aging time and leaching, (3) the bioavailable fractions predicting metal toxicity thresholds, (4) the internal threshold of metals. To conclude, several recommendations for future research are given to obtain the more reliable toxicity thresholds and further supplement the toxicity data of metals to Folsomia candida.


Asunto(s)
Artrópodos/efectos de los fármacos , Biomarcadores Ambientales/efectos de los fármacos , Metaloides/toxicidad , Metales/toxicidad , Contaminantes del Suelo/toxicidad , Animales , Artrópodos/fisiología , Disponibilidad Biológica , Relación Dosis-Respuesta a Droga , Biomarcadores Ambientales/fisiología , Metaloides/farmacocinética , Metales/farmacocinética , Suelo/química , Contaminantes del Suelo/farmacocinética , Pruebas de Toxicidad
9.
Artículo en Inglés | MEDLINE | ID: mdl-30677468

RESUMEN

OBJECTIVE: Alcohol use disorders inflict a great individual and societal burden. Although sex hormone effects have been implicated in alcohol dependence, research has mostly neglected estrogen activities and female alcohol-dependent patients. Here, we investigated associations of estrogen receptor 1 (ESR1) genetics and serum estradiol activities with aspects of alcohol dependence. METHOD: Serum estradiol activities of early-abstinent alcohol-dependent in-patients (n[♂] = 113, n[♀] = 87) were followed for at median 5 days and compared with healthy controls (n[♂] = 133, n[♀] = 107). All participants were genotyped for five ESR1 single nucleotide polymorphisms (rs6902771, rs11155819, rs6557171, rs2982683, rs2982712). RESULTS: Bioavailable estradiol levels decreased during withdrawal treatment (P[♂] < .001, P[♀] = .011). Male patients with an increase of bioavailable estradiol during withdrawal showed fewer days to (P = .033) and more alcohol-related readmissions (P < .05) during the 12-month follow-up. Higher estradiol and estradiol-to-testosterone activities were significantly related to liver, muscle, and cell count damage in male patients. Estradiol-to-testosterone activities in female patients were lower compared to female controls (total P = .013, bioavailable P = .009). Moreover, the ESR1 genotypes jointly separated alcohol-dependent patients from controls (P = .037). CONCLUSION: Our findings support the role of ESR1 genetics in alcohol dependence and show for the first time that estradiol activities may sex-specifically predict alcohol-related sequelae and outcome following in-patient withdrawal treatment.


Asunto(s)
Alcoholismo/genética , Estradiol/sangre , Receptor alfa de Estrógeno/genética , Adulto , Alcoholismo/sangre , Estudios de Casos y Controles , Femenino , Genotipo , Humanos , Pacientes Internos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple/genética , Caracteres Sexuales , Síndrome de Abstinencia a Sustancias/sangre , Testosterona/sangre
10.
Sci Total Environ ; 656: 261-269, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30504026

RESUMEN

Irrigation with raw or diluted wastewater increases in many developing countries, but the increasing availability and use of wastewater generates challenges for public agencies charged with minimizing potential impacts on public health and the environment. In this study, the available (DTPA-extractable) concentration of Zn, Cu, Cd, Pb, and Ni in the surface soil was measured in five sites irrigated with treated wastewater as compared with a site irrigated with freshwater (control). The major sources of wastewater were municipal wastewater, household, commercial, and industrial effluents, which were treated to settle and remove solids prior its use for irrigation. In addition, the concentration of the above five heavy metals and their accumulation and mobilization characteristics were determined in the roots, shoots, and grains of winter wheat (Triticum aestivum L.) grown in treated wastewater-irrigated soils. Irrigation with treated wastewater resulted in a remarkable build-up of metal concentrations in the soil (averaged over five sites) in the order of Cd (178.2%) > Ni (105.1%) > Cu (66.4%) > Zn (66.0%) > Pb (40.9%) compared with control. However, only Cd concentration exceeded the permissible range. The concentration of heavy metals was significantly greater (P < 0.05) in wheat roots than in shoots and grains (root ≫ shoot > grain). The highest concentrations were found in the roots in the order of Cu > Zn > Pb > Cd > Ni. The maximum concentrations of Zn, Cu, Ni, Cd, and Pb in wheat grains were 3.20, 1.20, 0.52, 0.31, and 0.21 mg kg-1, respectively. The bioconcentration and translocation factors of wheat showed that heavy metals quantitatively accumulated in the roots and were poorly translocated to the grains. The potential health risks, calculated as hazard quotients (HQ), were less than unity for most heavy metals, indicating that local people are within the safe limit regarding non-carcinogenic risks. However, the HQ value of Cd exceeded 1 for both children and adults, indicating a high health hazard for the whole exposed population by this metal.


Asunto(s)
Metales Pesados/metabolismo , Contaminantes del Suelo/metabolismo , Triticum/metabolismo , Aguas Residuales/análisis , Riego Agrícola , Disponibilidad Biológica , Irán , Suelo/química
11.
Bull Environ Contam Toxicol ; 100(4): 581-587, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29497788

RESUMEN

The toxicity of cadmium (Cd) has posed major public health concern in crops grown in the Cd-contaminated soils. The effects of five amendments, nano-hydroxyapatite (n-HA) and it combined with lime, zeolite, bone mill and fly ash on Cd immobilization in soils and uptake in potatoes, were investigated in a contaminated soil by pot experiments. The result showed that the applications of combined amendments significantly decreased the bioavailable Cd concentrations extracted by TCLP, DTPA-TEA and MgCl2 in the contaminated soils, and changed the soluble and exchangeable and specifically sorbed fractions to oxide-bound and organic-bound fractions. Compared to the control group, the concentrations of Cd in the potato tubers grown in n-HA, n-HA + Fly ash, n-HA + Lime, n-HA + Bone mill and n-HA + Zeolite soil were reduced 17.4%, 20.7%, 15.2%, 32.6% and 39.1%, respectively. Nano-hydroxyapatite combined amendments was more effective in reducing bioavailable Cd concentrations and Cd accumulations in potatoes, especially for n-HA + Z.


Asunto(s)
Cadmio/análisis , Durapatita/química , Nanopartículas/química , Contaminantes del Suelo/análisis , Solanum tuberosum/crecimiento & desarrollo , Adsorción , Cadmio/metabolismo , Compuestos de Calcio/química , Ceniza del Carbón/química , Óxidos/química , Suelo/química , Contaminantes del Suelo/metabolismo , Solanum tuberosum/metabolismo , Zeolitas/química
12.
Anal Chim Acta ; 913: 94-103, 2016 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-26944993

RESUMEN

The performance of the Diffusive Gradients in Thin films (DGT) technique with Chelex(®)-100, Metsorb™ and Diphonix(®) as binding phases was evaluated in the vicinity of the former uranium mining sites of Chardon and L'Ecarpière (Loire-Atlantique department in western France). This is the first time that the DGT technique with three different binding agents was employed for the aqueous U determination in the context of uranium mining environments. The fractionation and speciation of uranium were investigated using a multi-methodological approach using filtration (0.45 µm, 0.2 µm), ultrafiltration (500 kDa, 100 kDa and 10 kDa) coupled to geochemical speciation modelling (PhreeQC) and the DGT technique. The ultrafiltration data showed that at each sampling point uranium was present mostly in the 10 kDa truly dissolved fraction and the geochemical modelling speciation calculations indicated that U speciation was markedly predominated by CaUO2(CO3)3(2-). In natural waters, no significant difference was observed in terms of U uptake between Chelex(®)-100 and Metsorb™, while similar or inferior U uptake was observed on Diphonix(®) resin. In turn, at mining influenced sampling spots, the U accumulation on DGT-Diphonix(®) was higher than on DGT-Chelex(®)-100 and DGT-Metsorb™, probably because their performance was disturbed by the extreme composition of the mining waters. The use of Diphonix(®) resin leads to a significant advance in the application and development of the DGT technique for determination of U in mining influenced environments. This investigation demonstrated that such multi-technique approach provides a better picture of U speciation and enables to assess more accurately the potentially bioavailable U pool.


Asunto(s)
Minería , Ultrafiltración/métodos , Uranio/clasificación , Difusión , Modelos Teóricos , Agua
13.
Mar Pollut Bull ; 74(1): 464-70, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23806672

RESUMEN

Spatial distribution patterns of total cadmium (Cd) and lead (Pb), their bioavailable fractions and total organic matter in sediment from Anzali wetlands are provided. Total sediment Pb was higher than Cd (34.95 versus 0.024 µg/g dry weight). The geoaccumulation index indicated that the sediment was "uncontaminated", but some stations were categorized as "unpolluted" to "moderately polluted". Less than 0.01 of Pb existed in exchangeable and carbonate fractions. The sum of exchangeable and carbonate-bound fractions of Cd was 42%, suggesting that Cd poses high risk to the aquatic ecosystems. Total Cd and Pb exhibited positive relationships with total organic matter. Considering spatial distribution maps of total and bioavailable fractions of metals suggested that high concentrations of metals does not necessarily indicate high bioavailable fraction. The methodologies we used in this study can be in more effective management of aquatic ecosystems, as well as ecological risk assessment of metals, and remediation programs.


Asunto(s)
Cadmio/análisis , Monitoreo del Ambiente , Sedimentos Geológicos/química , Plomo/análisis , Contaminantes Químicos del Agua/análisis , Humedales , Irán , Medición de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA