Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(13)2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38999997

RESUMEN

In recent decades, emerging evidence has identified endocrine and neurologic health concerns related to exposure to endocrine-disrupting chemicals (EDCs), including bisphenol A (BPA), certain per- and polyfluoroalkyl compounds (PFASs), and phthalates. This has resulted in consumer pressure to remove these chemicals from the market, especially in food-contact materials and personal care products, driving their replacement with structurally or functionally similar substitutes. However, these "new-generation" chemicals may be just as or more harmful than their predecessors and some have not received adequate testing. This review discusses the research on early-life exposures to new-generation bisphenols, PFASs, and phthalates and their links to neurodevelopmental and behavioral alterations in zebrafish, rodents, and humans. As a whole, the evidence suggests that BPA alternatives, especially BPAF, and newer PFASs, such as GenX, can have significant effects on neurodevelopment. The need for further research, especially regarding phthalate replacements and bio-based alternatives, is briefly discussed.


Asunto(s)
Compuestos de Bencidrilo , Encéfalo , Disruptores Endocrinos , Fenoles , Ácidos Ftálicos , Animales , Ácidos Ftálicos/toxicidad , Fenoles/toxicidad , Compuestos de Bencidrilo/toxicidad , Humanos , Disruptores Endocrinos/toxicidad , Encéfalo/efectos de los fármacos , Encéfalo/crecimiento & desarrollo , Trastornos del Neurodesarrollo/inducido químicamente , Modelos Animales , Pez Cebra , Fluorocarburos/toxicidad
2.
Arab J Sci Eng ; 48(6): 7225-7241, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37266400

RESUMEN

The current era of industrialization includes a constantly increasing demand for plastic products, but because plastics are rarely recycled and are not biodegradable plastic pollution or "white pollution" has been the result. The consumption of petroleum-based plastics will be 20% of global annual oil by 2050, and thus there is an inevitable need to find an innovative solution to reduce plastic pollution. The biodegradable and environmentally benign bioplastics are suitable alternative to fossil-based plastics in the market due to sustainability, less carbon footprint, lower toxicity and high degradability rate. Microalgal species is an innovative approach to be explored and improved for bioplastic production. Microalgae are generally present in abundant quantity in our ecosystem, and polysaccharide in the algae can be processed and utilized to make biopolymers. Also, these species have a high growth rate and can be easily cultivated in wastewater streams. The review aims to determine the recent status of bioplastic production techniques from microalgal species and also reveal optimization opportunities involved in the process. Several strategies for bioplastic production from algal biomass are being discussed nowadays, and the most prominent are "with blending" (blending of algal biomass with bioplastics and starch) and "without blending" (microalgae as a feedstock for polyhydroxyalkanoates production). The advanced research on modern bioengineering techniques and well-established genetic tools like CRISPR-Cas9 should be encouraged to develop recombinant microalgae strains with elevated levels of PHA/PHB inside the cell.

3.
Sci Total Environ ; 856(Pt 2): 159163, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36191700

RESUMEN

The recent use of bioplastics in agriculture is considered an ecological choice, aimed at limiting the environmental impact of plastics, in line with the Sustainable Development Goals of the United Nations. However, the impact of bioplastic residues on the environment is unclear as knowledge is lacking. This is the first study investigating the effect of a starch-based bioplastic on the growth and biochemical parameters of basil. Bioplastic was experimentally prepared and added to the soil at 2.5 % (w/w), corresponding to twice the concentration of plastic mulch film residues currently found in cultivated soils, in view of the increasing agricultural use of bioplastics. Basil plants were grown without (controls) and with bioplastic addition for 35 days, under controlled experimental conditions. Compared to the control, plants exposed to bioplastic showed stunted growth (in terms of shoot fresh weight, height, and number of leaves). Significant reductions in the content of chlorophyll, protein, ascorbic acid, and glucose were also observed. Finally, the treatment caused oxidative stress, as evidenced by the increased content of malondialdehyde in the shoots. The addition of bioplastic increased the electrical conductivity and reduced the cation exchange capacity of the cultivation soil. These results suggest that bioplastic in soil may promote the onset of stressful conditions for plant growth in a similar manner to plastic. They will be complemented by further investigations to unravel the mechanisms underlying these responses, involving different doses and types of bioplastics and other crop species.


Asunto(s)
Ocimum basilicum , Almidón , Suelo , Plásticos , Agricultura
4.
Microorganisms ; 10(12)2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36557574

RESUMEN

Bioplastics, which are plastic materials produced from renewable bio-based feedstocks, have been investigated for their potential as an attractive alternative to petroleum-based plastics. Despite the harmful effects of plastic accumulation in the environment, bioplastic production is still underdeveloped. Recent advances in strain development, genome sequencing, and editing technologies have accelerated research efforts toward bioplastic production and helped to advance its goal of replacing conventional plastics. In this review, we highlight bioengineering approaches, new advancements, and related challenges in the bioproduction and biodegradation of plastics. We cover different types of polymers, including polylactic acid (PLA) and polyhydroxyalkanoates (PHAs and PHBs) produced by bacterial, microalgal, and plant species naturally as well as through genetic engineering. Moreover, we provide detailed information on pathways that produce PHAs and PHBs in bacteria. Lastly, we present the prospect of using large-scale genome engineering to enhance strains and develop microalgae as a sustainable production platform.

5.
Sci Total Environ ; 815: 152781, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-34990691

RESUMEN

In order to reduce the plastic accumulation in the environment, biodegradable plastics are attracting interest in the plastics market. However, the low thermal stability of most amorphous biodegradable polymers limits their application. With the aim of combining high glass transition temperature (Tg), with good (marine) biodegradation a family of novel fully renewable poly(isosorbide-co-diol) oxalate (PISOX-diol) copolyesters was recently developed. In this study, the biodegradability of a representative copolyester, poly(isosorbide-co-1,6-hexanediol) oxalate (PISOX-HDO), with 75/25 mol ratio IS/HDO was evaluated at ambient temperature (25 °C) in soil and marine environment by using a Respicond system with 95 parallel reactors, based on the principle of frequently monitoring CO2 evolution. During 50 days incubation in soil and seawater, PISOX-HDO mineralised faster than cellulose. The ready biodegradability of PISOX-HDO is related to the relatively fast non-enzymatic hydrolysis of polyoxalates. To study the underlying mechanism of PISOX-HDO biodegradation, the non-enzymatic hydrolysis of PISOX-HDO and the biodegradation of the monomers in soil were also investigated. Complete hydrolysis was obtained in approximately 120 days (tracking the formation of hydrolysis products via 1H NMR). It was also shown that (enzymatic) hydrolysis to the constituting monomers is the rate-determining step in this biodegradation mechanism. These monomers can subsequently be consumed and mineralised by (micro)organisms in the environment much faster than the polyesters. The combination of high Tg (>100 °C) and fast biodegradability is quite unique and makes this PISOX-HDO copolyester ideal for short term applications that demand strong mechanical and physical properties.


Asunto(s)
Plásticos Biodegradables , Poliésteres , Biodegradación Ambiental , Glicoles , Isosorbida , Oxalatos , Plásticos , Suelo
6.
Foods ; 10(12)2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34945471

RESUMEN

In this study, a bio-based polymeric system loaded with fruit by-products was developed. It was based on silk fibroin produced by the silkworm Bombyx mori and pomegranate peel powder, selected as active agent. The weight ratio between fibroin and pomegranate powder was 30:70. Pads also contained 20% w/w of glycerol vs. fibroin to induce water insolubility. Control systems, consisting of only fibroin and glycerol, were produced as reference. Both control and active systems were characterized for structural and morphological characterization (Fourier-transform infrared spectroscopy and optical microscope), antioxidant properties and antimicrobial activity against two foodborne spoilage microorganisms. Results demonstrate that under investigated conditions, an active system was obtained. The pad showed a good water stability, with weight loss of about 28% due to the release of the active agent and not to the fibroin loss. In addition, this edible system has interesting antioxidant and antimicrobial properties. In particular, the pad based on fibroin with pomegranate peel recorded an antioxidant activity of the same order of magnitude of that of vitamin C, which is one of the most well-known antioxidant compounds. As regards the antimicrobial properties, results underlined that pomegranate peel in the pad allowed maintaining microbial concentration around the same initial level (104 CFU/mL) for more than 70 h of monitoring, compared to the control system where viable cell concentration increased very rapidly up to 108 CFU/mL.

7.
J Clean Prod ; 313: 127880, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34131367

RESUMEN

On January 30, 2020, the World Health Organization identified SARS-CoV-2 as a public health emergency of global concern. Accordingly, the demand for personal protective equipment (PPE), including medical face masks, has sharply risen compared with 2019. The new situation has led to a sharp increase in energy demand and the environmental impacts associated with these product systems. Hence, the pandemic's effects on the environmental consequences of various PPE types, such as medical face masks, should be assessed. In light of that, the current study aimed to identify the environmental hot-spots of medical face mask production and consumption by using life cycle assessment (LCA) and tried to provide solutions to mitigate the adverse impacts. Based on the results obtained, in 2020, medical face masks production using fossil-based plastics causes the loss of 2.03 × 103 disability-adjusted life years (DALYs); 1.63 × 108 PDF*m2*yr damage to ecosystem quality; the climate-damaging release of 2.13 × 109 kg CO2eq; and 5.65 × 1010 MJ damage to resources. Besides, annual medical face mask production results in 5.88 × 104 TJ demand for exergy. On the other hand, if used makes are not appropriately handled, they can lead to 4.99 × 105 Pt/yr additional damage to the environment in 2020 as determined by the EDIP 2003. Replacement of fossil-based plastics with bio-based plastics, at rates ranging from 10 to 100%, could mitigate the product's total yearly environmental damage by 4-43%, respectively. Our study calls attention to the environmental sustainability of PPE used to prevent virus transmission in the current and future pandemics.

8.
Polymers (Basel) ; 13(8)2021 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-33920269

RESUMEN

The European Union is working towards the 2050 net-zero emissions goal and tackling the ever-growing environmental and sustainability crisis by implementing the European Green Deal. The shift towards a more sustainable society is intertwined with the production, use, and disposal of plastic in the European economy. Emissions generated by plastic production, plastic waste, littering and leakage in nature, insufficient recycling, are some of the issues addressed by the European Commission. Adoption of bioplastics-plastics that are biodegradable, bio-based, or both-is under assessment as one way to decouple society from the use of fossil resources, and to mitigate specific environmental risks related to plastic waste. In this work, we aim at reviewing the field of bioplastics, including standards and life cycle assessment studies, and discuss some of the challenges that can be currently identified with the adoption of these materials.

9.
Waste Manag ; 124: 195-202, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33631444

RESUMEN

Waste-cooking oil (WCO) is defined as vegetable oil that has been used to fry food at high temperatures. The annual global generation of WCO is 41-67 million tons. Without proper treatment, most WCO is abandoned in sinks and the solid residue of WCO is disposed of in landfills, resulting in serious environmental problems. Recycling and valorizing WCO have received considerable attention to reduce its negative impact on ecosystems. To convert WCO into a high value-added compound, we aimed to produce sophorolipids (SLs) that are industrially important biosurfactants, using WCO as a hydrophobic substrate by the fed-batch fermentation of Starmerella bombicola. The SLs concentration was increased ~3.7-fold compared with flask culture (315.6 vs. 84.8 g/L), which is the highest value ever generated from WCO. To expand the applications of SLs, we prepared methyl hydroxy branched fatty acids (MHBFAs) from SLs, which are important chemicals for various industries yet difficult to produce by chemical methods, using a bio-chemical hybrid approach. We synthesized bio-based plastics using MHBFAs as co-monomers. Compared with the control polymer without MHBFAs, even the incorporation of 1 mol% into polymer chains improved mechanical properties (such as ultimate tensile strength, 1.1-fold increase; toughness, 1.3-fold increase). To the best of our knowledge, this is the first attempt to apply MHBFAs from SLs derived from WCO to building blocks of plastics. Thus, we extended the valorization areas of WCO to one of the world's largest industries.


Asunto(s)
Culinaria , Ecosistema , Ácidos Grasos , Ácidos Oléicos , Saccharomycetales
10.
Polymers (Basel) ; 14(1)2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-35012037

RESUMEN

The predicted growth in plastic demand and the targets for global CO2 emission reductions require a transition to replace fossil-based feedstock for polymers and a transition to close- loop recyclable, and in some cases to, biodegradable polymers. The global crisis in terms of plastic littering will furthermore force a transition towards materials that will not linger in nature but will degrade over time in case they inadvertently end up in nature. Efficient systems for studying polymer (bio)degradation are therefore required. In this research, the Respicond parallel respirometer was applied to polyester degradation studies. Two poly(lactic-co-glycolic acid) copolyesters (PLGA12/88 and PLGA6/94) were tested and shown to mineralise faster than cellulose over 53 days at 25 °C in soil: 37% biodegradation for PLGA12/88, 53% for PLGA6/94, and 30% for cellulose. The corresponding monomers mineralised much faster than the polymers. The methodology presented in this article makes (bio)degradability studies as part of a materials development process economical and, at the same time, time-efficient and of high scientific quality. Additionally, PLGA12/88 and PLGA6/94 were shown to non-enzymatically hydrolyse in water at similar rates, which is relevant for both soil and marine (bio)degradability.

11.
Artículo en Inglés | MEDLINE | ID: mdl-32481700

RESUMEN

Plastic waste production around the world is increasing, which leads to global plastic waste pollution. The need for an innovative solution to reduce this pollution is inevitable. Increased recycling of plastic waste alone is not a comprehensive solution. Furthermore, decreasing fossil-based plastic usage is an important aspect of sustainability. As an alternative to fossil-based plastics in the market, bio-based plastics are gaining in popularity. According to the studies conducted, products with similar performance characteristics can be obtained using biological feedstocks instead of fossil-based sources. In particular, bioplastic production from microalgae is a new opportunity to be explored and further improved. The aim of this study is to determine the current state of bioplastic production technologies from microalgae species and reveal possible optimization opportunities in the process and application areas. Therefore, the species used as resources for bioplastic production, the microalgae cultivation methods and bioplastic material production methods from microalgae were summarized.


Asunto(s)
Microalgas , Polímeros , Contaminación Ambiental , Plásticos , Reciclaje
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA