Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bioresour Technol ; 408: 131204, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39102965

RESUMEN

The synthetic superabsorbent polymers (SAPs) market is experiencing significant growth, with applications spanning agriculture, healthcare, and civil engineering, projected to increase from $9.0 billion USD in 2019 to $12.9 billion USD by 2024. Despite this positive trend, challenges such as fluctuating raw material costs and lower biodegradability of fossil fuel-based SAPs could impede further expansion. In contrast, cellulose and its derivatives present a sustainable alternative due to their renewable, biodegradable, and abundant characteristics. Lignocellulosic biomass (LCB), rich in cellulose and lignin, shows promise as a source for eco-friendly superabsorbent polymer (SAP) production. This review discusses the applications, challenges, and future prospects of SAPs derived from lignocellulosic resources, focusing on the cellulose extraction process through fractionation and various modification and crosslinking techniques. The review underscores the potential of cellulose-based SAPs to meet environmental and market needs, offering a viable path forward in the quest for more sustainable materials.


Asunto(s)
Biomasa , Celulosa , Lignina , Polímeros , Lignina/química , Celulosa/química , Polímeros/química
2.
Int J Biol Macromol ; 278(Pt 2): 134703, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39151853

RESUMEN

New hybrid hydrogel composites based on a mixture of natural polysaccharides (sodium alginate, κ-carrageenan, and chitosan) filled with the clay mineral of natural origin, montmorillonite (MMT), were studied. The structure of intercalated/flocculated MMT distribution in the interpenetrating network of polysaccharide matrix was characterized using FTIR, X-ray diffraction, and SEM techniques. Swelling kinetics was investigated using the weight analysis, whereas the phase transition of water in the composition of hybrid hydrogels, by DSC method. Their biosafety was estimated using the Nelyubov method, germination test on cress (L. sativum) seeds, and metabolic fingerprinting of microbial communities and dehydrogenase assay. The obtained results indicated promising water-retaining properties of the synthesized materials. The hydrogels had a good sorption affinity for cadmium (Cd) ions confining bioavailability of the selected toxic heavy metal. They were safe for soil microorganisms and did not generate metabolic stress for them. Moreover, they did not reduce the viability of pea seeds. Thus, the development of biosafe hybrid hydrogel composites with a comprehensive, good effect on the environment could be considered as successful.


Asunto(s)
Alginatos , Bentonita , Materiales Biocompatibles , Carragenina , Quitosano , Hidrogeles , Hidrogeles/química , Hidrogeles/síntesis química , Quitosano/química , Bentonita/química , Carragenina/química , Alginatos/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Arcilla/química , Cadmio/química , Semillas/química , Adsorción
3.
Gels ; 10(6)2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38920915

RESUMEN

The evolution from conventional to modern agricultural practices, characterized by Agriculture 4.0 principles such as the application of innovative materials, smart water, and nutrition management, addresses the present-day challenges of food supply. In this context, polymer hydrogels have become a promising material for enhancing agricultural productivity due to their ability to retain and then release water, which can help alleviate the need for frequent irrigation in dryland environments. Furthermore, the controlled release of fertilizers by the hydrogels decreases chemical overdosing risks and the environmental impact associated with the use of agrochemicals. The potential of polymer hydrogels in sustainable agriculture and farming and their impact on soil quality is revealed by their ability to deliver nutritional and protective active ingredients. Thus, the impact of hydrogels on plant growth, development, and yield was discussed. The question of which hydrogels are more suitable for agriculture-natural or synthetic-is debatable, as both have their merits and drawbacks. An analysis of polymer hydrogel life cycles in terms of their initial material has shown the advantage of bio-based hydrogels, such as cellulose, lignin, starch, alginate, chitosan, and their derivatives and hybrids, aligning with sustainable practices and reducing dependence on non-renewable resources.

4.
Adv Mater ; 36(21): e2313188, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38362813

RESUMEN

Immunotherapy represents a revolutionary paradigm in cancer management, showcasing its potential to impede tumor metastasis and recurrence. Nonetheless, challenges including limited therapeutic efficacy and severe immune-related side effects are frequently encountered, especially in solid tumors. Hydrogels, a class of versatile materials featuring well-hydrated structures widely used in biomedicine, offer a promising platform for encapsulating and releasing small molecule drugs, biomacromolecules, and cells in a controlled manner. Immunomodulatory hydrogels present a unique capability for augmenting immune activation and mitigating systemic toxicity through encapsulation of multiple components and localized administration. Notably, hydrogels based on biopolymers have gained significant interest owing to their biocompatibility, environmental friendliness, and ease of production. This review delves into the recent advances in bio-based hydrogels in cancer immunotherapy and synergistic combinatorial approaches, highlighting their diverse applications. It is anticipated that this review will guide the rational design of hydrogels in the field of cancer immunotherapy, fostering clinical translation and ultimately benefiting patients.


Asunto(s)
Hidrogeles , Inmunoterapia , Neoplasias , Hidrogeles/química , Humanos , Inmunoterapia/métodos , Neoplasias/terapia , Animales , Materiales Biocompatibles/química
5.
Carbohydr Polym ; 288: 119403, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35450655

RESUMEN

In this work, we investigated the dynamics of hydrogels from the polyelectrolyte complexation of sodium hyaluronate (HA) and chitosan under various temperature and salt concentration. Raising temperature and adding salt remarkably reduce the mechanical behavior of hydrogels. The stress relaxation of semi-flexible chain segments is accelerated at high temperature and salt concentration, which is controlled by thermally activated bond disassociation process. The flow activation energy determined from temperature-dependent dynamic light scattering decorrelation and rheological relaxation are in very good agreement. Our results suggest that the chain aggregations are physical crosslinked by surrounded semi-flexible chains, and their diffusion is highly hindered by the topological entanglements and ionic associations. The synergistic effect of aggregations diffusion and chain dynamics causes the slow macroscopic stress relaxation behavior of hydrogels before yield, independent of applied strain. Above yield, the amplitude of strain accelerates the stress relaxation, resulting in chain disentanglements and slipping.


Asunto(s)
Quitosano , Hidrogeles , Quitosano/química , Ácido Hialurónico/química , Hidrogeles/química , Polielectrolitos/química , Reología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA