Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
Am J Transplant ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39059585

RESUMEN

Bile duct regeneration is hypothesized to prevent biliary strictures, a leading cause of morbidity after liver transplantation. Assessing the capacity for biliary regeneration may identify grafts as suitable for transplantation that are currently declined, but this has been unfeasible until now. This study used long-term ex situ normothermic machine perfusion (LT-NMP) to assess biliary regeneration. Human livers that were declined for transplantation were perfused at 36 °C for up to 13.5 days. Bile duct biopsies, bile, and perfusate were collected throughout perfusion, which were examined for features of injury and regeneration. Biliary regeneration was defined as new Ki-67-positive biliary epithelium following severe injury. Ten livers were perfused for a median duration of 7.5 days. Severe bile duct injury occurred in all grafts, and biliary regeneration occurred in 70% of grafts. Traditional biomarkers of biliary viability such as bile glucose improved during perfusion but this was not associated with biliary regeneration (P > .05). In contrast, the maintenance of interleukin-6 and vascular endothelial growth factor-A levels in bile was associated with biliary regeneration (P = .017 for both cytokines). This is the first study to demonstrate biliary regeneration during LT-NMP and identify a cytokine signature in bile as a novel biomarker for biliary regeneration during LT-NMP.

2.
Life Sci ; 317: 121438, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36709913

RESUMEN

Acute-on-chronic liver failure (ACLF) is a syndrome characterized by acute decompensation of chronic liver disease associated with multiple-organ failures and high short-term mortality. Acute insults to patients with chronic liver disease can lead to ACLF, among which, hepatitis B virus-related ACLF is the most common type of liver failure in the Asia-Pacific region. Currently, immune-metabolism disorders and systemic inflammation are proposed to be the main mechanisms of ACLF. The resulting cholestasis and intrahepatic microcirculatory dysfunction accelerate the development of ACLF. Treatments targeting immune regulation, metabolic balance, microcirculation maintenance and bile duct repair can alleviate inflammation and restore the tissue structure. An increasing number of studies have demonstrated that delta-like ligand 4 (DLL4), one of the Notch signalling ligands, plays a vital role in immune regulation, metabolism, angiogenesis, and biliary regeneration, which participate in liver pathological and physiological processes. The detailed mechanism of the DLL4-Notch signalling pathway in ACLF has rarely been investigated. Here, we review the evidence showing that DLL4-Notch signalling is involved in ACLF and analyse the potential role of DLL4 in the treatment of ACLF.


Asunto(s)
Insuficiencia Hepática Crónica Agudizada , Humanos , Insuficiencia Hepática Crónica Agudizada/complicaciones , Insuficiencia Hepática Crónica Agudizada/terapia , Cirrosis Hepática/complicaciones , Microcirculación , Inflamación/complicaciones , Transducción de Señal , Proteínas de Unión al Calcio , Proteínas Adaptadoras Transductoras de Señales
3.
World J Gastroenterol ; 28(39): 5707-5722, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36338889

RESUMEN

Biliodigestive anastomosis between the extrahepatic bile duct and the intestine for bile duct disease is a gastrointestinal reconstruction that abolishes duodenal papilla function and frequently causes retrograde cholangitis. This chronic inflammation can cause liver dysfunction, liver abscess, and even bile duct cancer. Although research has been conducted for over 100 years to directly repair bile duct defects with alternatives, no bile duct substitute (BDS) has been developed. This narrative review confirms our understanding of why bile duct alternatives have not been developed and explains the clinical applicability of BDSs in the near future. We searched the PubMed electronic database to identify studies conducted to develop BDSs until December 2021 and identified studies in English. Two independent reviewers reviewed studies on large animals with 8 or more cases. Four types of BDSs prevail: Autologous tissue, non-bioabsorbable material, bioabsorbable material, and others (decellularized tissue, 3D-printed structures, etc.). In most studies, BDSs failed due to obstruction of the lumen or stenosis of the anastomosis with the native bile duct. BDS has not been developed primarily because control of bile duct wound healing and regeneration has not been elucidated. A BDS expected to be clinically applied in the near future incorporates a bioabsorbable material that allows for regeneration of the bile duct outside the BDS.


Asunto(s)
Enfermedades de los Conductos Biliares , Conductos Biliares Extrahepáticos , Colangitis , Animales , Conductos Biliares/cirugía , Conductos Biliares Extrahepáticos/cirugía , Anastomosis Quirúrgica , Constricción Patológica
4.
Int J Stem Cells ; 12(2): 183-194, 2019 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-31022996

RESUMEN

Cholangiopathies are rare diseases of the bile duct with high mortality rates. The current treatment for cholangiopathies is liver transplantation, but there are significant obstacles including a shortage of donors and a high risk of complications. Currently, there is only one available medicine on the market targeting cholangiopathies, and the results have been inadequate in clinical therapy. To overcome these obstacles, many researchers have used human induced pluripotent stem cells (hPSC) as a source for cholangiocyte-like cell generation and have incorporated advances in bioprinting to create artificial bile ducts for implantation and transplantation. This has allowed the field to move dramatically forward in studies of biliary regenerative medicine. In this review, the authors provide an overview of cholangiocytes, the organogenesis of the bile duct, cholangiopathies, and the current treatment and advances that have been made that are opening new doors to the study of cholangiopathies.

5.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-764083

RESUMEN

Cholangiopathies are rare diseases of the bile duct with high mortality rates. The current treatment for cholangiopathies is liver transplantation, but there are significant obstacles including a shortage of donors and a high risk of complications. Currently, there is only one available medicine on the market targeting cholangiopathies, and the results have been inadequate in clinical therapy. To overcome these obstacles, many researchers have used human induced pluripotent stem cells (hPSC) as a source for cholangiocyte-like cell generation and have incorporated advances in bioprinting to create artificial bile ducts for implantation and transplantation. This has allowed the field to move dramatically forward in studies of biliary regenerative medicine. In this review, the authors provide an overview of cholangiocytes, the organogenesis of the bile duct, cholangiopathies, and the current treatment and advances that have been made that are opening new doors to the study of cholangiopathies.


Asunto(s)
Humanos , Conductos Biliares , Bilis , Bioimpresión , Células Madre Pluripotentes Inducidas , Trasplante de Hígado , Mortalidad , Organogénesis , Enfermedades Raras , Medicina Regenerativa , Donantes de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA