Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(16): e36112, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39253141

RESUMEN

Implementing diabetes surveillance systems is paramount to mitigate the risk of incurring substantial medical expenses. Currently, blood glucose is measured by minimally invasive methods, which involve extracting a small blood sample and transmitting it to a blood glucose meter. This method is deemed discomforting for individuals who are undergoing it. The present study introduces an Explainable Artificial Intelligence (XAI) system, which aims to create an intelligible machine capable of explaining expected outcomes and decision models. To this end, we analyze abnormal glucose levels by utilizing Bi-directional Long Short-Term Memory (Bi-LSTM) and Convolutional Neural Network (CNN). In this regard, the glucose levels are acquired through the glucose oxidase (GOD) strips placed over the human body. Later, the signal data is converted to the spectrogram images, classified as low glucose, average glucose, and abnormal glucose levels. The labeled spectrogram images are then used to train the individualized monitoring model. The proposed XAI model to track real-time glucose levels uses the XAI-driven architecture in its feature processing. The model's effectiveness is evaluated by analyzing the performance of the proposed model and several evolutionary metrics used in the confusion matrix. The data revealed in the study demonstrate that the proposed model effectively identifies individuals with elevated glucose levels.

2.
J Med Syst ; 44(2): 50, 2020 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-31907688

RESUMEN

The world population ageing is on the rise, which has led to an increase in the demand for medical care due to diseases and symptoms prevalent in health centers. One of the most prevalent symptoms prevalent in older adults is falls, which affect one-third of patients each year and often result in serious injuries that can lead to death. This paper describes the design of a fall detection system for elderly households living alone using very low resolution thermal sensor arrays. The algorithms implemented were LSTM, GRU, and Bi-LSTM; the last one mentioned being that which obtained the best results at 93% in accuracy. The results obtained aim to be a valuable tool for accident prevention for those patients that use it and for clinicians who manage the data.


Asunto(s)
Accidentes por Caídas , Monitoreo Ambulatorio/métodos , Redes Neurales de la Computación , Tecnología de Sensores Remotos/métodos , Actividades Cotidianas , Algoritmos , Humanos , Rayos Infrarrojos , Tecnología de Sensores Remotos/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA