Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neural Netw ; 178: 106465, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38943863

RESUMEN

In the context of deep learning models, attention has recently been paid to studying the surface of the loss function in order to better understand training with methods based on gradient descent. This search for an appropriate description, both analytical and topological, has led to numerous efforts in identifying spurious minima and characterize gradient dynamics. Our work aims to contribute to this field by providing a topological measure for evaluating loss complexity in the case of multilayer neural networks. We compare deep and shallow architectures with common sigmoidal activation functions by deriving upper and lower bounds for the complexity of their respective loss functions and revealing how that complexity is influenced by the number of hidden units, training models, and the activation function used. Additionally, we found that certain variations in the loss function or model architecture, such as adding an ℓ2 regularization term or implementing skip connections in a feedforward network, do not affect loss topology in specific cases.


Asunto(s)
Aprendizaje Profundo , Redes Neurales de la Computación , Algoritmos , Humanos
2.
Sensors (Basel) ; 23(20)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37896699

RESUMEN

The purpose of this work is to advance in the computational study of connectome graphs from a topological point of view. Specifically, starting from a sequence of hypergraphs associated to a brain graph (obtained using the Boundary Scale model, BS2), we analyze the resulting scale-space representation using classical topological features, such as Betti numbers and average node and edge degrees. In this way, the topological information that can be extracted from the original graph is substantially enriched, thus providing an insightful description of the graph from a clinical perspective. To assess the qualitative and quantitative topological information gain of the BS2 model, we carried out an empirical analysis of neuroimaging data using a dataset that contains the connectomes of 96 healthy subjects, 52 women and 44 men, generated from MRI scans in the Human Connectome Project. The results obtained shed light on the differences between these two classes of subjects in terms of neural connectivity.


Asunto(s)
Conectoma , Masculino , Humanos , Femenino , Conectoma/métodos , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Neuroimagen , Voluntarios Sanos
3.
Front Comput Neurosci ; 14: 34, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32390820

RESUMEN

Spatio-temporal brain activities with variable delay detectable in resting-state functional magnetic resonance imaging (rs-fMRI) give rise to highly reproducible structures, termed cortical lag threads, that propagate from one brain region to another. Using a computational topology of data approach, we found that persistent, recurring blood oxygen level dependent (BOLD) signals in triangulated rs-fMRI videoframes display previously undetected topological findings, i.e., vortex structures that cover brain activated regions. Measure of persistence of vortex shapes in BOLD signal propagation is carried out in terms of Betti numbers that rise and fall over time during spontaneous activity of the brain. Importantly, a topology of data given in terms of geometric shapes of BOLD signal propagation offers a practical approach in coping with and sidestepping massive noise in neurodata, such as unwanted dark (low intensity) regions in the neighborhood of non-zero BOLD signals. Our findings have been codified and visualized in plots able to track the non-trivial BOLD signals that appear intermittently in a sequence of rs-fMRI videoframes. The end result of this tracking of changing lag structures is a so-called persistent barcode, which is a pictograph that offers a convenient visual means of exhibiting, comparing, and classifying brain activation patterns.

4.
Netw Neurosci ; 3(3): 674-694, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31410373

RESUMEN

A cycle in a brain network is a subset of a connected component with redundant additional connections. If there are many cycles in a connected component, the connected component is more densely connected. Whereas the number of connected components represents the integration of the brain network, the number of cycles represents how strong the integration is. However, it is unclear how to perform statistical inference on the number of cycles in the brain network. In this study, we present a new statistical inference framework for determining the significance of the number of cycles through the Kolmogorov-Smirnov (KS) distance, which was recently introduced to measure the similarity between networks across different filtration values by using the zeroth Betti number. In this paper, we show how to extend the method to the first Betti number, which measures the number of cycles. The performance analysis was conducted using the random network simulations with ground truths. By using a twin imaging study, which provides biological ground truth, the methods are applied in determining if the number of cycles is a statistically significant heritable network feature in the resting-state functional connectivity in 217 twins obtained from the Human Connectome Project. The MATLAB codes as well as the connectivity matrices used in generating results are provided at http://www.stat.wisc.edu/∼mchung/TDA.

5.
Biophys Physicobiol ; 16: 444-451, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31984196

RESUMEN

This paper presents a preliminary work consisting of two contributions. The first one is the design of a very efficient algorithm based on an "Overlap-Layout-Consensus" (OLC) graph to assemble the long reads provided by 3rd generation technologies. The second concerns the analysis of this graph using algebraic topology concepts to determine, in advance, whether the assembly of the genome will be straightforward, i.e., whether it will lead to a pseudo-Hamiltonian path or cycle, or whether the results will need to be scrutinized. In the latter case, it will be necessary to look for "loops" in the OLC assembly graph caused by unresolved repeated genomic regions, and then try to untie the "knots" created by these regions.

6.
Front Comput Neurosci ; 11: 48, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28659782

RESUMEN

The lack of a formal link between neural network structure and its emergent function has hampered our understanding of how the brain processes information. We have now come closer to describing such a link by taking the direction of synaptic transmission into account, constructing graphs of a network that reflect the direction of information flow, and analyzing these directed graphs using algebraic topology. Applying this approach to a local network of neurons in the neocortex revealed a remarkably intricate and previously unseen topology of synaptic connectivity. The synaptic network contains an abundance of cliques of neurons bound into cavities that guide the emergence of correlated activity. In response to stimuli, correlated activity binds synaptically connected neurons into functional cliques and cavities that evolve in a stereotypical sequence toward peak complexity. We propose that the brain processes stimuli by forming increasingly complex functional cliques and cavities.

7.
Nat Comput ; 14(3): 421-430, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26300712

RESUMEN

In order to define a new method for analyzing the immune system within the realm of Big Data, we bear on the metaphor provided by an extension of Parisi's model, based on a mean field approach. The novelty is the multilinearity of the couplings in the configurational variables. This peculiarity allows us to compare the partition function [Formula: see text] with a particular functor of topological field theory-the generating function of the Betti numbers of the state manifold of the system-which contains the same global information of the system configurations and of the data set representing them. The comparison between the Betti numbers of the model and the real Betti numbers obtained from the topological analysis of phenomenological data, is expected to discover hidden n-ary relations among idiotypes and anti-idiotypes. The data topological analysis will select global features, reducible neither to a mere subgraph nor to a metric or vector space. How the immune system reacts, how it evolves, how it responds to stimuli is the result of an interaction that took place among many entities constrained in specific configurations which are relational. Within this metaphor, the proposed method turns out to be a global topological application of the S[B] paradigm for modeling complex systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA