Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Viruses ; 16(6)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38932261

RESUMEN

Begomoviruses have emerged as destructive pathogens of crops, particularly in the tropics and subtropics, causing enormous economic losses and threatening food security. Epidemics caused by begomoviruses have even spread in regions and crops that were previously free from these viruses. The most seriously affected crops include cassava; cotton; grain legumes; and cucurbitaceous, malvaceous, and solanaceous vegetables. Alphasatellites, betasatellites, and deltasatellites are associated with the diseases caused by begomoviruses, but begomovirus-betasatellite complexes have played significant roles in the evolution of begomoviruses, causing widespread epidemics in many economically important crops throughout the world. This article provides an overview of the evolution, distribution, and approaches used by betasatellites in the suppression of host plant defense responses and increasing disease severity.


Asunto(s)
Begomovirus , Productos Agrícolas , Enfermedades de las Plantas , Begomovirus/genética , Begomovirus/fisiología , Enfermedades de las Plantas/virología , Productos Agrícolas/virología , Virus Satélites/genética , Virus Satélites/fisiología , Virus Satélites/clasificación , Evolución Molecular , ADN Satélite/genética , Filogenia
2.
Arch Virol ; 168(7): 196, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37386317

RESUMEN

Geminiviruses have mastered plant cell modulation and immune invasion to ensue prolific infection. Encoding a relatively small number of multifunctional proteins, geminiviruses rely on satellites to efficiently re-wire plant immunity, thereby fostering virulence. Among the known satellites, betasatellites have been the most extensively investigated. They contribute significantly to virulence, enhance virus accumulation, and induce disease symptoms. To date, only two betasatellite proteins, ßC1, and ßV1, have been shown to play a crucial role in virus infection. In this review, we offer an overview of plant responses to betasatellites and counter-defense strategies deployed by betasatellites to overcome those responses.


Asunto(s)
Geminiviridae , Geminiviridae/genética , Células Vegetales , Inmunidad de la Planta/genética , Virulencia
3.
Mol Biol Rep ; 48(2): 1383-1391, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33599950

RESUMEN

Yellow vein mosaic disease is the major biotic constraint of okra cultivation in Sri Lanka. Identification and detailed molecular characterization of associated pathogen is needed for effective disease management. The genome of the begomovirus and betasatellite were amplified in symptomatic plant samples using specific degenerate primers. DNA-A genome of twelve isolates representing different locations in Sri Lanka were cloned, sequenced and deposited in GenBank database (Accession No- KX698087- KX698092 and MH455207- MH455212). Size of the complete nucleotide sequences ranged from 2735 to 2786 bp. The genome organization showed characteristics of begomoviruses. The pairwise sequence identity revealed the association of two different begomovirus species. Five of the isolates showed > 91% of sequences identity with Bhendi yellow vein mosaic virus, and the rest of the seven isolates were around 92% of identity with Okra enation leaf curl virus. This is further supported by phylogenetic analysis where both of these group of isolates were in different cluster. Recombination analysis showed the presence of recombinant fragments in the virus isolates associated with okra yellow vein mosaic disease (OYVMD) in Sri Lanka. Attempts to amplify DNA- B were failed in any of the samples tested. However, both type of the begomovirus species associated with betasatellite species, Bhendi yellow vein mosaic betasatellite. The present study has revealed the association of two distinct monopartite begomovirus species, Bhendi yellow vein mosaic virus or Okra enation leaf curl virus, with OYVMD in Sri Lanka.


Asunto(s)
Abelmoschus/virología , Begomovirus/genética , Enfermedades de las Plantas/virología , Abelmoschus/genética , Begomovirus/aislamiento & purificación , Begomovirus/patogenicidad , Análisis por Conglomerados , ADN Viral/genética , ADN Viral/aislamiento & purificación , Variación Genética/genética , Genoma Viral/genética , Filogenia , Enfermedades de las Plantas/genética , Análisis de Secuencia de ADN , Programas Informáticos
4.
Virusdisease ; 31(1): 45-55, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32206698

RESUMEN

Cotton leaf curl disease (CLCuD), caused by a begomovirus species complex, is a major constraint to cotton (Gossypium hirsutum) production in northwestern India. During 2006 to 2010, a surveillance was conducted to monitor the spread of CLCuD in Haryana and Rajasthan. Six different field symptoms, upward curling, downward curling, enation, vein thickening, severe curling and mild curling were documented. Six isolates associated with these symptom types were tested positive in PCR to cotton leaf curl Rajasthan virus. The isolates were successfully transmitted through whitefly (Bemisia tabaci) at the rate up to 73.3% to the resistant cotton cultivar, RS2013. All these six isolates were further characterised based on the complete nucleotide sequences of the viral genome and the associated betasatellites. These virus isolates shared highest sequence identity (86-99%) with the cotton leaf curl Multan virus (CLCuMuV) and the associated betasatellites also shared highest sequence identity (78-92%) with cotton leaf curl Multan betasatellite (CLCuMuB). Based on the sequence identity and phylogenetic analysis of the viral genome and betasatellite, these isolates were identified as variants of CLCuMuV. Recombination analysis revealed significant recombination events in these isolates with the other cotton infecting begomoviruses. The isolate, Mo-Raj-2 has been identified as a resistant breaking strain having a major recombination in the coding regions of both viral genome and betasatellite. The natural occurrence of disease symptoms, transmission of the virus isolates through whitefly and complete genome analysis of the virus revealed the association of recombinant variant of CLCuMuV with the breakdown of resistance in cotton in Rajasthan and Haryana, the major cotton belt of India.

5.
J Virol Methods ; 276: 113789, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31778677

RESUMEN

Okra yellow vein mosaic disease (OYVMD) causes serious loss in okra production in Sri Lanka. Therefore, screening of resistant okra verities is an essential need to control the disease. As the available qualitative and semi-quantitative methods failed to detect latent infection the present study aimed to develop a quantitative PCR (qPCR) assay to detect and quantify one of the OYVMD causing agent, symptom modulating satellite molecules. A pair of primers targeting a portion of ßC1 gene of BYVMBs was designed and used to quantify of BYVMBs by absolute quantification method using SYBR Green I chemistry. Standard curves were prepared using series of dilutions of known copy number plasmids carrying target sequence. The mean amplification efficiency was 95% and the coefficient of determination was 0.994. The method was tested to find out the relation between symptoms and betasatellite titre in range of severity of OYVMD symptoms; the betasatellite titre increased with increasing severity. Interestingly, the method was able to detect BYVMBs present in apparently healthy plants growing in an infected field at a concentration which was not able to detect in end point PCR. Betasatellite titre was also measured in different ages of leaves and different positions. On average, the betasatellite titre in younger leaves was higher than in mature leaves and there were no significant variations in betasatellite titre in different position in each leaf. The assay was also tested as a tool to screen for resistant okra varieties; among the eight varieties tested no BYVMBs were detected in variety Maha F1. Varieties TV8 and MI5 had significantly higher copy number than rest of the varieties. The qPCR protocol described in this study is a useful method to detect and quantify BYVMBs in okra, especially for plant samples with betasatellite titre lower than the detection limit of conventional methods.


Asunto(s)
Abelmoschus/virología , Begomovirus/genética , Begomovirus/aislamiento & purificación , ADN Satélite/análisis , Enfermedades de las Plantas/virología , Latencia del Virus/genética , ADN Satélite/genética , Hojas de la Planta/virología , Reacción en Cadena en Tiempo Real de la Polimerasa
6.
Recent Pat Biotechnol ; 14(2): 86-98, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31793424

RESUMEN

BACKGROUND: Geminiviridae is one of the best-characterized and hence, one of the largest plant-virus families with the highest economic importance. Its members characteristically have a circular ssDNA genome within the encapsidation of twinned quasi-icosaheadral virions (18-38 nm size-range). OBJECTIVE: Construction of a narrative review on geminiviruses, to have a clearer picture of their genomic structure and taxonomic status. METHODS: A thorough search was conducted for papers and patents regarding geminiviruses, where relevant information was used to study their genomic organization, diversity and taxonomic structure. RESULTS: Geminiviruses have been classified into nine genera (viz., genus Begomovirus, Mastrevirus, Curtovirus, Topocuvirus, Becurtovirus, Turncurtovirus, Capulavirus, Eragrovirus and Grablovirus) having distinct genomic organizations, host ranges and insect vectors. Genomic organization of all genera generally shows the presence of 4-6 ORFs encoding for various proteins. For now, Citrus chlorotic dwarf-associated virus (CCDaV), Camellia chlorotic dwarf-associated virus (CaCDaV) and few other geminiviruses are still unassigned to any genera. The monopartite begomoviruses (and few mastreviruses) have been found associated with aplhasatellites and betasatellites (viz., ~1.3 kb circular ssDNA satellites). Recent reports suggest that deltasatellites potentially reduce the accumulation of helper-Begomovirus species in host plants. Some patents have revealed the methods to generate transgenic plants resistant to geminiviruses. CONCLUSION: Geminiviruses rapidly evolve and are a highly diverse group of plant-viruses. However, research has shown new horizons in tackling the acute begomoviral diseases in plants by generating a novel bio-control methodology in which deltasatellites can be used as bio-control agents and generate transgenic plants resistant to geminiviruses.


Asunto(s)
Geminiviridae/clasificación , Geminiviridae/genética , ADN de Cadena Simple/genética , ADN Viral/genética , Genoma Viral/genética , Patentes como Asunto
7.
Iran J Biotechnol ; 17(1): e2134, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31457044

RESUMEN

BACKGROUND: Spine gourd (Momordica dioica Roxb. Willd) is one of the important cucurbitaceous crops grown across the world for vegetable and medicinal purposes. Diseases caused by the DNA viruses are becoming the limiting factors for the production of spine gourd reducing its potential yield. For the commercial cultivation of the spine gourd, propagation material used by most of the growers is tuberous roots and stem cuttings, which in turn results in an increased occurrence of the mosaic disease. There is a need for understanding the causal agent; through characterization of which will lead to the designing management strategies for the spine gourd mosaic disease control. OBJECTIVES: Characterization of a begomovirus and its satellites associated with mosaic disease on spine gourd. MATERIALS AND METHODS: Total DNA was extracted from spine gourd samples exhibiting symptoms typical to the begomoviruses infection (mosaic mottling, leaf curl) and was tested by PCR using begomovirus specific primers. Furthermore, the complete genome of begomo viruses (DNA A, DNA B, alpha satellite, and beta satellite) was amplified by rolling circle amplification (RCA) method. RESULTS: The full-length sequences of DNA A, DNA B, alpha satellite, and beta satellite isolated from symptomatic spine gourd were determined. The full length genomes (DNA A and DNA B) of the Tomato leaf curl New Delhi Virus (ToLCNDV) infecting spine gourd were compared with the other begomovirus genomes available in the data base. The sequence analysis has revealed that DNA A and DNA B components of the begomovirus infecting spine gourd share 95.4-96.2 and 86.7-91.2% identical sequence (i.e., nucleotide (nt) identity) with that of ToLCNDV infecting potato and cucurbits in the Indian subcontinent isolates reported earlier (available in GenBank), respectively. Further, alpha satellite and beta satellite were also detected in the begomovirus infected spine gourd samples. The recombination analysis of the DNA A, DNA B, beta satellite, and alpha satellite of the begomovirus infecting spine gourd showed the associated begomovirus and satellite DNAs were driven from the different begomoviruses, leading to emergence as a new variant of the begomovirus infecting spine gourd. CONCLUSIONS: The commercial cultivation of the spine gourd by most growers depends on the tuberous roots and stem cutting. The occurrence of begomovirus in spine gourd gives an alarming signal against utilization of such infected plant materials in the crop breeding and improvement programs. Using the clean virus-free vegetative propagation material is considered as one of the most important methods for controlling viral diseases. The study is highly useful for detection of the begomovirus infecting spine gourd in the detection of the virus infection in the clonally propagated planting material.

8.
Mol Plant Pathol ; 20(7): 1019-1033, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31210029

RESUMEN

Begomoviruses have emerged as a group of plant pathogens that cause devastating diseases in a wide range of crops in tropical and subtropical regions of the world. Betasatellites, the circular single-stranded DNA molecules with the size of almost half of that of the associated helper begomoviruses, are often essential for the production of typical disease symptoms in several virus-host systems. Association of betasatellites with begomoviruses results in more severe symptoms in the plants and affects the yield of numerous crops leading to huge agroeconomic losses. ßC1, the only protein encoded by betasatellites, plays a multifaceted role in the successful establishment of infection. This protein counteracts the innate defence mechanisms of the host, like RNA silencing, ubiquitin-proteasome system and defence responsive hormones. In the last two decades, the molecular aspect of betasatellite pathogenesis has attracted much attention from the researchers worldwide, and reports have shown that ßC1 protein aggravates the helper begomovirus disease complex by modulating specific host factors. This review discusses the molecular aspects of the pathogenesis of betasatellites, including various ßC1-host factor interactions and their effects on the suppression of defence responses of the plants.


Asunto(s)
ADN Satélite/genética , Geminiviridae/patogenicidad , Geminiviridae/genética , Variación Genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/virología , Plantas/inmunología , Plantas/virología , Replicación Viral/genética
9.
Front Plant Sci ; 7: 475, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27148303

RESUMEN

The begomoviruses (family Geminiviridae) associated with cotton leaf curl disease (CLCuD) pose a major threat to cotton productivity in South-East Asia including Pakistan and India. These viruses have single-stranded, circular DNA genome, of ∼2800 nt in size, encapsidated in twinned icosa-hedera, transmitted by ubiquitous whitefly and are associated with satellite molecules referred to as alpha- and betasatellite. To circumvent the proliferation of these viruses numerous techniques, ranging from conventional breeding to molecular approaches have been applied. Such devised strategies worked perfectly well for a short time period and then viruses relapse due to various reasons including multiple infections, where related viruses synergistically interact with each other, virus proliferation and evolution. Another shortcoming is, until now, that all molecular biology approaches are devised to control only helper begomoviruses but not to control associated satellites. Despite the fact that satellites could add various functions to helper begomoviruses, they remain ignored. Such conditions necessitate a very comprehensive technique that can offer best controlling strategy not only against helper begomoviruses but also their associated DNA-satellites. In the current scenario clustered regulatory interspaced short palindromic repeats (CRISPR)/CRISPR associated nuclease 9 (Cas9) has proved to be versatile technique that has very recently been deployed successfully to control different geminiviruses. The CRISPR/Cas9 system has been proved to be a comprehensive technique to control different geminiviruses, however, like previously used techniques, only a single virus is targeted and hitherto it has not been deployed to control begomovirus complexes associated with DNA-satellites. Here in this article, we proposed an inimitable, unique, and broad spectrum controlling method based on multiplexed CRISPR/Cas9 system where a cassette of sgRNA is designed to target not only the whole CLCuD-associated begomovirus complex but also the associated satellite molecules.

10.
Virusdisease ; 27(1): 19-26, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26925440

RESUMEN

Corchorus (Corchorus capsularis L. and Corchorus olitorius L.) is one of the most important fiber crops grown in tropical and subtropical regions throughout the world. Field survey was conducted and naturally infected leaf samples were collected from corchorus and tomato plants in Jeddah, Saudi Arabia. The causal virus was transmitted by whiteflies to tomato plants and begomovirus infection was confirmed by Polymerase chain reaction. The complete viral genome and associated betasatellites were amplified, cloned and sequenced from both corchorus and tomato samples. The genetic variability and phylogenetic relationships were determined for both isolates (corchorus and tomato). The complete genome sequences showed highest (99.5 % nt) similarity with tomato yellow leaf curl virus (TYLCV) and formed closest cluster with TYLCV-Tomato reported from Jizan and Al-Qasim, Saudi Arabia and betasatellites sequences showed highest similarity (99.8 % nt) with Tomato yellow leaf curl betasatellites-Jeddah followed by Tomato yellow leaf curl Oman betasatellites and formed closed cluster with TYLCV-Tomato. On the basis of results obtained from whiteflies transmission, sequence similarity and phylogenetic relationships; it is concluded that the identified virus could be a variant of TYLCV circulating in the Kingdom. The significance of this study demonstrated that the corchorus is serving as reservoir and alternative host and playing an important role in spreading the begomovirus associated disease in the Kingdom of Saudi Arabia.

11.
Viruses ; 8(2)2016 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-26848679

RESUMEN

Monopartite begomoviruses (Geminiviridae), which are whitefly-transmitted single-stranded DNA viruses known for causing devastating crop diseases, are often associated with satellite DNAs. Since begomovirus acquisition or exchange of satellite DNAs may lead to adaptation to new plant hosts and emergence of new disease complexes, it is important to investigate the diversity and distribution of these molecules. This study reports begomovirus-associated satellite DNAs identified during a vector-enabled metagenomic (VEM) survey of begomoviruses using whiteflies collected in various locations (California (USA), Guatemala, Israel, Puerto Rico, and Spain). Protein-encoding satellite DNAs, including alphasatellites and betasatellites, were identified in Israel, Puerto Rico, and Guatemala. Novel alphasatellites were detected in samples from Guatemala and Puerto Rico, resulting in the description of a phylogenetic clade (DNA-3-type alphasatellites) dominated by New World sequences. In addition, a diversity of small (~640-750 nucleotides) satellite DNAs similar to satellites associated with begomoviruses infecting Ipomoea spp. were detected in Puerto Rico and Spain. A third class of satellite molecules, named gammasatellites, is proposed to encompass the increasing number of reported small (<1 kilobase), non-coding begomovirus-associated satellite DNAs. This VEM-based survey indicates that, although recently recovered begomovirus genomes are variations of known genetic themes, satellite DNAs hold unexplored genetic diversity.


Asunto(s)
Begomovirus/genética , ADN Satélite/genética , ADN Viral/genética , Hemípteros/virología , Insectos Vectores/virología , Virus Satélites/genética , Animales , Begomovirus/metabolismo , ADN Satélite/metabolismo , ADN Viral/metabolismo , Variación Genética , Hemípteros/clasificación , Metagenómica , Datos de Secuencia Molecular , Filogenia , Enfermedades de las Plantas/virología , Virus Satélites/metabolismo
12.
Viruses ; 7(9): 4945-59, 2015 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-26389936

RESUMEN

Tomato yellow leaf curl China virus (TYLCCNV) is a monopartite begomovirus associated with different betasatellites. In this study, we investigate two different isolates of Tomato yellow leaf curl China betasatellite (TYLCCNB) to determine what features of the viral genome are required for induction of characteristic phenotypic differences between closely-related betasatellite. When co-agroinoculated with TYLCCNV into Nicotiana spp. and tomato plants, TYLCCNB-Y25 induced only leaf curling on all hosts, while TYLCCNB-Y10 also induced enations, vein yellowing, and shoot distortions. Further assays showed that ßC1 of TYLCCNB-Y25 differs from that of TYLCCNB-Y10 in symptom induction and transcriptional modulating. Hybrid satellites were constructed in which the ßC1 gene or 200 nt partial promoter-like fragment upstream of the ßC1 were exchanged. Infectivity assays showed that a TYLCCNB-Y25 hybrid with the intact TYLCCNB-Y10 ßC1 gene was able to induce vein yellowing, shoot distortions, and a reduced size and number of enations. A TYLCCNB-Y10 hybrid with the intact TYLCCNB-Y25 ßC1 gene produced only leaf curling. In contrast, the TYLCCNB-Y25 and TYLCCNB-Y10 hybrids with swapped partial promoter-like regions had little effect on the phenotypes induced by wild-type betasatellites. Further experiments showed that the TYLCCNB-Y25 hybrid carrying the C-terminal region of TYLCCNB-Y10 ßC1 induced TYLCCNB-Y10-like symptoms. These findings indicate that the ßC1 protein is the major symptom determinant and that the C-terminal region of ßC1 plays an important role in symptom induction.


Asunto(s)
Begomovirus/crecimiento & desarrollo , Virus Helper/crecimiento & desarrollo , Enfermedades de las Plantas/virología , Virus Satélites/crecimiento & desarrollo , Virus Satélites/genética , Factores de Virulencia/genética , Solanum lycopersicum/virología , Fenotipo , Recombinación Genética , Nicotiana/virología , Proteínas Virales/genética
13.
Saudi J Biol Sci ; 21(6): 626-31, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25473373

RESUMEN

Cotton is an important crop and its production is affected by various disease pathogens. Monopartite begomovirus associated betasatellites cause Cotton leaf curl disease (CLCuD) in Northern India. In order to access the occurrence and genetic variability of Cotton leaf curl betasatellites, an extensive field survey was conducted in states of Rajasthan, Punjab and Haryana. We selected the betasatellite sequence for analysis as they are reported as important for disease severity and sequence variability. Based on the field observations, the disease incidence ranged from 30% to 80% during the survey. Full genome and DNA ß were amplified from various samples while no amplicon was obtained in some samples. The nucleotide sequence homology ranged from 90.0% to 98.7% with Cotton leaf curl virus (CLCuV), 55.2-55.5% with Bhendi yellow vein mosaic virus, 55.8% with Okra leaf curl virus and 51.70% with Tomato leaf curl virus isolates. The lowest similarity (47.8%) was found in CLCuV-Sudan isolate. Phylogenetic analysis showed that analyzed isolates formed a close cluster with various CLCuV isolates reported earlier. The analysis results show sequence variation in Cotton leaf curl betasatellite which could be the result of recombination. The results obtained by genome amplification and sequence variability indicate that some new variants are circulating and causing leaf curl disease in Rajasthan, Punjab and Haryana.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA