Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bioorg Chem ; 137: 106616, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37247564

RESUMEN

Ubiquitin-like containing PHD and RING finger domain 1 (UHRF1) is a nuclear multi-domain protein overexpressed in numerous human cancer types. We previously disclosed the anthraquinone derivative UM63 that inhibits UHRF1-SRA domain base-flipping activity, although having DNA intercalating properties. Herein, based on the UM63 structure, new UHRF1-SRA inhibitors were identified through a multidisciplinary approach, combining molecular modelling, biophysical assays, molecular and cell biology experiments. We identified AMSA2 and MPB7, that inhibit UHRF1-SRA mediated base flipping at low micromolar concentrations, but do not intercalate into DNA, which is a key advantage over UM63. These molecules prevent UHRF1/DNMT1 interaction at replication forks and decrease the overall DNA methylation in cells. Moreover, both compounds specifically induce cell death in numerous cancer cell lines, displaying marginal effect on non-cancer cells, as they preferentially affect cells with high level of UHRF1. Overall, these two compounds are promising leads for the development of anti-cancer drugs targeting UHRF1.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT , Neoplasias , Humanos , Proteínas Potenciadoras de Unión a CCAAT/química , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Metilación de ADN , ADN/química , Modelos Moleculares , Neoplasias/genética
2.
Adv Exp Med Biol ; 1389: 295-315, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36350515

RESUMEN

The modification of DNA bases is a classic hallmark of epigenetics. Four forms of modified cytosine-5-methylcytosine, 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine-have been discovered in eukaryotic DNA. In addition to cytosine carbon-5 modifications, cytosine and adenine methylated in the exocyclic amine-N4-methylcytosine and N6-methyladenine-are other modified DNA bases discovered even earlier. Each modified base can be considered a distinct epigenetic signal with broader biological implications beyond simple chemical changes. Since 1994, several crystal structures of proteins and enzymes involved in writing, reading, and erasing modified bases have become available. Here, we present a structural synopsis of writers, readers, and erasers of the modified bases from prokaryotes and eukaryotes. Despite significant differences in structures and functions, they are remarkably similar regarding their engagement in flipping a target base/nucleotide within DNA for specific recognitions and/or reactions. We thus highlight base flipping as a common structural framework broadly applied by distinct classes of proteins and enzymes across phyla for epigenetic regulations of DNA.


Asunto(s)
5-Metilcitosina , Metilación de ADN , ADN , 5-Metilcitosina/química , Citosina/química , ADN/metabolismo , Epigénesis Genética , Eucariontes/genética , Eucariontes/metabolismo
3.
Methods Appl Fluoresc ; 10(3)2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35472854

RESUMEN

Thienoguanosine (thG) is an isomorphic fluorescent guanosine (G) surrogate, which almost perfectly mimics the natural G in DNA duplexes and may therefore be used to sensitively investigate for example protein-induced local conformational changes. To fully exploit the information given by the probe, we carefully re-investigated the thG spectroscopic properties in 12-bp duplexes, when the Set and Ring Associated (SRA) domain of UHRF1 flips its 5' flanking methylcytosine (mC). The SRA-induced flipping of mC was found to strongly increase the fluorescence intensity of thG, but this increase was much larger when thG was flanked in 3' by a C residue as compared to an A residue. Surprisingly, the quantum yield and fluorescence lifetime values of thG were nearly constant, regardless of the presence of SRA and the nature of the 3' flanking residue, suggesting that the differences in fluorescence intensities might be related to changes in absorption properties. We evidenced that thG lowest energy absorption band in the duplexes can be deconvoluted into two bands peaking at ∼350 nm and ∼310 nm, respectively red-shifted and blue-shifted, compared to the spectrum of thG monomer. Using quantum mechanical calculations, we attributed the former to a nearly pureππ* excitation localized on thG and the latter to excited states with charge transfer character. The amplitude of thG red-shifted band strongly increased when its 3' flanking C residue was replaced by an A residue in the free duplex, or when its 5' flanking mC residue was flipped by SRA. As only the species associated with the red-shifted band were found to be emissive, the highly unusual finding of this work is that the brightness of thG in free duplexes as well as its changes on SRA-induced mC flipping almost entirely depend on the relative population and/or absorption coefficient of the red-shifted absorbing species.


Asunto(s)
ADN , Guanosina , ADN/química , Guanosina/análogos & derivados , Espectrometría de Fluorescencia
4.
ACS Sens ; 6(12): 4482-4488, 2021 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-34793139

RESUMEN

The simultaneous discrimination of let-7 microRNAs (miRNAs) would greatly facilitate the early diagnosis and prognosis monitoring of diseases. In this work, a molecular beacon DNA probe was designed to be able to flip out its mismatched cytosine base within the α-hemolysin (α-HL) latch and generate completely separated blocking currents to identify the single-base difference. As a result, the characteristic blocking current of fully matched MB/let-7a and single-base mismatched MB/let-7f was 84.30 ± 0.92 and 87.05 ± 0.86% (confidence level P 95%), respectively. Let-7 miRNA family let-7a and let-7f were completely simultaneously discriminated, which could be attributed to the following strengths. (1) The statistic distribution of blocking current is extremely concentrated with a small relative standard deviation (RSD) of less than 1% and a narrow distribution range. (2) Complete separation is achieved with a high separation resolution of 1.54. (3) The cytosine base flipping out within the α-HL latch provides a universal labeling-free strategy to simultaneously discriminate the single-base mismatch. Overall, the target let-7f sequences were detected with a linear range from 0.001 to 10 pM in human serum samples containing 200 nM let-7a. Great potential has been demonstrated for precise detection, early diagnosis, and prognosis monitoring of diseases related to single-base difference.


Asunto(s)
MicroARNs , ADN , Sondas de ADN , Proteínas Hemolisinas/genética , Humanos , MicroARNs/genética , Sondas Moleculares
5.
RNA ; 27(11): 1330-1338, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34315814

RESUMEN

During protein synthesis on ribosome, tRNA recognizes its cognate codon of mRNA through base-pairing with the anticodon. The 5'-end nucleotide of the anticodon is capable of wobble base-pairing, offering a molecular basis for codon degeneracy. The wobble nucleotide is often targeted for post-transcriptional modification, which affects the specificity and fidelity of the decoding process. Flipping-out of a wobble nucleotide in the anticodon loop has been proposed to be necessary for modifying enzymes to access the target nucleotide, which has been captured in selective structures of protein-bound complexes. Meanwhile, all other structures of free or ribosome-bound tRNA display anticodon bases arranged in stacked conformation. We report the X-ray crystal structure of unbound tRNAVal1 to a 2.04 Å resolution showing two different conformational states of wobble uridine in the anticodon loop, one stacked on the neighboring base and the other swiveled out toward solvent. In addition, the structure reveals a rare magnesium ion coordination to the nitrogen atom of a nucleobase, which has been sampled very rarely among known structures of nucleic acids.


Asunto(s)
Anticodón/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , ARN de Transferencia de Valina/metabolismo , Ribosomas/metabolismo , Anticodón/química , Anticodón/genética , Emparejamiento Base , Escherichia coli/genética , Escherichia coli/metabolismo , Metales/metabolismo , Modelos Moleculares , Conformación de Ácido Nucleico , ARN Mensajero/química , ARN Mensajero/genética , ARN de Transferencia de Valina/química , ARN de Transferencia de Valina/genética , Ribosomas/genética
6.
Biopolymers ; 112(1): e23405, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33098572

RESUMEN

Cellular exposure to tobacco-specific nitrosamines causes formation of promutagenic O6 -[4-oxo-4-(3-pyridyl)but-1-yl]guanine (O6 -POB-G) and O6 -methylguanine (O6 -Me-G) adducts in DNA. These adducts can be directly repaired by O6 -alkylguanine-DNA alkyltransferase (AGT). Repair begins by flipping the damaged base out of the DNA helix. AGT binding and base-flipping have been previously studied using pyrrolocytosine as a fluorescent probe paired to the O6 -alkylguanine lesion, but low fluorescence yield limited the resolution of steps in the repair process. Here, we utilize the highly fluorescent 6-phenylpyrrolo-2'-deoxycytidine (6-phenylpyrrolo-C) to investigate AGT-DNA interactions. Synthetic oligodeoxynucleotide duplexes containing O6 -POB-G and O6 -Me-G adducts were placed within the CpG sites of codons 158, 245, and 248 of the p53 tumor suppressor gene and base-paired to 6-phenylpyrrolo-C in the opposite strand. Neighboring cytosine was either unmethylated or methylated. Stopped-flow fluorescence measurements were performed by mixing the DNA duplexes with C145A or R128G AGT variants. We observe a rapid, two-step, nearly irreversible binding of AGT to DNA followed by two slower steps, one of which is base-flipping. Placing 5-methylcytosine immediately 5' to the alkylated guanosine causes a reduction in rate constant of nucleotide flipping. O6 -POB-G at codon 158 decreased the base flipping rate constant by 3.5-fold compared with O6 -Me-G at the same position. A similar effect was not observed at other codons.


Asunto(s)
Citosina/química , Reparación del ADN , Colorantes Fluorescentes/química , O(6)-Metilguanina-ADN Metiltransferasa/metabolismo , Alquilación , Emparejamiento Base , Biocatálisis , Islas de CpG/genética , Citidina/análogos & derivados , Citidina/química , Aductos de ADN/química , Aductos de ADN/metabolismo , Cinética , Mutagénesis Sitio-Dirigida , Pirroles/química , Proteína p53 Supresora de Tumor/genética
7.
Chemistry ; 25(58): 13363-13375, 2019 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-31322780

RESUMEN

During DNA replication, ubiquitin-like, containing PHD and RING fingers domains 1 (UHRF1) plays key roles in the inheritance of methylation patterns to daughter strands by recognizing through its SET and RING-associated domain (SRA) the methylated CpGs and recruiting DNA methyltransferase 1 (DNMT1). Herein, our goal is to identify UHRF1 inhibitors targeting the 5'-methylcytosine (5mC) binding pocket of the SRA domain to prevent the recognition and flipping of 5mC and determine the molecular and cellular consequences of this inhibition. For this, we used a multidisciplinary strategy combining virtual screening and molecular modeling with biophysical assays in solution and cells. We identified an anthraquinone compound able to bind to the 5mC binding pocket and inhibit the base-flipping process in the low micromolar range. We also showed in cells that this hit impaired the UHRF1/DNMT1 interaction and decreased the overall methylation of DNA, highlighting the critical role of base flipping for DNMT1 recruitment and providing the first proof of concept of the druggability of the 5mC binding pocket. The selected anthraquinone appears thus as a key tool to investigate the role of UHRF1 in the inheritance of methylation patterns, as well as a starting point for hit-to-lead optimizations.


Asunto(s)
Antraquinonas/química , Proteínas Potenciadoras de Unión a CCAAT/antagonistas & inhibidores , Inhibidores Enzimáticos/química , 5-Metilcitosina/química , Sitios de Unión , ADN (Citosina-5-)-Metiltransferasa 1/química , Evaluación Preclínica de Medicamentos/métodos , Células HeLa , Humanos , Cinética , Metilación , Simulación del Acoplamiento Molecular , Estructura Molecular , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad , Transfección/métodos , Ubiquitina-Proteína Ligasas
8.
Bioessays ; 40(11): e1800133, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30264543

RESUMEN

DNA glycosylases remove aberrant DNA nucleobases as the first enzymatic step of the base excision repair (BER) pathway. The alkyl-DNA glycosylases AlkC and AlkD adopt a unique structure based on α-helical HEAT repeats. Both enzymes identify and excise their substrates without a base-flipping mechanism used by other glycosylases and nucleic acid processing proteins to access nucleobases that are otherwise stacked inside the double-helix. Consequently, these glycosylases act on a variety of cationic nucleobase modifications, including bulky adducts, not previously associated with BER. The related non-enzymatic HEAT-like repeat (HLR) proteins, AlkD2, and AlkF, have unique nucleic acid binding properties that expand the functions of this relatively new protein superfamily beyond DNA repair. Here, we review the phylogeny, biochemistry, and structures of the HLR proteins, which have helped broaden our understanding of the mechanisms by which DNA glycosylases locate and excise chemically modified DNA nucleobases.


Asunto(s)
Archaea/enzimología , Bacterias/enzimología , ADN Glicosilasas/metabolismo , Reparación del ADN/genética , ADN/metabolismo , Eucariontes/enzimología , Archaea/genética , Bacterias/genética , Cristalografía por Rayos X , Daño del ADN/genética , Eucariontes/genética , Conformación Proteica
9.
Methods Enzymol ; 592: 377-415, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28668128

RESUMEN

Enzymes that modify nucleobases in double-stranded genomic DNA, either as part of a DNA repair pathway or as an epigenetic modifying pathway, adopt a multistep pathway to locate target sites and reconfigure the DNA to gain access. Work on several different enzymes has shown that in almost all cases base flipping, also known as nucleotide flipping, is a key feature of specific site recognition. In this chapter, we discuss some of the strategies that can be used to perform a kinetic characterization for DNA binding and nucleotide flipping. The resulting kinetic and thermodynamic framework provides a platform for understanding substrate specificity, mechanisms of inhibition, and the roles of important amino acids. We use a human DNA repair glycosylase called alkyladenine DNA glycosylase as a case study, because this is one of the best-characterized nucleotide-flipping enzymes. However, the approaches that are described can be readily adapted to study other enzymes, and future studies are needed to understand the mechanism of substrate recognition in each individual case. As more enzymes are characterized, we can hope to uncover which features of DNA searching and nucleotide flipping are fundamental features shared by many different families of DNA modifying enzymes, and which features are specific to a particular enzyme. Such an understanding provides reasonable models for less characterized enzymes that are important for epigenetic DNA modification and DNA repair pathways.


Asunto(s)
ADN Glicosilasas/metabolismo , Reparación del ADN , ADN/metabolismo , Nucleótidos/metabolismo , Animales , ADN/química , ADN/genética , Daño del ADN , Pruebas de Enzimas/métodos , Humanos , Cinética , Simulación del Acoplamiento Molecular , Conformación de Ácido Nucleico , Nucleótidos/química , Nucleótidos/genética , Unión Proteica , Espectrometría de Fluorescencia/métodos
10.
J Biol Chem ; 292(39): 16070-16080, 2017 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-28747435

RESUMEN

DNA repair enzymes recognize and remove damaged bases that are embedded in the duplex. To gain access, most enzymes use nucleotide flipping, whereby the target nucleotide is rotated 180° into the active site. In human alkyladenine DNA glycosylase (AAG), the enzyme that initiates base excision repair of alkylated bases, the flipped-out nucleotide is stabilized by intercalation of the side chain of tyrosine 162 that replaces the lesion nucleobase. Previous kinetic studies provided evidence for the formation of a transient complex that precedes the stable flipped-out complex, but it is not clear how this complex differs from nonspecific complexes. We used site-directed mutagenesis and transient-kinetic approaches to investigate the timing of Tyr162 intercalation for AAG. The tryptophan substitution (Y162W) appeared to be conservative, because the mutant protein retained a highly favorable equilibrium constant for flipping the 1,N6-ethenoadenine (ϵA) lesion, and the rate of N-glycosidic bond cleavage was identical to that of the wild-type enzyme. We assigned the tryptophan fluorescence signal from Y162W by removing two native tryptophan residues (W270A/W284A). Stopped-flow experiments then demonstrated that the change in tryptophan fluorescence of the Y162W mutant is extremely rapid upon binding to either damaged or undamaged DNA, much faster than the lesion-recognition and nucleotide flipping steps that were independently determined by monitoring the ϵA fluorescence. These observations suggest that intercalation by this aromatic residue is one of the earliest steps in the search for DNA damage and that this interaction is important for the progression of AAG from nonspecific searching to specific-recognition complexes.


Asunto(s)
Daño del ADN , ADN Glicosilasas/metabolismo , Reparación del ADN , ADN/metabolismo , Modelos Moleculares , Tirosina/química , Sustitución de Aminoácidos , Sitios de Unión , Biocatálisis , Dominio Catalítico , ADN/química , ADN Glicosilasas/química , ADN Glicosilasas/genética , Humanos , Cinética , Mutagénesis Sitio-Dirigida , Mutación , Conformación de Ácido Nucleico , Motivos de Nucleótidos , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
11.
Methods Enzymol ; 591: 355-414, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28645377

RESUMEN

A DNA electrochemistry platform has been developed to probe proteins bound to DNA electrically. Here gold electrodes are modified with thiol-modified DNA, and DNA charge transport chemistry is used to probe DNA binding and enzymatic reaction both with redox-silent and redox-active proteins. For redox-active proteins, the electrochemistry permits the determination of redox potentials in the DNA-bound form, where comparisons to DNA-free potentials can be made using graphite electrodes without DNA modification. Importantly, electrochemistry on the DNA-modified electrodes facilitates reaction under aqueous, physiological conditions with a sensitive electrical measurement of binding and activity.


Asunto(s)
Proteínas de Unión al ADN/química , Sondas Moleculares , Química Clic , Electrodos , Oxidación-Reducción
12.
Biol Methods Protoc ; 2(1): bpx010, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32161792

RESUMEN

DNA base modifications and mutations are observed in all genomes throughout the kingdoms of life. Proteins involved in their establishment and removal were shown to use a base flipping mechanism to access their substrates. To better understand how proteins flip DNA bases to modify or remove them, we optimized and developed a pipeline of methods to step-by-step detect the process starting with protein-DNA interaction, base flipping itself and the ensuing DNA base modification or excision. As methylcytosine is the best-studied DNA modification, here we focus on the process of writing, modifying and reading this DNA base. Using multicolor electrophoretic mobility shift assays, we show that the methylcytosine modifier Tet1 exhibits little DNA sequence specificity with only a slight preference for methylated CpG containing DNA. A combination of chloroacetaldehyde treatment and high-resolution melting temperature analysis allowed us to detect base flipping induced by the methylcytosine modifier Tet1 as well as the methylcytosine writer M.HpaII. Finally, we show that high-resolution melting temperature analysis can be used to detect the activity of glycosylases, methyltransferases and dioxigenases on DNA substrates. Taken together, this DNA base flipping analytical pipeline (BaFAP) provide a complete toolbox for the fast and sensitive analysis of proteins that bind, flip and modify or excise DNA bases.

13.
RNA Biol ; 14(2): 164-170, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27937139

RESUMEN

Adenosine (A) to inosine (I) RNA editing is important for life in metazoan organisms. Dysregulation or mutations that compromise the efficacy of A to I editing results in neurological disorders and a shorten life span. These reactions are catalyzed by adenosine deaminases acting on RNA (ADARs), which hydrolytically deaminate adenosines in regions of duplex RNA. Because inosine mimics guanosine in hydrogen bonding, this prolific RNA editing alters the sequence and structural information in the RNA landscape. Aicardi-Goutières syndrome (AGS) is a severe childhood autoimmune disease that is one of a broader set of inherited disorders characterized by constitutive upregulation of type I interferon (IFN) referred to as type I interferonopathies. AGS is caused by mutations in multiple genes whose protein products, including ADAR1, are all involved in nucleic acid metabolism or sensing. The recent crystal structures of human ADAR2 deaminase domain complexed with duplex RNA substrates enabled modeling of how AGS causing mutations may influence RNA binding and catalysis. The mutations can be broadly characterized into three groups; mutations on RNA-binding loops that directly affect RNA binding, "second-layer" mutations that can alter the disposition of RNA-binding loops, and mutations that can alter the position of an α-helix bearing an essential catalytic residue.


Asunto(s)
Adenosina Desaminasa/metabolismo , Enfermedades Autoinmunes del Sistema Nervioso/genética , Enfermedades Autoinmunes del Sistema Nervioso/metabolismo , Mutación , Malformaciones del Sistema Nervioso/genética , Malformaciones del Sistema Nervioso/metabolismo , ARN/genética , ARN/metabolismo , Adenosina Desaminasa/química , Dominio Catalítico , Humanos , Unión Proteica , Dominios y Motivos de Interacción de Proteínas/genética , ARN/química , Edición de ARN , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Relación Estructura-Actividad
14.
Elife ; 52016 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-27223327

RESUMEN

Cut-and-paste DNA transposons of the mariner/Tc1 family are useful tools for genome engineering and are inserted specifically at TA target sites. A crystal structure of the mariner transposase Mos1 (derived from Drosophila mauritiana), in complex with transposon ends covalently joined to target DNA, portrays the transposition machinery after DNA integration. It reveals severe distortion of target DNA and flipping of the target adenines into extra-helical positions. Fluorescence experiments confirm dynamic base flipping in solution. Transposase residues W159, R186, F187 and K190 stabilise the target DNA distortions and are required for efficient transposon integration and transposition in vitro. Transposase recognises the flipped target adenines via base-specific interactions with backbone atoms, offering a molecular basis for TA target sequence selection. Our results will provide a template for re-designing mariner/Tc1 transposases with modified target specificities.


Asunto(s)
Elementos Transponibles de ADN , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , ADN/química , ADN/metabolismo , Recombinación Genética , Transposasas/química , Transposasas/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica
15.
J Mol Biol ; 428(12): 2542-2556, 2016 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-26523681

RESUMEN

Human mitochondrial transcription termination occurs within the leu-tRNA gene and is mediated by the DNA binding protein MTERF1. The crystal structure of MTERF1 bound to the canonical termination sequence reveals a rare base flipping event that involves the eversion of three nucleotides. These nucleotides are stabilized by stacking interactions with three MTERF1 residues, which are essential not only for base flipping but also for termination activity. To further understand the mechanism of base flipping, we examined each of the individual stacking interactions in structural, energetic and functional detail. Individual substitutions of Arg162, Tyr288 and Phe243 have revealed unequal contributions to overall termination activity. Furthermore, our work identifies an important role for Phe322 in the base flipping mechanism and we demonstrate how Phe322 and Phe243 are important for coupling base flipping between the heavy and light strand DNA chains. We propose a stepwise model for the base flipping process that recapitulates our observations. Finally, we show that MTERF1 has the ability to accommodate alternate active conformations. The adaptability of base flipping has implications for MTERF1 function and for the putative function of MTERF1 at alternative binding sites in human mitochondria.


Asunto(s)
Emparejamiento Base/genética , ADN Mitocondrial/genética , Proteínas Mitocondriales/metabolismo , Nucleótidos/genética , Factores de Transcripción/metabolismo , Terminación de la Transcripción Genética/fisiología , Sitios de Unión/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Conformación de Ácido Nucleico
16.
Biophys Physicobiol ; 13: 311-319, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28409083

RESUMEN

As for UV-induced DNA damage, which may induce skin cancer in animals and growth inhibition in plants, there are two types of photoproducts, namely cis-sin cyclobutane pyrimidine dimers (CPD) and pyrimidine-pyrimidone (6-4) photoproducts. When they are to be repaired, base-flipping occurs, and they bind to enzymes. However, this process remains relatively unknown at a molecular level. We analyze conformation and interaction energy changes upon base-flipping using classical molecular dynamics (CMD) simulations and ab initio electronic structure calculations. CMD simulations starting with a CPD in the flipped-in and flipped-out states showed that both states were unchanged for 500 ns, indicating the flipped-in and flipped-out processes do not occur spontaneously (without any help of the enzyme) after photo-damage. To deeply understand the reasons, we investigated interaction energy changes among bases upon structure changes during the flipped-in and flipped-out processes using Parallel Cascade Selection-MD (PaCS-MD) simulations at 400 K, followed by a fragment molecular orbital (FMO) method. The total inter-fragment interaction energy (IFIE) between CPD and other bases at the flipped-in state is estimated to be -60.08 kcal/mol. In particular, four bases strongly interact with CPD with interaction energies being -10.96, -13.70, -21.52, and -14.46 kcal/mol each. On the other hand, the total IFIE at the obtained flipped-out state increased to -10.40 kcal/mol by partly losing hydrogen bonds and π-π stacking interactions, respectively. These results clearly indicate that the base-flipping process of DNA lesions occurs with the help of external forces like interactions with appropriate enzymes such as photolyases.

17.
Beilstein J Org Chem ; 10: 2293-306, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25298797

RESUMEN

Covalently interstrand cross-linked DNA is an interesting tool to study DNA binding proteins that locally open up the DNA duplex by flipping single bases out of the DNA helix or melting whole stretches of base pairs to perform their function. The ideal DNA cross-link to study protein-DNA interactions should be specific and easy to synthesize, be stable during protein binding experiments, have a short covalent linker to avoid steric hindrance of protein binding, and should be available as a mimic for both A/T and G/C base pairs to cover all possible binding specificities. Several covalent interstrand cross-links have been described in the literature, but most of them fall short of at least one of the above criteria. We developed an efficient method to site-specifically and reversibly cross-link thionucleoside base pairs in synthetic duplex oligodeoxynucleotides by bisalkylation with 1,2-diiodoethane resulting in an ethylene-bridged base pair. Both linked A/T and G/C base pair analogs can conveniently be prepared which allows studying any base pair-opening enzyme regardless of its sequence specificity. The cross-link is stable in the absence of reducing agents but the linker can be quickly and tracelessly removed by the addition of thiol reagents like dithiothreitol. This property makes the cross-linking reaction fully reversible and allows for a switching of the linked base pair from locked to unlocked during biochemical experiments. Using the DNA methyltransferase from Thermus aquaticus (M.TaqI) as example, we demonstrate that the presented cross-linked DNA with an ethylene-linked A/T base pair analog at the target position is a useful tool to determine the base-flipping equilibrium constant of a base-flipping enzyme which lies mostly on the extrahelical side for M.TaqI.

18.
Proc Natl Acad Sci U S A ; 111(17): 6275-80, 2014 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-24717845

RESUMEN

Aminoglycosides are potent, broad spectrum, ribosome-targeting antibacterials whose clinical efficacy is seriously threatened by multiple resistance mechanisms. Here, we report the structural basis for 30S recognition by the novel plasmid-mediated aminoglycoside-resistance rRNA methyltransferase A (NpmA). These studies are supported by biochemical and functional assays that define the molecular features necessary for NpmA to catalyze m(1)A1408 modification and confer resistance. The requirement for the mature 30S as a substrate for NpmA is clearly explained by its recognition of four disparate 16S rRNA helices brought into proximity by 30S assembly. Our structure captures a "precatalytic state" in which multiple structural reorganizations orient functionally critical residues to flip A1408 from helix 44 and position it precisely in a remodeled active site for methylation. Our findings provide a new molecular framework for the activity of aminoglycoside-resistance rRNA methyltransferases that may serve as a functional paradigm for other modification enzymes acting late in 30S biogenesis.


Asunto(s)
Aminoglicósidos/farmacología , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Metiltransferasas/química , Metiltransferasas/metabolismo , Modelos Moleculares , Subunidades Ribosómicas Pequeñas Bacterianas/química , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo , Adenosina/análogos & derivados , Adenosina/química , Adenosina/farmacología , Aminoácidos/metabolismo , Biocatálisis/efectos de los fármacos , Dominio Catalítico , Secuencia Conservada , Cristalografía por Rayos X , Farmacorresistencia Bacteriana/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Transferencia de Gen Horizontal/efectos de los fármacos , Metilación/efectos de los fármacos , Nucleótidos/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , ARN Ribosómico 16S/química , Relación Estructura-Actividad
19.
Transcription ; 2(1): 32-6, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21326908

RESUMEN

The structure of the mitochondrial transcription termination factor (MTERF1) provides novel insight into the mechanism of binding, recognition of the termination sequence and the conformational changes involved in mediating termination. Besides its functional implications, this structure provides a framework to understand the consequences of numerous diseases associated with mitochondrial DNA mutations.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Proteínas Mitocondriales/metabolismo , Transcripción Genética , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/química , Sitios de Unión/genética , ADN Mitocondrial/química , Humanos , Proteínas Mitocondriales/química , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Estructura Terciaria de Proteína , Regiones Terminadoras Genéticas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA