Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Biotechnol J ; 22(4): 1033-1048, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37997501

RESUMEN

Plants have intricate mechanisms that tailor their defence responses to pathogens. WRKY transcription factors play a pivotal role in plant immunity by regulating various defence signalling pathways. Many WRKY genes are transcriptionally activated upon pathogen attack, but how their functions are regulated after transcription remains elusive. Here, we show that OsWRKY7 functions as a crucial positive regulator of rice basal immunity against Xanthomonas oryzae pv. oryzae (Xoo). The activity of OsWRKY7 was regulated at both translational and post-translational levels. Two translational products of OsWRKY7 were generated by alternative initiation. The full-length OsWRKY7 protein is normally degraded by the ubiquitin-proteasome system but was accumulated following elicitor or pathogen treatment, whereas the alternate product initiated from the downstream in-frame start codon was stable. Both the full and alternate OsWRKY7 proteins have transcriptional activities in yeast and rice cells, and overexpression of each form enhanced resistance to Xoo infection. Furthermore, disruption of the main AUG in rice increased the endogenous translation of the alternate stabilized form of OsWRKY7 and enhanced bacterial blight resistance. This study provides insights into the coordination of alternative translation and protein stability in the regulation of plant growth and basal defence mediated by the OsWRKY7 transcription factor, and also suggests a promising strategy to breed disease-resistant rice by translation initiation control.


Asunto(s)
Oryza , Xanthomonas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Oryza/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Fitomejoramiento , Resistencia a la Enfermedad/genética , Inmunidad de la Planta/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Plant J ; 116(1): 128-143, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37347678

RESUMEN

The transition from vegetative to reproductive development (floral transition) is a costly process in annual plants requiring increased investments in metabolic resources. The Arabidopsis thaliana (Arabidopsis) PHD finger protein EDM2 and RRM domain proteins EDM3 and IBM2 are known to form chromatin-associated complexes controlling transcript processing. We are reporting that distinct splice isoforms of EDM3 and IBM2 cooperate in the coordination of the floral transition with basal immune responses. These cooperating splice isoforms, termed EDM3L and IBM2L, control the intensity of basal immunity and, via a separate pathway, the timing of the floral transition. During the developmental phase prior to the floral transition expression of EDM3L and IBM2L strongly and gradually increases, while these isoforms simultaneously down-regulate expression of the floral suppressor gene FLC and promote the transition to reproductive growth. At the same time these accumulating EDM3 and IBM2 splice isoforms gradually suppress basal immunity against the virulent Noco2 isolate of the pathogenic oomycete Hyaloperonospora arabidopsidis and down-regulate expression of a set of defense-associated genes and immune receptor genes. We are providing clear evidence for a functional link between the floral transition and basal immunity in the annual plant Arabidopsis. Coordination of these two biological processes, which compete for metabolic resources, is likely critical for plant survival and reproductive success.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/genética , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Flores , Inmunidad , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo
3.
Plant Signal Behav ; 17(1): 2058719, 2022 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-35379074

RESUMEN

Plants have evolved a network of complex signaling pathways that allow them to cope with the fluctuations of internal and external environmental cues. GIGANTEA (GI), a well-known, highly conserved plant nuclear protein, has been shown to regulate multiple biological functions in plants such as circadian rhythm, light signaling, cold tolerance, hormone signaling, and photoperiodic flowering. Recently, the role of GI in disease tolerance against different pathogens has come to light; however, a detailed mechanism to understand the role of GI in pathogen defense remains largely unexplained. Here, we report that GIGANTEA is upregulated upon infection with a virulent oomycete pathogen, Hyaloperonospora arabidopsidis (Hpa), in Arabidopsis thaliana accession Col-0. To investigate the role of GI in Arabidopsis defense, we examined the pathogen infection phenotype of gi mutant plants and found that gi-100 mutant was highly susceptible to Hpa Noco2 infection. Notably, the quantitative real-time PCR showed that PHYTOALEXIN DEFICIENT4 (PAD4) and several PAD4-regulated downstream genes were downregulated upon Noco2 infection in gi-100 mutant as compared to Col-0 plants. Furthermore, the chromatin immunoprecipitation results show that GI can directly bind to the intronic region of the PAD4 gene, which might explain the mechanism of GI function in regulating disease resistance in plants. Taken together, our results suggest that GI expression is induced upon Hpa pathogen infection and GI can regulate the expression of PAD4 to promote resistance against the oomycete pathogen Hyaloperonospora arabidopsidis in Arabidopsis thaliana.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Oomicetos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Sesquiterpenos , Fitoalexinas
4.
Plant Cell Rep ; 41(2): 347-363, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34797387

RESUMEN

KEY MESSAGE: Selective Arabidopsis thaliana inositol phosphate kinase functions modulate response amplitudes in innate immunity by balancing signalling adjustments with phosphate homeostasis networks. Pyrophosphorylation of InsP6 generates InsP7 and/or InsP8 containing high-energy phosphoanhydride bonds that are harnessed during energy requirements of a cell. As bona fide co-factors for several phytohormone networks, InsP7/InsP8 modulate key developmental processes. With requirements in transducing jasmonic acid (JA) and phosphate-starvation responses (PSR), InsP8 exemplifies a versatile metabolite for crosstalks between different cellular pathways during diverse stress exposures. Here we show that Arabidopsis thaliana INOSITOL PENTAKISPHOSPHATE 2-KINASE 1 (IPK1), INOSITOL 1,3,4-TRISPHOSPHATE 5/6-KINASE 1 (ITPK1), and DIPHOSPHOINOSITOL PENTAKISPHOSPHATE KINASE 2 (VIH2) implicated in InsP8 biosynthesis, suppress salicylic acid (SA)-dependent immunity. In ipk1, itpk1 or vih2 mutants, constitutive activation of defenses lead to enhanced resistance against the Pseudomonas syringae pv tomato DC3000 (PstDC3000) strain. Our data reveal that upregulated SA-signaling sectors potentiate increased expression of several phosphate-starvation inducible (PSI)-genes, previously known in these mutants. In reciprocation, upregulated PSI-genes moderate expression amplitudes of defense-associated markers. We demonstrate that SA is induced in phosphate-deprived plants, however its defense-promoting functions are likely diverted to PSR-supportive roles. Overall, our investigations reveal selective InsPs as crosstalk mediators in defense-phosphate homeostasis and in reprogramming stress-appropriate response intensities.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fosfotransferasas (Aceptor de Grupo Alcohol) , Inmunidad de la Planta , Ácido Salicílico , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/inmunología , Proteínas de Arabidopsis/metabolismo , Retroalimentación Fisiológica , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno/inmunología , Mutación , Fosfatos/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/inmunología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/fisiología , Pseudomonas syringae/patogenicidad , Ácido Salicílico/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Curr Opin Plant Biol ; 62: 102039, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33930849

RESUMEN

The conserved lipase-like protein EDS1 transduces signals from pathogen-activated intracellular nucleotide-binding leucine-rich repeat (NLR) receptors to transcriptional defences and host cell death. In this pivotal NLR signalling role, EDS1 works as a heterodimer with each of its partners, SAG101 and PAD4. Different properties of EDS1-SAG101 and EDS1-PAD4 complexes and functional relationships to sensor and helper NLRs have emerged. EDS1-SAG101 dimers confer effector-triggered immunity mediated by intracellular TNL receptors. In contrast, EDS1-PAD4 dimers have a broader role promoting basal immune responses that can be initiated inside cells by TNL- or CNL-type NLRs, and at the cell surface by LRR-receptor proteins. Characterizing the essential elements of these two EDS1 modules will help to connect intracellular and surface receptor signalling networks in the plant immune system.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Hidrolasas de Éster Carboxílico , Proteínas de Unión al ADN , Enfermedades de las Plantas , Inmunidad de la Planta/genética
6.
New Phytol ; 229(5): 2827-2843, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33206385

RESUMEN

Atmospheric CO2 concentrations exert a strong influence on the susceptibility of plants to pathogens. However, the mechanisms involved in the CO2 -dependent regulation of pathogen resistance are largely unknown. Here we show that the expression of tomato (Solanum lycopersicum) ß-CARBONIC ANHYDRASE 3 (ßCA3) is induced by the virulent pathogen Pseudomonas syringae pv. tomato DC3000. The role of ßCA3 in the high CO2 -mediated response in tomato and two other Solanaceae crops is distinct from that in Arabidopsis thaliana. Using ßCA3 knock-out and over-expression plants, we demonstrate that ßCA3 plays a positive role in the activation of basal immunity, particularly under high CO2 . ßCA3 is transcriptionally activated by the transcription factor NAC43 and is also post-translationally regulated by the receptor-like kinase GRACE1. The ßCA3 pathway of basal immunity is independent on stomatal- and salicylic-acid-dependent regulation. Global transcriptome analysis and cell wall metabolite measurement implicate cell wall metabolism/integrity in ßCA3-mediated basal immunity under both CO2 conditions. These data not only highlight the importance of ßCA3 in plant basal immunity under high CO2 in a well-studied susceptible crop-pathogen system, but they also point to new targets for disease management strategies in a changing climate.


Asunto(s)
Anhidrasas Carbónicas , Inmunidad de la Planta , Solanum lycopersicum , Dióxido de Carbono/metabolismo , Anhidrasas Carbónicas/genética , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Enfermedades de las Plantas , Pseudomonas syringae/metabolismo
7.
Front Plant Sci ; 11: 579772, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193523

RESUMEN

Plants intensely modulate respiration when pathogens attack, but the function of mitochondrial respiration-related genes in plant-bacteria interaction is largely unclear. Here, the functions of α-ketoglutarate dehydrogenase (α-kGDH) E2 subunit and alternative oxidase (AOX) were investigated in the interaction between tomato and the virulent bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (Pst). Pst inoculation suppressed the transcript abundance of α-kGDH E2, but enhanced AOX expression and salicylic acid (SA) accumulation. Gene silencing and transient overexpression approaches revealed that plant susceptibility to Pst was significantly reduced by silencing α-kGDH E2 in tomato, but increased by overexpressing α-kGDH E2 in Nicotiana benthamiana, whereas silencing or overexpressing of AOX1a did not affect plant defense. Moreover, silencing octanoyltransferase (LIP2), engaged in the lipoylation of α-kGDH E2, significantly reduced disease susceptibility and hydrogen peroxide accumulation. Use of transgenic NahG tomato plants that cannot accumulate SA as well as the exogenous SA application experiment evidenced that α-kGDH E2 acts downstream of SA defense pathway. These results demonstrate tomato α-kGDH E2 plays a negative role in plant basal defense against Pst in an AOX-independent pathway but was associated with lipoylation and SA defense pathways. The findings help to elucidate the mechanisms of mitochondria-involved plant basal immunity.

8.
Front Plant Sci ; 11: 570422, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33072146

RESUMEN

Non-expressor of pathogenesis-related (PR) genes1 (NPR1) is a key transcription coactivator of plant basal immunity and systemic acquired resistance (SAR). Two mutant alleles, npr1-1 and npr1-3, have been extensively used for dissecting the role of NPR1 in various signaling pathways. However, it is unknown whether npr1-1 and npr1-3 are null mutants. Moreover, the NPR1 transcript levels are induced two- to threefold upon pathogen infection or salicylic acid (SA) treatment, but the biological relevance of the induction is unclear. Here, we used molecular and biochemical approaches including quantitative PCR, immunoblot analysis, site-directed mutagenesis, and CRISPR/Cas9-mediated gene editing to address these questions. We show that npr1-3 is a potential null mutant, whereas npr1-1 is not. We also demonstrated that a truncated npr1 protein longer than the hypothesized npr1-3 protein is not active in SA signaling. Furthermore, we revealed that TGACG-binding (TGA) factors are required for NPR1 induction, but the reverse TGA box in the 5'UTR of NPR1 is dispensable for the induction. Finally, we show that full induction of NPR1 is required for basal immunity, but not for SAR, whereas sufficient basal transcription is essential for full-scale establishment of SAR. Our results indicate that induced transcript accumulation may be differentially required for different functions of a specific gene. Moreover, as npr1-1 is not a null mutant, we recommend that future research should use npr1-3 and potential null T-DNA insertion mutants for dissecting NPR1's function in various physiopathological processes.

9.
J Exp Bot ; 71(12): 3710-3724, 2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32211774

RESUMEN

Grapevine trunk diseases (GTDs) are progressively affecting vineyard longevity and productivity worldwide. To be able to understand and combat these diseases, we need a different concept of the signals exchanged between the grapevine and fungi than the well-studied pathogen-associated molecular pattern and effector concepts. We screened extracts from fungi associated with GTDs for their association with basal defence responses in suspension cells of grapevine. By activity-guided fractionation of the two selected extracts, O-methylmellein was identified as a candidate modulator of grapevine immunity. O-Methylmellein could not induce immune responses by itself (i.e. does not act as an elicitor), but could amplify some of the defence responses triggered by the bacterial elicitor flg22, such as the induction level of defence genes and actin remodelling. These findings show that Eutypa lata, exemplarily selected as an endophytic fungus linked with GTDs, can secrete compounds that act as amplifiers of basal immunity. Thus, in addition to elicitors that can trigger basal immunity, and effectors that down-modulate antibacterial basal immunity, once it had been activated, E. lata seems to secrete a third type of chemical signal that amplifies basal immunity and may play a role in the context of consortia of mutually competing microorganisms.


Asunto(s)
Vitis , Ascomicetos , Hongos , Enfermedades de las Plantas , Inmunidad de la Planta
10.
Mol Plant Microbe Interact ; 33(2): 328-335, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31702436

RESUMEN

Plants have evolved mechanisms to protect themselves against pathogenic microbes and insect pests. In Arabidopsis, the immune regulator PAD4 functions with its cognate partner EDS1 to limit pathogen growth. PAD4, independently of EDS1, reduces infestation by green peach aphid (GPA). How PAD4 regulates these defense outputs is unclear. By expressing the N-terminal PAD4 lipase-like domain (PAD4LLD) without its C-terminal EDS1-PAD4 (EP) domain, we interrogated PAD4 functions in plant defense. Here, we show that transgenic expression of PAD4LLD in Arabidopsis is sufficient for limiting GPA infestation but not for conferring basal and effector-triggered pathogen immunity. This suggests that the C-terminal PAD4 EP domain is necessary for EDS1-dependent immune functions but is dispensable for aphid resistance. Moreover, PAD4LLD is not sufficient to interact with EDS1, indicating the PAD4-EP domain is required for stable heterodimerization. These data provide molecular evidence that PAD4 has domain-specific functions.


Asunto(s)
Áfidos , Arabidopsis , Resistencia a la Enfermedad , Dominios Proteicos , Animales , Áfidos/fisiología , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/parasitología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Dominios Proteicos/genética , Dominios Proteicos/fisiología
11.
FEBS Lett ; 592(12): 1929-1936, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29710412

RESUMEN

Microbes constantly challenge plants, and some can successfully infect their host and cause disease. Basal immunity against plant pathogens in many cases is not enough for survival and leads to disease and, ultimately, a premature death of the host plant. However, the plant immune system can be temporarily and even transgenerationally primed; this 'primed state' leads to changes in the plant involving transcriptional, post-translational, metabolic, physiological and epigenetic reprogramming, which enables fine-tuning defence mechanisms for a rapid and/or more robust response after abiotic and/or biotic stress. This can ultimately affect pathogen infection speed and, hence, decrease its ability to overcome host resistance and the final outcome of the host-pathogen interaction. The role of the three major post-translational modifications (PTMs) (protein ubiquitination, phosphorylation and SUMOylation) in plant immunity has been well established. However, the role of PTMs on defence priming, and how the PTM machinery is affected in primed plants and its connection to plant resistance against biotic/abiotic stress is not well understood. This Review highlights the current state of play of priming-mediated post-translational reprogramming and explores new areas for future research.


Asunto(s)
Inmunidad de la Planta , Proteínas de Plantas/metabolismo , Plantas/inmunología , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno , Plantas/genética , Plantas/microbiología , Procesamiento Proteico-Postraduccional , Estrés Fisiológico
12.
Plant Cell Environ ; 40(12): 2972-2986, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28770584

RESUMEN

Plant defence mechanisms are suppressed in the absence of pathogen attack to prevent wasted energy and growth inhibition. However, how defence responses are repressed is not well understood. Histone deacetylase 6 (HDA6) is a negative regulator of gene expression, and its role in pathogen defence response in plants is not known. In this study, a novel allele of hda6 (designated as shi5) with spontaneous defence response was isolated from a forward genetics screening in Arabidopsis. The shi5 mutant exhibited increased resistance to hemibiotrophic bacterial pathogen Pst DC3000, constitutively activated expression of pathogen-responsive genes including PR1, PR2, etc. and increased histone acetylation levels at the promoters of most tested genes that were upregulated in shi5. In both wild type and shi5 plants, the expression and histone acetylation of these genes were upregulated by pathogen infection. HDA6 was found to bind to the promoters of these genes under both normal growth conditions and pathogen infection. Our research suggests that HDA6 is a general repressor of pathogen defence response and plays important roles in inhibiting and modulating the expression of pathogen-responsive genes in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Histona Desacetilasas/metabolismo , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta , Pseudomonas/fisiología , Acetilación , Alelos , Arabidopsis/genética , Arabidopsis/inmunología , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Histona Desacetilasas/genética , Mutación , Enfermedades de las Plantas/microbiología
13.
Elife ; 62017 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-28722654

RESUMEN

Nicotinamide adenine dinucleotide (NAD+) participates in intracellular and extracellular signaling events unrelated to metabolism. In animals, purinergic receptors are required for extracellular NAD+ (eNAD+) to evoke biological responses, indicating that eNAD+ may be sensed by cell-surface receptors. However, the identity of eNAD+-binding receptors still remains elusive. Here, we identify a lectin receptor kinase (LecRK), LecRK-I.8, as a potential eNAD+ receptor in Arabidopsis. The extracellular lectin domain of LecRK-I.8 binds NAD+ with a dissociation constant of 436.5 ± 104.8 nM, although much higher concentrations are needed to trigger in vivo responses. Mutations in LecRK-I.8 inhibit NAD+-induced immune responses, whereas overexpression of LecRK-I.8 enhances the Arabidopsis response to NAD+. Furthermore, LecRK-I.8 is required for basal resistance against bacterial pathogens, substantiating a role for eNAD+ in plant immunity. Our results demonstrate that lectin receptors can potentially function as eNAD+-binding receptors and provide direct evidence for eNAD+ being an endogenous signaling molecule in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , NAD/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Arabidopsis/inmunología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética
14.
New Phytol ; 213(4): 1802-1817, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27861989

RESUMEN

Plant defenses induced by salicylic acid (SA) are vital for resistance against biotrophic pathogens. In basal and receptor-triggered immunity, SA accumulation is promoted by Enhanced Disease Susceptibility1 with its co-regulator Phytoalexin Deficient4 (EDS1/PAD4). Current models position EDS1/PAD4 upstream of SA but their functional relationship remains unclear. In a genetic and transcriptomic analysis of Arabidopsis autoimmunity caused by constitutive or conditional EDS1/PAD4 overexpression, intrinsic EDS1/PAD4 signaling properties and their relation to SA were uncovered. A core EDS1/PAD4 pathway works in parallel with SA in basal and effector-triggered bacterial immunity. It protects against disabled SA-regulated gene expression and pathogen resistance, and is distinct from a known SA-compensatory route involving MAPK signaling. Results help to explain previously identified EDS1/PAD4 regulated SA-dependent and SA-independent gene expression sectors. Plants have evolved an alternative route for preserving SA-regulated defenses against pathogen or genetic perturbations. In a proposed signaling framework, EDS1 with PAD4, besides promoting SA biosynthesis, maintains important SA-related resistance programs, thereby increasing robustness of the innate immune system.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Hidrolasas de Éster Carboxílico/metabolismo , Proteínas de Unión al ADN/metabolismo , Inmunidad de la Planta , Ácido Salicílico/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/microbiología , Autoinmunidad/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Resistencia a la Enfermedad/efectos de los fármacos , Estradiol/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Modelos Biológicos , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/efectos de los fármacos , Plantas Modificadas Genéticamente , Transcripción Genética/efectos de los fármacos
15.
J Exp Bot ; 67(19): 5841-5856, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27702992

RESUMEN

Stilbenes are central phytoalexins in Vitis, and induction of the key enzyme stilbene synthase (STS) is pivotal for disease resistance. Here, we address the potential for breeding resistance using an STS allele isolated from Chinese wild grapevine Vitis pseudoreticulata (VpSTS) by comparison with its homologue from Vitis vinifera cv. 'Carigane' (VvSTS). Although the coding regions of both alleles are very similar (>99% identity on the amino acid level), the promoter regions are significantly different. By expression in Arabidopsis as a heterologous system, we show that the allele from the wild Chinese grapevine can confer accumulation of stilbenes and resistance against the powdery mildew Golovinomyces cichoracearum, whereas the allele from the vinifera cultivar cannot. To dissect the upstream signalling driving the activation of this promoter, we used a dual-luciferase reporter system in a grapevine cell culture. We show elevated responsiveness of the promoter from the wild grape to salicylic acid (SA) and to the pathogen-associated molecular pattern (PAMP) flg22, equal induction of both alleles by jasmonic acid (JA), and a lack of response to the cell death-inducing elicitor Harpin. This elevated SA response of the VpSTS promoter depends on calcium influx, oxidative burst by RboH, mitogen-activated protein kinase (MAPK) signalling, and JA synthesis. We integrate the data in the context of a model where the resistance of V. pseudoreticulata is linked to a more efficient recruitment of SA signalling for phytoalexin synthesis.


Asunto(s)
Aciltransferasas/fisiología , Ascomicetos , Resistencia a la Enfermedad/fisiología , Proteínas de Plantas/fisiología , Ácido Salicílico/metabolismo , Transducción de Señal/fisiología , Vitis/microbiología , Aciltransferasas/genética , Alelos , Ciclopentanos/metabolismo , Resistencia a la Enfermedad/genética , Oxilipinas/metabolismo , Reguladores del Crecimiento de las Plantas/fisiología , Proteínas de Plantas/genética , Regiones Promotoras Genéticas , Vitis/enzimología , Vitis/genética , Vitis/fisiología
16.
Microb Cell ; 3(5): 224-226, 2016 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-28358147

RESUMEN

The Bcl-2-associated athanogene (BAG) family is a multifunctional group of proteins involved in numerous cellular functions ranging from apoptosis to tumorigenesis. These proteins are evolutionarily conserved and encode a characteristic region known as the BAG domain. BAGs function as adapter proteins forming complexes with signaling molecules and molecular chaperones. In humans, a role for BAG proteins has been suggested in tumor growth, HIV infection, and neurodegenerative diseases; as a result, the BAGs are attractive targets for therapeutic interventions, and their expression in cells may serve as a predictive tool for disease development. The Arabidopsis genome contains seven homologs of BAG family proteins (Figure 1), including four with a domain organization similar to animal BAGs (BAG1-4). The remaining three members (BAG5-7) contain a predicted calmodulin-binding motif near the BAG domain, a feature unique to plant BAG proteins that possibly reflects divergent mechanisms associated with plant-specific functions. As reported for animal BAGs, plant BAGs also regulate several stress and developmental processes (Figure 2). The recent article by Li et al. focuses on the role of BAG6 in plant innate immunity. This study shows that BAG6 plays a key role in basal plant defense against fungal pathogens. Importantly, this work further shows that BAG6 is proteolytically activated to induce autophagic cell death and resistance in plants. This finding underscores the importance of proteases in the execution of plant cell death, yet little is known about proteases and their substrates in plants.

17.
J Exp Bot ; 66(11): 3243-57, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25873669

RESUMEN

Stilbenes, as important secondary metabolites of grapevine, represent central phytoalexins and therefore constitute an important element of basal immunity. In this study, potential genetic variation in Vitis vinifera ssp. sylvestris, the ancestor of cultivated grapevine, was sought with respect to their output of stilbenes and potential use for resistance breeding. Considerable variation in stilbene inducibility was identified in V. vinifera ssp. sylvestris. Genotypic differences in abundance and profiles of stilbenes that are induced in response to a UV-C pulse are shown. Two clusters of stilbene 'chemovars' emerged: one cluster showed quick and strong accumulation of stilbenes, almost exclusively in the form of non-glycosylated resveratrol and viniferin, while the second cluster accumulated fewer stilbenes and relatively high proportions of piceatannol and the glycosylated piceid. For all 86 genotypes, a time dependence of the stilbene pattern was observed: piceid, resveratrol, and piceatannol accumulated earlier, whereas the viniferins were found later. It was further observed that the genotypic differences in stilbene accumulation were preceded by differential accumulation of the transcripts for chalcone synthase (CHS) and stilbene-related genes: phenylalanine ammonium lyase (PAL), stilbene synthase (StSy), and resveratrol synthase (RS). A screen of the population with respect to susceptibility to downy mildew of grapevine (Plasmopara viticola) revealed considerable variability. The subpopulation of genotypes with high stilbene inducibility was significantly less susceptible as compared with low-stilbene genotypes, and for representative genotypes it could be shown that the inducibility of stilbene synthase by UV correlated with the inducibility by the pathogen.


Asunto(s)
Variación Genética , Enfermedades de las Plantas/inmunología , Estilbenos/metabolismo , Vitis/genética , Aciltransferasas/genética , Aciltransferasas/metabolismo , Regulación de la Expresión Génica de las Plantas , Genotipo , Glucósidos/metabolismo , Oomicetos/fisiología , Inmunidad de la Planta , Hojas de la Planta/genética , Hojas de la Planta/inmunología , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Estomas de Plantas/genética , Estomas de Plantas/inmunología , Estomas de Plantas/metabolismo , Estomas de Plantas/efectos de la radiación , Resveratrol , Sesquiterpenos/metabolismo , Rayos Ultravioleta , Vitis/inmunología , Vitis/metabolismo , Vitis/efectos de la radiación , Fitoalexinas
18.
Mol Plant Pathol ; 16(2): 123-36, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24965864

RESUMEN

The interaction between Phytophthora pathogens and host plants involves the exchange of complex molecular signals from both sides. Recent studies of Phytophthora have led to the identification of various apoplastic elicitors known to trigger plant immunity. Here, we provide evidence that the protein encoded by OPEL of Phytophthora parasitica is a novel elicitor. Homologues of OPEL were identified only in oomycetes, but not in fungi and other organisms. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) revealed that OPEL is expressed throughout the development of P. parasitica and is especially highly induced after plant infection. Infiltration of OPEL recombinant protein from Escherichia coli into leaves of Nicotiana tabacum (cv. Samsun NN) resulted in cell death, callose deposition, the production of reactive oxygen species and induced expression of pathogen-associated molecular pattern (PAMP)-triggered immunity markers and salicylic acid-responsive defence genes. Moreover, the infiltration conferred systemic resistance against a broad spectrum of pathogens, including Tobacco mosaic virus, the bacteria wilt pathogen Ralstonia solanacearum and P. parasitica. In addition to the signal peptide, OPEL contains three conserved domains: a thaumatin-like domain, a glycine-rich protein domain and a glycosyl hydrolase (GH) domain. Intriguingly, mutation of a putative laminarinase active site motif in the predicted GH domain abolished its elicitor activity, which suggests enzymatic activity of OPEL in triggering the defence response.


Asunto(s)
Nicotiana/microbiología , Phytophthora/patogenicidad , Regulación de la Expresión Génica de las Plantas , Inmunidad Innata/fisiología , Datos de Secuencia Molecular , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/fisiología
19.
Virology ; 449: 207-14, 2014 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-24418554

RESUMEN

Turnip crinkle virus (TCV) has been shown to interact with a NAC transcription factor, TIP, of Arabidopsis thaliana, via its coat protein (CP). This interaction correlates with the resistance response manifested in TCV-resistant Arabidopsis ecotype Di-17. We report that failure of a mutated CP to interact with TIP triggered the corresponding TCV mutant (R6A) to cause more severe symptoms in the TCV-susceptible ecotype Col-0. We hypothesized that TCV regulates antiviral basal immunity through TIP-CP interaction. Consistent with this hypothesis, we found that the rate of accumulation of R6A was measurably slower than wild-type TCV over the course of an infection. Notably, R6A was able to accumulate at similar rates as wild-type TCV in mutant plants with defects in salicylic acid (SA) signaling. Finally, plants with altered TIP expression provided evidence R6A's inability to evade the basal resistance response was likely associated with loss of ability for CP to bind TIP.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Proteínas de la Cápside/metabolismo , Carmovirus/metabolismo , Enfermedades de las Plantas/virología , Factores de Transcripción/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/virología , Proteínas de Arabidopsis/genética , Proteínas de la Cápside/genética , Carmovirus/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Unión Proteica , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA