Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 236
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pestic Biochem Physiol ; 204: 106084, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39277397

RESUMEN

Pyrethroid are the primary insecticides used for controlling of Bactricera dorsalis, a highly destructive and invasive fruit pest. Field populations have developed serious resistance, especially to ß-cypermethrin. While mutations in the voltage-gated sodium channel (Vgsc) are a common mechanism of pyrethroid resistance, variations in BdVgsc associated with ß-cypermethrin resistance remain unclear. Here, we reported the resistance levels of five field populations from China, with resistance ratio ranging from 1.54 to 21.34-fold. Cloning the full length of BdVgsc revealed no specific or known amino acid mutations between the most resistant population and the susceptible strain. However, three types of partial intron retention (IRE4-5, IRE19-f and IREL-24) were identified in BdVgsc transcripts, with these intron retentions containing stop codons. The expression of IRE4-5 transcripts and total BdVgsc showed different trends across developmental stages and tissues. Exposure to ß-cypermethrin led to increased expression of IRE4-5. Comparison of genomic and transcriptional sequences reveled that IRE4-5 transcripts had two types (IRE4-5.5 T and IRE4-5.6 T) caused by genomic variations. Both field and congenic strains indicated that homozygotes for IRE4-5.5 T had lower IRE4-5 transcript levels than homozygotes for IRE4-5.6 T. However, congenic and field strains exhibited inconsistent results about the association of expression levels of IRE4-5 transcripts with sensitivity to ß-cypermethrin. In summary, this study is the first to identify intron retention transcripts in the Vgsc gene from B. dorsalis and to examine their expression patterns across different developmental stages, tissues, and strains with varying sensitivities to ß-cypermethrin. The potential role of the intron retentions of BdVgsc in insecticide toxicity is also discussed.


Asunto(s)
Resistencia a los Insecticidas , Intrones , Piretrinas , Tephritidae , Canales de Sodio Activados por Voltaje , Animales , Canales de Sodio Activados por Voltaje/genética , Canales de Sodio Activados por Voltaje/metabolismo , Piretrinas/farmacología , Piretrinas/toxicidad , Resistencia a los Insecticidas/genética , Tephritidae/genética , Tephritidae/efectos de los fármacos , Insecticidas/farmacología , Insecticidas/toxicidad , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo
2.
J Econ Entomol ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39093635

RESUMEN

Radioisotope irradiators (using cesium-137 or cobalt-60) are used as sources of ionizing radiation to control quarantine or phytosanitary insect pests in internationally traded fresh commodities and to sterilize insects used in sterile insect release programs. There are institutional initiatives to replace isotopic irradiators (producing γ-rays) with lower-energy X-ray machines due to concerns about radiological terrorism and increasingly stringent regulations on the movement of radioisotopes. Questions remain about whether the biological effects of low-energy X-rays are comparable to those of γ-rays since differences in energy levels and dose rates of X-rays may have different efficacies. We compared adult emergence, flight ability, and adult survival in the Oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritdae), after irradiation of third instar larvae with 100 kV or 5 MeV (5,000 kV) X-rays at 20 and 40 Gy in replicated studies. At 20 Gy, the adult emergence rate was significantly lower after irradiation with 100 kV compared to 5 MeV X-rays, suggesting higher efficacy at the lower energy level. In a follow-up study using 100 kV X-rays, applying 20 Gy using a slow dose rate (0.24 Gy min-1) resulted in significantly higher adult emergence than did a fast dose rate (3.3 Gy min-1), suggesting lower efficacy. Although our study suggests higher efficacy of low energy 100 kV X-rays, there is uncertainty in measuring the dose from an X-ray tube operating at 100 kV using an ionization chamber; we discuss how this uncertainty may change the interpretation of the results. Using a 100 kV X-ray irradiator to develop a phytosanitary treatment may underestimate the dose required for insect control using commercial high-energy γ-ray or X-ray systems.

3.
Insects ; 15(8)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39194774

RESUMEN

Diptera and Lepidoptera species have the highest levels of insecticide resistance, and the mechanism of drug resistance has been studied in detoxification metabolism genes such as P450, GST, EST, and ABC. Since Bactrocera dorsalis are resistant to a variety of chemicals, the pattern and mechanism of resistance in Bactrocera dorsalis have been investigated from a variety of aspects such as detoxification metabolism genes, detoxification enzymes, intestinal symbiotic bacteria, and synergists in the world. In this study, 51 species and 149 detoxification metabolism genes were annotated in the Suppression Subtractive Hybridization (SSH) library, and 12 candidate genes related to beta-cypermethrin resistance were screened and quantitatively expressed in this library. Two genes were found to be upregulated in the egg stage, three genes in the larval stage, one gene in the pupal stage, and five genes in the adult stage, and four genes were found to be upregulated in the midgut and the malacca ducts in the midgut. The expression of cyp6g1, cyp6a22, GST-Epsilon9, and Trypsin-4 genes was upregulated in resistant strains, with the most obvious upregulation occurring in the midgut and the Malpighian tubules. These results provide new insights into the study of pesticide resistance in quarantine insects.

4.
Front Physiol ; 15: 1384426, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952867

RESUMEN

Alternative splicing is an essential post-transcriptional regulatory mechanism that diversifies gene function by generating multiple protein isoforms from a single gene and act as a crucial role in insect environmental adaptation. Olfaction, a key sense for insect adaptation, relies heavily on the antennae, which are the primary olfactory organs expressing most of the olfactory genes. Despite the extensive annotation of olfactory genes within insect antennal tissues facilitated by high-throughput sequencing technology advancements, systematic analyses of alternative splicing are still relatively less. In this study, we focused on the oriental fruit fly (Bactrocera dorsalis), a significant pest of fruit crops. We performed a detailed analysis of alternative splicing in its antennae by utilizing the full-length transcriptome of its antennal tissue and the insect's genome. The results revealed 8600 non-redundant full-length transcripts identified in the oriental fruit fly antennal full-length transcriptome, spanning 4,145 gene loci. Over 40% of these loci exhibited multiple isoforms. Among these, 161 genes showed sex-biased isoform switching, involving seven different types of alternative splicing. Notably, events involving alternative transcription start sites (ATSS) and alternative transcription termination sites (ATTS) were the most common. Of all the genes undergoing ATSS and ATTS alternative splicing between male and female, 32 genes were alternatively spliced in protein coding regions, potentially affecting protein function. These genes were categorized based on the length of the sex-biased isoforms, with the highest difference in isoform fraction (dIF) associated with the ATSS type, including genes such as BdorABCA13, BdorCAT2, and BdorTSN3. Additionally, transcription factor binding sites for doublesex were identified upstream of both BdorABCA13 and BdorCAT2. Besides being expressed in the antennal tissues, BdorABCA13 and BdorCAT2 are also expressed in the mouthparts, legs, and genitalia of both female and male adults, suggesting their functional diversity. This study reveals alternative splicing events in the antennae of Bactrophora dorsalis from two aspects: odorant receptor genes and other types of genes expressed in the antennae. This study not only provides a research foundation for understanding the regulation of gene function by alternative splicing in the oriental fruit fly but also offers new insights for utilizing olfaction-based behavioral manipulation techniques to manage this pest.

5.
Insects ; 15(7)2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39057264

RESUMEN

How alien pests invade new areas has always been a hot topic in invasion biology. The spread of the Bactrocera dorsalis from southern to northern China involved changes in food sources. In this paper, in controlled conditions, we take Bactrocera dorsalis as an example to study how plant host transformation affects gut bacteria by feeding it its favorite host oranges in the south, its favorite host peaches and apples in the north, and feeding it cucumbers as a non-favorite host plant, thereby further affecting their fitness during invasion. The result showed that, after three generations of feeding on cucumbers, Bactrocera dorsalis took longer to develop as a larva while its longevity and fecundity decreased and pre-adult mortality increased. Feeding it cucumbers significantly reduced the overall diversity of gut microbiota of Bactrocera dorsalis. The relative abundance of Enterobacter necessary for survival decreased, while the Empedobacter and Enterococcus increased, resulting in decreased carbohydrate transport and metabolism and increased lipid transport and metabolism. Feeding Bactrocera dorsalis Empedobacter brevis and Enterococcus faecalis resulted in a 26% increase in pre-adult mortality and a 2-3 d increase in adult preoviposition period (APOP). Additionally, Enterococcus faecalis decreased the longevity of female and male adults by 17 and 12 d, respectively, and decreased fecundity by 11%. We inferred that the shifted plant hosts played an important role in posing serious harm to Bactrocera dorsalis invading from the south to the north. Therefore, after an invasion of Bactrocera dorsalis into northern China, it is difficult to colonize cucumbers for a long time, but there is still a risk of short-term harm. The findings of this study have established that the interactions between an insect's food source and gut bacteria may have an important effect on insect invasions.

6.
Front Plant Sci ; 15: 1399718, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39045589

RESUMEN

The oriental fruit fly, Bactrocera dorsalis (Hendel), is a significant economic and quarantine pest due to its polyphagous nature. The accurate identification of B. dorsalis is challenging at the egg, maggot, and pupal stages, due to lack of distinct morphological characters and its similarity to other fruit flies. Adult identification requires specialized taxonomist. Existing identification methods are laborious, time consuming, and expensive. Rapid and precise identification is crucial for timely management. By analyzing the variations in the mitochondrial cytochrome oxidase-1 gene sequence (Insect barcoding gene), we developed a species-specific primer (SSP), DorFP1/DorRP1, for accurate identification of B. dorsalis. The optimal annealing temperature for the SSP was determined to be 66°C, with no cross-amplification or primer-dimer formation observed. The SSP was validated with B. dorsalis specimens from various locations in northern and eastern India and tested for cross-specificity with six other economically significant fruit fly species in India. The primer specificity was further confirmed by the analysis of critical threshold (Ct) value from a qPCR assay. Sensitivity analysis showed the primer could detect template DNA concentrations as low as 1 pg/µl, though sensitivity decreased at lower concentrations. Sequencing of the SSP-amplified product revealed over >99% similarity with existing B. dorsalis sequences in the NCBI GenBank. The developed SSP reliably identifies B. dorsalis across all developmental stages and sexes. This assay is expected to significantly impact pest identification, phytosanitary measures, and eradication programs for B. dorsalis.

7.
Mol Ecol ; 33(17): e17485, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39080979

RESUMEN

Parasitoid wasps are one of the most species-rich groups of animals on Earth, due to their ability to successfully develop as parasites of nearly all types of insects. Unlike most known parasitoid wasps that specialize towards one or a few host species, Diachasmimorpha longicaudata is a generalist that can survive within multiple genera of tephritid fruit fly hosts, including many globally important pest species. Diachasmimorpha longicaudata has therefore been widely released to suppress pest populations as part of biological control efforts in tropical and subtropical agricultural ecosystems. In this study, we investigated the role of a mutualistic poxvirus in shaping the host range of D. longicaudata across three genera of agricultural pest species: two of which are permissive hosts for D. longicaudata parasitism and one that is a nonpermissive host. We found that permissive hosts Ceratitis capitata and Bactrocera dorsalis were highly susceptible to manual virus injection, displaying rapid virus replication and abundant fly mortality. However, the nonpermissive host Zeugodacus cucurbitae largely overcame virus infection, exhibiting substantially lower mortality and no virus replication. Investigation of transcriptional dynamics during virus infection demonstrated hindered viral gene expression and limited changes in fly gene expression within the nonpermissive host compared with the permissive species, indicating that the host range of the viral symbiont may influence the host range of D. longicaudata wasps. These findings also reveal that viral symbiont activity may be a major contributor to the success of D. longicaudata as a generalist parasitoid species and a globally successful biological control agent.


Asunto(s)
Especificidad del Huésped , Simbiosis , Tephritidae , Avispas , Animales , Avispas/virología , Avispas/genética , Simbiosis/genética , Especificidad del Huésped/genética , Tephritidae/virología , Tephritidae/parasitología , Tephritidae/genética , Ceratitis capitata/virología , Ceratitis capitata/genética , Ceratitis capitata/parasitología , Interacciones Huésped-Parásitos/genética , Control Biológico de Vectores
8.
Insects ; 15(6)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38921139

RESUMEN

Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) is one of the most devastating agricultural pests worldwide due to its high reproductive and invasive abilities. The elucidation of its gonadal developmental characteristics and the identification of sex-related genes will provide a useful genetic basis for reproductive-based pest control. Here, the gonadal transcriptome of B. dorsalis was sequenced, and novel gonad-specific expressed genes were analyzed. A total of 1338, 336, 35, and 479 differentially expressed genes (DEGs) were found in the testis (TE), ovary (OV), female accessory gland (FAG), and male accessory gland (MAG), respectively. Furthermore, 463 highly expressed gonad-specific genes were identified, with the TE having the highest number of specific highly expressed genes, at 402, followed by 51 in the OV, 9 in the MAG, and only 1 in the FAG. Strikingly, approximately half of highly expressed gonad-specific genes were uncharacterized. Then, it was found that 35, 17, 3, 2, and 1 of 202 uncharacterized highly expressed TE-specific genes encoded proteins that contained transmembrane domains, signal peptides, high-mobility group boxes, the zinc finger domain, and the BTB/POZ domain, respectively. Interestingly, approximately 40% of uncharacterized highly expressed gonad-specific genes encoding proteins were not predicted to possess functional motifs or domains. Finally, the spatiotemporal expression and sequence characterization of six novel highly expressed gonad-specific genes were analyzed. Altogether, our findings provide a valuable dataset for future functional analyses of sex-related genes and potential target sites for pest control.

9.
Pest Manag Sci ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38923745

RESUMEN

BACKGROUND: An innovative version of the sterile insect technique (SIT) for pest control, called boosted SIT, relies on the use of sterile males coated with a biocide to control a target wild pest population of the same species. The objective of the present study was to assess the relevance of such technology to control the fruit fly Bactrocera dorsalis and fruit losses in mango orchards using. An agent-based simulation model named BOOSTIT was used to explore the reduction of fruit losses thank to sterile male fruit flies control and economic benefits according to different strategies of sterile male release. The simulation considered a landscape of 30.25 ha made up of four mango orchards. RESULTS: The SIT and the boosted SIT reduced fruit losses when releases were made before the mango fruiting period. According to model simulations, releases should be performed at least seven times at 2-week intervals and with a sterile/wild male ratio of at least 10:1. Considering the benefit/cost ratio (BCR), few releases should be done with a late start date. The BCR showed economic gains from the two control methods, the number of saved fruits and BCR being higher for SIT. CONCLUSION: Our simulations showed that SIT would have better results than the boosted SIT to contribute to an effective control of Bactrocera dorsalis at the scale of a small landscape. We highlight the need for laboratory studies of other types of pathogen to find a suitable one with higher incubation time and lower cost. © 2024 Society of Chemical Industry.

10.
Insects ; 15(5)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38786854

RESUMEN

Bactrocera dorsalis Hendel is a highly invasive horticultural pest that is of major economic importance worldwide. In Burkina Faso, it is one of the main insect pests that affects the production and exportation of mangos. Understanding the biology and the genetic dynamics of this insect pest provides crucial information for the development of effective control measures. The aim of this study was to understand the distribution, diversity, and genetic structure of B. dorsalis in Burkina Faso. Male flies were collected transversally in Burkina Faso and analyzed by PCR using 10 microsatellite markers. The results showed an abundance of B. dorsalis varying from 87 to 2986 flies per trap per day at the different sampling sites. The genetic diversity was high at all sites, with an average Shannon's Information Index (I) of 0.72 per site. The gene flow was high between study populations and ranged from 10.62 to 27.53 migrants. Bayesian admixture analysis showed no evidence of structure, while Discriminant Analysis of Principal Components identified three weakly separated clusters in the population of B. dorsalis in Burkina Faso. The results of this study could be used to optimize the effectiveness of current control interventions and to guide the implementation of new, innovative, and sustainable strategies.

11.
Insects ; 15(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38786878

RESUMEN

Predators are dependent on the capture of prey to meet their energetic and nutritive requirements, which brings the risk of predation to prey. The predation risk is divided into consumptive and non-consumptive effects. Non-consumptive effects may manifest through altered growth and ontogenetic trajectories in prey species, a dynamic modulated by olfactory or other sensory cues from predators. Bactrocera dorsalis Hendel represents a major invasive threat to global horticulture. While earlier research was primarily centered on the consumptive interactions between B. dorsalis and its natural enemies, the potential consequences of non-consumptive interactions on the development of B. dorsalis have been overlooked. In this study, we investigated the impact of predation risk effects, induced by both visual exposure to the predatory mantis Hierodula patellifera Serville and its associated odor, on the life history traits of B. dorsalis. Female B. dorsalis demonstrated a reduced developmental time in the presence of a caged predator (H. patellifera) or predator odors, but showed significantly increased fecundity. Conversely, males displayed no significant change in developmental time. Additionally, neither the female nor male body weight at death was significantly influenced by the predation risk from the caged predator or predator odors. This study investigated the effects of predation risk on the development and reproduction of B. dorsalis, emphasizing the potential importance of odor risk in biological and pest control.

12.
Insect Biochem Mol Biol ; 170: 104130, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38734116

RESUMEN

Agmatine N-acetyltransferase (AgmNAT), which catalyzes the formation of N-acetylagmatine from acetyl-CoA and agmatine, is a member of the GCN5-related N-acetyltransferase family. So far, knowledge of the physiological roles of AgmNAT in insects is limited. Here, we identified one gene encoding protein homologous to that of Drosophila AgmNAT using sequence information from an activity-verified Drosophila AgmNAT in a BLAST search of the Bactrocera dorsalis genome. We expressed and purified B. dorsalis AgmNAT in Escherichia coli and used the purified enzyme to define the substrate specificity for acyl-CoA and amine substrates. Our application of the screening strategy to BdorAgmNAT led to the identification of agmatine as the best amine substrate for this enzyme, with the highest kcat/Km value. We successfully obtained a BdorAgmNAT knockout strain based on a wild-type strain (WT) using the CRISPR/Cas9 technique. The ovary development of the BdorAgmNAT knockout mutants was delayed for 10 days compared with the WT specimens. Moreover, mutants had a much smaller mature ovary size and laid far fewer eggs than WT. Loss of function of BdorAgmNAT caused by RNAi with mature WT females did not affect their fecundity. These findings indicate that BdorAgmNAT is critical for oogenesis. Our data provide the first evidence for AgmNAT in regulating ovary development.


Asunto(s)
Acetiltransferasas , Ovario , Tephritidae , Animales , Ovario/crecimiento & desarrollo , Ovario/metabolismo , Ovario/enzimología , Femenino , Tephritidae/genética , Tephritidae/enzimología , Tephritidae/crecimiento & desarrollo , Tephritidae/metabolismo , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Agmatina/metabolismo
13.
J Chem Ecol ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740727

RESUMEN

The Oriental fruit fly, Bactrocera dorsalis, is a significant pest that damages a variety of fruit crops. The effectiveness of chemical pesticides against such pests is limited, raising concerns about pesticide residues and resistance. Proteins naturally attract B. dorsalis and have led to the development of a management strategy known as protein bait attractant technology (BAT). Although the attraction of protein sources to B. dorsalis is well-documented, the biologically active components within these sources are not fully understood. This study employed analytical chemistry, behavioral tests, and electrophysiological techniques to investigate the behaviorally active components of beer yeast protein powder (BYPD), aiming to provide a basis for improving and developing protein baits. An olfactory trap assay confirmed the attractiveness of BYPD, and five components with high abundance were identified from its headspace volatiles using GC-MS. These components included ethanol, isoamyl alcohol, ethyl decanoate, benzaldehyde, and phenylethyl alcohol. Mixtures of these five components demonstrated significant attraction to B. dorsalis adults, with benzaldehyde identified as a potential key component. The attractiveness of benzaldehyde required a relatively large dose, and it was most attractive to adults that had been starved from dusk until the following morning. Attraction of adult flies to benzaldehyde appeared mainly mediated by inputs from olfactory receptors. While EAG data supports that ionotropic receptors could influence the detection of benzaldehyde in female adults, they did not affect female behavior towards benzaldehyde. These findings indicate that benzaldehyde is an important behaviorally active component in BYPD and offer insights for developing novel protein lures to control B. dorsalis in an environmentally friendly manner.

14.
J Agric Food Chem ; 72(14): 7784-7793, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38561632

RESUMEN

The ability to recognize a host plant is crucial for insects to meet their nutritional needs and locate suitable sites for laying eggs. Bactrocera dorsalis is a highly destructive pest in fruit crops. Benzothiazole has been found to induce oviposition behavior in the gravid B. dorsalis. However, the ecological roles and the olfactory receptor responsible for benzothiazole are not yet fully understood. In this study, we found that adults were attracted to benzothiazole, which was an effective oviposition stimulant. In vitro experiments showed that BdorOR49b was narrowly tuned to benzothiazole. The electroantennogram results showed that knocking out BdorOR49b significantly reduced the antennal electrophysiological response to benzothiazole. Compared with wild-type flies, the attractiveness of benzothiazole to BdorOR49b knockout adult was significantly attenuated, and mutant females exhibited a severe decrease in oviposition behavior. Altogether, our work provides valuable insights into chemical communications and potential strategies for the control of this pest.


Asunto(s)
Receptores Odorantes , Tephritidae , Animales , Femenino , Receptores Odorantes/genética , Oviposición , Tephritidae/fisiología , Benzotiazoles/farmacología
15.
Pestic Biochem Physiol ; 200: 105825, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38582589

RESUMEN

Dopamine (DA) is a key regulator of associative learning and memory in both vertebrates and invertebrates, and it is widely believed that DA plays a key role in aversive conditioning in invertebrates. However, the idea that DA is involved only in aversive conditioning has been challenged in recent studies on the fruit fly (Drosophila melanogaster), ants and crabs, suggesting diverse functions of DA modulation on associative plasticity. Here, we present the results of DA modulation in aversive olfactory conditioning with DEET punishment and appetitive olfactory conditioning with sucrose reward in the oriental fruit fly, Bactrocera dorsalis. Injection of DA receptor antagonist fluphenazine or chlorpromazine into these flies led to impaired aversive learning, but had no effect on the appetitive learning. DA receptor antagonists impaired both aversive and appetitive long-term memory retention. Interestingly, the impairment on appetitive memory was rescued not only by DA but also by octopamine (OA). Blocking the OA receptors also impaired the appetitive memory retention, but this impairment could only be rescued by OA, not by DA. Thus, we conclude that in B. dorsalis, OA and DA pathways mediate independently the appetitive and aversive learning, respectively. These two pathways, however, are organized in series in mediating appetitive memory retrieval with DA pathway being at upstream. Thus, OA and DA play dual roles in associative learning and memory retrieval, but their pathways are organized differently in these two cognitive processes - parallel organization for learning acquisition and serial organization for memory retrieval.


Asunto(s)
Dopamina , Drosophila melanogaster , Tephritidae , Animales , Dopamina/metabolismo , Dopamina/farmacología , Drosophila melanogaster/metabolismo , Memoria , Antagonistas de Dopamina/farmacología
16.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38618721

RESUMEN

The gut microbiota of insects has been shown to regulate host detoxification enzymes. However, the potential regulatory mechanisms involved remain unknown. Here, we report that gut bacteria increase insecticide resistance by activating the cap "n" collar isoform-C (CncC) pathway through enzymatically generated reactive oxygen species (ROS) in Bactrocera dorsalis. We demonstrated that Enterococcus casseliflavus and Lactococcus lactis, two lactic acid-producing bacteria, increase the resistance of B. dorsalis to ß-cypermethrin by regulating cytochrome P450 (P450) enzymes and α-glutathione S-transferase (GST) activities. These gut symbionts also induced the expression of CncC and muscle aponeurosis fibromatosis. BdCncC knockdown led to a decrease in resistance caused by gut bacteria. Ingestion of the ROS scavenger vitamin C in resistant strain affected the expression of BdCncC/BdKeap1/BdMafK, resulting in reduced P450 and GST activity. Furthermore, feeding with E. casseliflavus or L. lactis showed that BdNOX5 increased ROS production, and BdNOX5 knockdown affected the expression of the BdCncC/BdMafK pathway and detoxification genes. Moreover, lactic acid feeding activated the ROS-associated regulation of P450 and GST activity. Collectively, our findings indicate that symbiotic gut bacteria modulate intestinal detoxification pathways by affecting physiological biochemistry, thus providing new insights into the involvement of insect gut microbes in the development of insecticide resistance.


Asunto(s)
Microbioma Gastrointestinal , Resistencia a los Insecticidas , Piretrinas , Especies Reactivas de Oxígeno , Tephritidae , Animales , Especies Reactivas de Oxígeno/metabolismo , Piretrinas/farmacología , Piretrinas/metabolismo , Resistencia a los Insecticidas/genética , Tephritidae/microbiología , Tephritidae/genética , Insecticidas/farmacología , Insecticidas/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Lactobacillales/genética , Lactobacillales/metabolismo , Lactobacillales/efectos de los fármacos , Lactobacillales/fisiología , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Enterococcus/genética , Enterococcus/metabolismo , Enterococcus/efectos de los fármacos , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo
17.
Int J Biol Macromol ; 267(Pt 1): 131508, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38604421

RESUMEN

Polyglycylation is a post-translational modification that generates glycine side chains in the C-terminal domains of both α- and ß-tubulins. To date, the patterns and significance of polyglycylation across insect species remain largely unknown. The TTLL3B was thought to be a polyglycylase and be essential for polyglycylation in dipteran insects. In this study, the TTLL3B of Bactrocera dorsalis (BdTTLL3B) was identified and characterized. The BdTTLL3B expressed remarkably higher in adult males, especially in testes. The spatio-temporal patterns of polyglycylation were consistent with that of BdTTLL3B. Along with spermatogenesis, the intensity of polyglycylation was enhanced steadily and concentrated in elongated flagella. The expression of recombinant BdTTLL3B in Hela cells, which are genetically deficient in polyglycylation, catalyzed intracellular polyglycylation, validating the identity of BdTTLL3B as a polyglycylase. Knockout of BdTTLL3B significantly suppressed polyglycylation in testes and impaired male fertility, probably due to abnormal morphology of mitochondrial derivatives and over-accumulation of paracrystalline. Taken together, these findings indicated that the BdTTLL3B-mediated polyglycylation is involved in the spermatogenesis and play an important role in fertility of adult B. dorsalis. Therefore, the BdTTLL3B can be considered as a candidate target gene for the management of B. dorsalis, such as developing gene silencing/knockout-based sterile insect technology (SIT).


Asunto(s)
Espermatogénesis , Tephritidae , Animales , Tephritidae/genética , Tephritidae/metabolismo , Masculino , Humanos , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Testículo/metabolismo , Procesamiento Proteico-Postraduccional , Células HeLa , Secuencia de Aminoácidos , Fertilidad/genética
18.
Insects ; 15(3)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38535372

RESUMEN

X-ray irradiation and modified atmospheres (MAs) provide eco-friendly, chemical-free methods for pest management. Although a low-oxygen atmospheric treatment improves the performance of some irradiated insects, its influence on the irradiation of quarantine insects and its impacts on pest control efficacy have yet to be investigated. Based on bioassay results, this study employed direct immersion solid-phase microextraction (DI-SPME) combined with gas chromatography-mass spectrometry (GC-MS) to determine metabolic profiles of late third-instar B. dorsalis larvae under normoxia (CON, Air), hypoxia (95% N2 + 5% O2, HY), super-hypoxia (99.5% N2 + 0.5% O2, Sup-HY), irradiation-alone (116 Gy, IR-alone), hypoxia + irradiation (HY + IR) and super-hypoxia + irradiation (Sup-HY + IR). Our findings reveal that, compared to the IR-alone group, the IR treatment under HY and Sup-HY (HY + IR and Sup-HY + IR) increases the larval pupation of B. dorsalis, and weakens the delaying effect of IR on the larval developmental stage. However, these 3 groups further hinder adult emergence under the phytosanitary IR dose of 116 Gy. Moreover, all IR-treated groups, including IR-alone, HY + IR, and Sup-HY + IR, lead to insect death as a coarctate larvae or pupae. Pathway analysis identified changed metabolic pathways across treatment groups. Specifically, changes in lipid metabolism-related pathways were observed: 3 in HY vs. CON, 2 in Sup-HY vs. CON, and 5 each in IR-alone vs. CON, HY + IR vs. CON, and Sup-HY + IR vs. CON. The treatments of IR-alone, HY + IR, and Sup-HY + IR induce comparable modifications in metabolic pathways. However, in the HY + IR, and Sup-HY + IR groups, the third-instar larvae of B. dorsalis demonstrate significantly fewer changes. Our research suggests that a low-oxygen environment (HY and Sup-HY) might enhance the radiation tolerance in B. dorsalis larvae by stabilizing lipid metabolism pathways at biologically feasible levels. Additionally, our findings indicate that the current phytosanitary IR dose contributes to the effective management of B. dorsalis, without being influenced by radioprotective effects. These results hold significant importance for understanding the biological effects of radiation on B. dorsalis and for developing IR-specific regulatory guidelines under MA environments.

19.
J Agric Food Chem ; 72(11): 5725-5733, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38452362

RESUMEN

The destructive agricultural pest oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), has been causing huge damage to the fruits and vegetable industry. Although many pertinent studies have been conducted on B. dorsalis, the functions of fat body still remain largely unknown. To this end, the comparative transcriptome analysis between fat body and carcass was performed in an attempt to provide insights into functions of fat body of B. dorsalis in the present study. A total of 1431 upregulated and 2511 downregulated unigenes were discovered in the fat body vs carcass comparison, respectively. The enrichment analysis of differentially expressed genes (DEG) revealed that most of the enriched pathways were related to metabolism. The reliability of DEG analysis was validated by qRT-PCR measurements of 12 genes in starch and sucrose metabolism pathway, including the trehalose-6-phosphate synthase (BdTPS) which was highly expressed in eggs, 5 d-old adults, and fat body. The RNAi of BdTPS significantly affected trehalose and chitin metabolism, larval growth, and larva-pupa metamorphosis. Collectively, the findings in this study enriched our understanding of fat body functions in metabolism and demonstrated the indispensable roles of BdTPS in trehalose-related physiological pathways.


Asunto(s)
Cuerpo Adiposo , Glucosiltransferasas , Tephritidae , Animales , Reproducibilidad de los Resultados , Trehalosa/metabolismo , Perfilación de la Expresión Génica , Tephritidae/genética , Tephritidae/metabolismo , Transcriptoma
20.
J Agric Food Chem ; 72(13): 6954-6963, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38512330

RESUMEN

The oriental fruit fly,Bactrocera dorsalis (Hendel), is a notorious pest of fruit crops, causing severe damage to fleshy fruits during oviposition and larval feeding. Gravid females locate suitable oviposition sites by detecting the host volatiles. Here, the oviposition preference of antenna-removed females and the electrophysiological response of ovipositors to benzothiazole indicated that both antennae and ovipositors are involved in perceiving benzothiazole. Subsequently, odorant receptors (ORs) expressed in both antennae and ovipositors were screened, and BdorOR43a-1 was further identified to respond to benzothiazole using voltage-clamp recording. Furthermore, BdorOR43a-1-/- mutants were obtained using the CRISPR/Cas9 system and their oviposition preference to benzothiazole was found to be significantly altered compared to WT females, suggesting that BdorOR43a-1 is one of the important ORs for benzothiazole perception. Our results not only demonstrate the important role of antennae and ovipositors in benzothiazole-induced oviposition but also elucidate on the OR responsible for benzothiazole perception in B. dorsalis.


Asunto(s)
Receptores Odorantes , Tephritidae , Femenino , Animales , Oviposición , Tephritidae/fisiología , Receptores Odorantes/genética , Benzotiazoles/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA