Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
J Med Entomol ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39213529

RESUMEN

Stable flies, Stomoxys calcitrans (Linnaeus) (Diptera: Muscidae), are common blood-feeding ectoparasites of cows and thus potential vectors of the skin-dwelling bacterium Staphylococcus aureus, a causal agent of bovine mastitis which inflicts udder inflammation in cows. Our objectives were to determine whether stable flies (i) are attracted to disease-causing strains of S. aureus, and (ii) transmit S. aureus from infected blood to sterile blood. In 3-chamber olfactometers, five of eight S. aureus strains grown on agar and tested versus sterile agar attracted female stable flies. When flies ingested droplets of blood inoculated with S. aureus at doses of 0 (control), 105 (low), 107 (medium), and > 109 (high) colony-forming units per milliliter and subsequently ingested sterile blood, they transmitted S. aureus to the sterile blood. The dose of S. aureus in blood droplets fed upon by flies during their first feeding bout dose-dependently affected the amount of bacteria that flies transmitted to sterile blood during their second feeding bout, but the time elapsed between feeding bouts (0 h, 1 h, 8 h, and 24 h) had no effect on the amount of microbes transmitted to sterile blood. Our data infer the existence of a positive feedback loop. First, stable flies carrying S. aureus and feeding on cows transmit S. aureus, thereby causing mastitis. As S. aureus bacteria of afflicted cows proliferate, they attract even more flies which, in turn, worsen the infection. This type of feedback loop underscores the need for effective stable fly control tactics that curtail the incidence of bovine mastitis in cows.

2.
mSystems ; 9(1): e0101823, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38095429

RESUMEN

Antimicrobial resistance (AMR) is a major global health concern, further complicated by its spread via the microbiome bacterial members. While mathematical models discuss AMR transmission through the symbiotic microbiome, experimental studies are scarce. Herein, we used a gregarious cockroach, Pycnoscelus surinamensis, as an in vivo animal model for AMR transmission investigations. We explored whether the effect of antimicrobial treatment is detectable with metagenomic sequencing, and whether AMR genes can be spread and established in unchallenged (not treated with antibiotics) individuals following contact with treated donors, and under various frequencies of interaction. Gut and soil substrate microbiomes were investigated by metagenomic sequencing for bacterial community composition and resistome profiling. We found that tetracycline treatment altered the treated gut microbiome by decreasing bacterial diversity and increasing the abundance of tetracycline resistance genes. Untreated cockroaches that interacted with treated donors also had elevated tetracycline resistance. The levels of resistance differed depending on the magnitude and frequency of donor transfer. Additionally, treated donors showed signs of microbiome recovery due to their interaction with the untreated ones. Similar patterns were also recorded in the soil substrate microbiomes. Our results shed light on how interacting microbiomes facilitate AMR gene transmission to previously unchallenged hosts, a dynamic influenced by the interaction frequencies, using an in vivo model to validate theoretical AMR transmission models.IMPORTANCEAntimicrobial resistance is a rising threat to human and animal health. The spread of resistance through the transmission of the symbiotic gut microbiome is of concern and has been explored in theoretical modeling studies. In this study, we employ gregarious insect populations to examine the emergence and transmission of antimicrobial resistance in vivo and validate modeling hypotheses. We find that antimicrobial treatment increases the levels of resistance in treated populations. Most importantly, we show that resistance increased in untreated populations after interacting with the treated ones. The level of resistance transmission was affected by the magnitude and frequency of population mixing. Our results highlight the importance of microbial transmission in the spread of antimicrobial resistance.


Asunto(s)
Cucarachas , Microbioma Gastrointestinal , Animales , Humanos , Antibacterianos/farmacología , Microbioma Gastrointestinal/genética , Farmacorresistencia Bacteriana , Bacterias/genética , Suelo
3.
Microorganisms ; 11(12)2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38138082

RESUMEN

Although self-service facilities (SSFs) have been used on a large scale worldwide, they can be easily contaminated by microorganisms from the hands of their sequential users. This research aimed to study the prevalence and antimicrobial susceptibility/resistance of bacteria contaminating SSFs in Sakaka, Aljouf, Saudi Arabia. We randomly swabbed the surfaces of 200 SSFs, then used the suitable culture media, standard microbiological methods, and the MicroScan WalkAway Microbiology System, including the identification/antimicrobial susceptibility testing-combo panels. A high SSFs' bacterial contamination load was detected (78.00%). Ninety percent of the samples collected in the afternoon, during the maximum workload of the SSFs, yielded bacterial growth (p < 0.001 *). Most of the contaminated SSFs were supermarket payment machines, self-pumping equipment at gas stations (p = 0.004 *), online banking service machines (p = 0.026 *), and barcode scanners in supermarkets. In the antiseptic-deficient areas, 55.1% of the contaminated SSFs were detected (p = 0.008 *). Fifty percent of the contaminated SSFs were not decontaminated. The most common bacterial contaminants were Escherichia coli (70 isolates), Klebsiella pneumoniae (66 isolates), Staphylococcus epidermidis (34 isolates), methicillin-resistant Staphylococcus aureus (18 isolates), and methicillin-sensitive Staphylococcus aureus (14 isolates), representing 31.53%, 29.73%, 15.32%, 8.11%, and 6.31% of the isolates, respectively. Variable degrees of reduced sensitivity to some antimicrobials were detected among the bacterial isolates. The SSFs represent potential risks for the exchange of antimicrobial-resistant bacteria between the out-hospital environment and the hospitals through the hands of the public. As technology and science advance, there is an urgent need to deploy creative and automated techniques for decontaminating SSFs and make use of recent advancements in materials science for producing antibacterial surfaces.

4.
Proc Biol Sci ; 290(2011): 20232223, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37964521

RESUMEN

The gut microbiome composition of terrestrial vertebrates is known to converge in response to common specialized dietary strategies, like leaf-eating (folivory) or ant- and termite-eating (myrmecophagy). To date, such convergence has been studied in mammals and birds, but has been neglected in amphibians. Here, we analysed 15 anuran species (frogs and toads) representing five Neotropical families and demonstrated the compositional convergence of the gut microbiomes of distantly related myrmecophagous species. Specifically, we found that the gut microbial communities of bufonids and microhylids, which have independently evolved myrmecophagy, were significantly more similar than expected based on their hosts' evolutionary divergence. Conversely, we found that gut microbiome composition was significantly associated with host evolutionary history in some cases. For instance, the microbiome composition of Xenohyla truncata, one of the few known amphibians that eat fruits, was not different from those of closely related tree frogs with an arthropod generalist diet. Bacterial taxa overrepresented in myrmecophagous species relative to other host families include Paludibacter, Treponema, and Rikenellaceae, suggesting diet-mediated selection and prey-to-predator transmission likely driving the observed compositional convergence. This study provides a basis for examining the roles of the gut microbiome in host tolerance and sequestration of toxic alkaloids from ants and termites.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Animales , Evolución Biológica , Mamíferos/microbiología , Anuros , ARN Ribosómico 16S
5.
Vet Res ; 54(1): 112, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38001497

RESUMEN

The nasal microbiota plays an important role in animal health and the use of antibiotics is a major factor that influences its composition. Here, we studied the consequences of an intensive antibiotic treatment, applied to sows and/or their offspring, on the piglets' nasal microbiota. Four pregnant sows were treated with crystalline ceftiofur and tulathromycin (CTsows) while two other sows received only crystalline ceftiofur (Csows). Sow treatments were performed at D-4 (four days pre-farrowing), D3, D10 and D17 for ceftiofur and D-3, D4 and D11 for tulathromycin. Half of the piglets born to CTsows were treated at D1 with ceftiofur. Nasal swabs were taken from piglets at 22-24 days of age and bacterial load and nasal microbiota composition were defined by 16 s rRNA gene qPCR and amplicon sequencing. Antibiotic treatment of sows reduced their nasal bacterial load, as well as in their offspring, indicating a reduced bacterial transmission from the dams. In addition, nasal microbiota composition of the piglets exhibited signs of dysbiosis, showing unusual taxa. The addition of tulathromycin to the ceftiofur treatment seemed to enhance the deleterious effect on the microbiota diversity by diminishing some bacteria commonly found in the piglets' nasal cavity, such as Glaesserella, Streptococcus, Prevotella, Staphylococcus and several members of the Ruminococcaceae and Lachnospiraceae families. On the other hand, the additional treatment of piglets with ceftiofur resulted in no further effect beyond the treatment of the sows. Altogether, these results suggest that intensive antibiotic treatments of sows, especially the double antibiotic treatment, disrupt the nasal microbiota of their offspring and highlight the importance of sow-to-piglet microbiota transmission.


Asunto(s)
Microbiota , Humanos , Embarazo , Femenino , Animales , Porcinos , Animales Recién Nacidos , Bacterias , Antibacterianos/farmacología , Lactancia
6.
mSystems ; 8(5): e0014123, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37681982

RESUMEN

IMPORTANCE: The importance of clean water cannot be overstated. It is a vital resource for maintaining health and well-being. Unfortunately, water sources contaminated with fecal discharges from animal and human origin due to a lack of wastewater management pose a significant risk to communities, as they can become a means of transmission of pathogenic bacteria like enterotoxigenic E. coli (ETEC). ETEC is frequently found in polluted water in countries with a high prevalence of diarrheal diseases, such as Bolivia. This study provides novel insights into the circulation of ETEC between diarrheal cases and polluted water sources in areas with high rates of diarrheal disease. These findings highlight the Choqueyapu River as a potential reservoir for emerging pathogens carrying antibiotic-resistance genes, making it a crucial area for monitoring and intervention. Furthermore, the results demonstrate the feasibility of a low-cost, high-throughput method for tracking bacterial pathogens in low- and middle-income countries, making it a valuable tool for One Health monitoring efforts.


Asunto(s)
Escherichia coli Enterotoxigénica , Infecciones por Escherichia coli , Proteínas de Escherichia coli , Humanos , Escherichia coli Enterotoxigénica/genética , Infecciones por Escherichia coli/epidemiología , Proteínas de Escherichia coli/genética , Diarrea/epidemiología , Agua
7.
Sci Total Environ ; 903: 166229, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-37586539

RESUMEN

Leaves and roots of submerged macrophytes provide extended surfaces and stable internal tissues for distinct microorganisms to rest, but how these microorganisms interact with each other across different niches and ultimately drive the distribution through horizontal and vertical transmissions remains largely undetermined. Knowledge of the mechanisms of assemblage and transmission in aquatic macrophytes-associated microbial communities will help to better understanding their important roles in plant fitness and benefit ecological functions. Here, we conducted a microcosmic experiment based on in situ lake samples to investigate the bacterial community assemblage, transmission, and co-occurrence patterns in different niches of a typical submerged macrophyte, Vallisneria natans (V. natans), including seed endosphere, as well as environmental (water and bulk sediment), epiphytic (phyllosphere and rhizosphere), and endophytic (leaf and root endosphere) microhabitats of both leaves and roots representatives of the above- and below- ground niches (AGNs and BGNs), respectively. We found the bacterial communities colonized in epiphytic niches not only exhibited the highest diversity compared to adjacent environmental and endophytic niches, but also dominated the interactions between those bacterial members of neighboring niches in both AGNs and BGNs. The host plants promoted niche specificity at bacterial community-level, as confirmed by the proportion of bacterial specialists increased with plant proximity, especially in the BGNs. Furthermore, the bacterial taxa colonized in the AGNs exhibited higher horizontal and vertical transmission capacities than those in the BGNs, especially in the vertical transmission from seeds to leaves (41.38 %) than roots (0.42 %). Meanwhile, the bacterial co-occurrence network in AGNs was shown to have stronger small-world characteristics but weaker stability than those in the BGNs. Overall, this study cast new light on the plant microbiome in the aquatic environment, thus better promoting the potential development of strategies for breeding aquatic macrophyte holobiont with enhanced water purification and pollutant removal capabilities in the future.

8.
Mol Biol Evol ; 40(7)2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37402639

RESUMEN

Social networks can influence the ecology of gut bacteria, shaping the species composition of the gut microbiome in humans and other animals. Gut commensals evolve and can adapt at a rapid pace when colonizing healthy hosts. Here, we aimed at assessing the impact of host-to-host bacterial transmission on Escherichia coli evolution in the mammalian gut. Using an in vivo experimental evolution approach in mice, we found a transmission rate of 7% (±3% 2× standard error [2SE]) of E. coli cells per day between hosts inhabiting the same household. Consistent with the predictions of a simple population genetics model of mutation-selection-migration, the level of shared events resulting from within host evolution is greatly enhanced in cohoused mice, showing that hosts undergoing the same diet and habit are not only expected to have similar microbiome species compositions but also similar microbiome evolutionary dynamics. Furthermore, we estimated the rate of mutation accumulation of E. coli to be 3.0 × 10-3 (±0.8 × 10-3 2SE) mutations/genome/generation, irrespective of the social context of the regime. Our results reveal the impact of bacterial migration across hosts in shaping the adaptive evolution of new strains colonizing gut microbiomes.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Animales , Ratones , Evolución Biológica , Escherichia coli/genética , Microbiota/genética , Microbioma Gastrointestinal/genética , Mutación , Mamíferos/microbiología , Bacterias
9.
Pathogens ; 12(7)2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37513748

RESUMEN

Transfusion medicine is traditionally a strong/fundamental part of clinical practice, saving hundreds of millions of lives. However, blood-borne or transmitted infections are a well-known and feared possibility, a risk we relentlessly mitigate. Pathogens are continuously and rather quickly changing, so during the last decade, many, sometimes exotic, new pathogens and diseases were recorded and analyzed, and some of them were proved to be transmitted with transfusions. Blood or blood component transfusions are carried out after cautious preparative screening and inactivation maneuvers, but in some instances, newly recognized agents might escape from standard screening and inactivation procedures. Here, we try to focus on some of these proven or potentially pathogenic transfusion-transmitted agents, especially in immunocompromised patients or bone marrow transplantation settings. These pathogens are sometimes new challenges for preparative procedures, and there is a need for more recent, occasionally advanced, screening and inactivation methods to recognize and eliminate the threat a new or well-known pathogen can pose. Pathogen transmission is probably even more critical in hemophiliacs or bone marrow transplant recipients, who receive plasma-derived factor preparations or blood component transfusions regularly and in large quantities, sometimes in severely immunosuppressed conditions. Moreover, it may not be emphasized enough that transfusions and plasma-derived product administrations are essential to medical care. Therefore, blood-borne transmission needs continued alertness and efforts to attain optimal benefits with minimized hazards.

10.
PeerJ ; 11: e15146, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37187519

RESUMEN

Background: Host-gut microbiota interactions are complex and can have a profound impact on the ecology and evolution of both counterparts. Several host traits such as systematics, diet and social behavior, and external factors such as prey availability and local environment are known to influence the composition and diversity of the gut microbiota. Methods: In this study, we investigate the influence of systematics, sex, host size, and locality/habitat on gut microbiota diversity in five lizard species from two different sites in Portugal: Podarcis bocagei and Podarcis lusitanicus, living in syntopy in a rural area in northern Portugal (Moledo); the invasive Podarcis siculus and the native Podarcis virescens, living in sympatry in an urbanized environment (Lisbon); and the invasive Teira dugesii also living in an urban area (Lisbon). We also infer the potential microbial transmission occurring between species living in sympatry and syntopy. To achieve these goals, we use a metabarcoding approach to characterize the bacterial communities from the cloaca of lizards, sequencing the V4 region of the 16S rRNA. Results: Habitat/locality was an important factor explaining differences in gut bacterial composition and structure, with species from urbanized environments having higher bacterial diversity. Host systematics (i.e., species) influenced gut bacterial community structure only in lizards from the urbanized environment. We also detected a significant positive correlation between lizard size and gut bacterial alpha-diversity in the invasive species P. siculus, which could be due to its higher exploratory behavior. Moreover, estimates of bacterial transmission indicate that P. siculus may have acquired a high proportion of local microbiota after its introduction. These findings confirm that a diverse array of host and environmental factors can influence lizards' gut microbiota.


Asunto(s)
Microbioma Gastrointestinal , Lagartos , Microbiota , Animales , Microbioma Gastrointestinal/genética , Lagartos/genética , ARN Ribosómico 16S/genética , Conducta Social , Bacterias
11.
Front Microbiol ; 14: 1158056, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37125167

RESUMEN

Infection with Extended-spectrum beta-lactamase -producing Enterobacterales (ESBL-E) is common in infants and leads to increased intensive care unit admission and mortality, but the role of maternal transmission in colonization of infants is unclear. Using paired isolates from 50 pairs of mothers and neonates admitted to a Cambodian hospital, we investigated antimicrobial resistance in Escherichia coli and Klebsiella pneumoniae using whole genome sequencing. We detected a wide variety of ESBL-E genes present in this population along with high levels of multidrug resistance. From 21 pairs where the same organism was present in both mother and neonate, we identified eight pairs with identical or near-identical isolates from both individuals suggestive of transmission at or around birth, including a pair with transmission of multiple strains. We found no evidence for transmission of plasmids only from mother to infant. This suggests vertical transmission outside hospitals as a common cause of ESBL-E colonization in neonates.

12.
Microorganisms ; 11(4)2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37110388

RESUMEN

Several retrospective studies have identified hospital sinks as reservoirs of Gram-negative bacteria. The aim of this study was to prospectively investigate the bacterial transmission from sinks to patients and if self-disinfecting sinks could reduce this risk. Samples were collected weekly from sinks (self-disinfecting, treated with boiling water, not treated) and patients in the Burn Centre at Linköping University Hospital, Sweden. The antibiotic susceptibility of Gram-negative isolates was tested, and eight randomly chosen patient isolates and their connected sink isolates were subjected to whole genome sequencing (WGS). Of 489 sink samples, 232 (47%) showed growth. The most frequent findings were Stenotrophomonas maltophilia (n = 130), Pseudomonas aeruginosa (n = 128), and Acinetobacter spp. (n = 55). Bacterial growth was observed in 20% of the samplings from the self-disinfecting sinks and in 57% from the sinks treated with boiling water (p = 0.0029). WGS recognized one transmission of Escherichia coli sampled from an untreated sink to a patient admitted to the same room. In conclusion, the results showed that sinks can serve as reservoirs of Gram-negative bacteria and that self-disinfecting sinks can reduce the transmission risk. Installing self-disinfecting sinks in intensive care units is an important measure in preventing nosocomial infection among critically ill patients.

13.
Am J Transl Res ; 15(3): 2241-2255, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37056858

RESUMEN

PURPOSE: We compared the microbial communities of the eye, anterior nares (ANs) and oropharynx (OP) of healthy adults to provide a basic understanding of the microbial associations among the three sites. METHODS: The name of the registry of our prospective study was "Study on the diversity of microbial flora in the eye, nose and oropharynx of healthy people". The trial number is ChiCTR2300067724 (https://www.chictr.org.cn/index.aspx). Swabs were collected from the eye, ANs and OP of 48 healthy adult participants for 16S rRNA gene amplicon sequencing. The bacterial community profiles and their functional associations were compared among the three sites. RESULTS: At a phylum level, the basic bacterial compositions in the eye and ANs were generally similar, and the predominant phyla were Actinobacteria, Proteobacteria and Firmicutes. In contrast, the OP microbiota was characterized by an increased abundance of Bacteroidetes. At a genus level, Corynebacterium, Cutibacterium and Staphylococcus were the most abundant in the eye and ANs. Prevotella-7, Alloprevatella, Haemophilus and Streptococcus were more abundant in the OP. Correlation analysis of the eye and ANs microbiota suggested that Cutibacterium and Micrococcus may migrate from the eye to nose (P < 0.05). CONCLUSIONS: The bacterial flora composition and function predictions of eye and ANs were similar, but differed from those of the OP in healthy adults. The OP bacterial flora distribution was markedly different, showing characteristics similar to that of the digestive tract flora. Thus, the eye and ANs microorganisms may be related in healthy individuals. Cutibacterium and Micrococcus may migrate from the eye to the nose.

14.
Microbiome ; 10(1): 197, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36419187

RESUMEN

BACKGROUND: Most previous studies attempting to prove the phenomenon of mother-to-infant microbiota transmission were observational, performed only at genus/species-level resolution, and relied entirely on non-culture-based methodologies, impeding interpretation. RESULTS: This work aimed to use a biomarker strain, Bifidobacterium animalis subsp. lactis Probio-M8 (M8), to directly evaluate the vertical transmission of maternally ingested bacteria by integrated culture-dependent/-independent methods. Our culture and metagenomics results showed that small amounts of maternally ingested bacteria could translocate to the infant gut via oral-/entero-mammary routes through lactation. Interestingly, many mother-infant-pair-recovered M8 homologous isolates exhibited high-frequency nonsynonymous mutations in a sugar transporter gene (glcU) and altered carbohydrate utilization preference/capacity compared with non-mutant isolates, suggesting that M8 underwent adaptive evolution for better survival in simple sugar-deprived lower gut environments. CONCLUSIONS: This study presented direct and strain-level evidence of mother-to-infant bacterial transmission through lactation and provided insights into the impact of milk microbiota on infant gut colonization. Video Abstract.


Asunto(s)
Bifidobacterium animalis , Animales , Femenino , Humanos , Lactante , Bacterias , Lactancia Materna , Lactancia , Leche , Mutación , Proteínas de Transporte de Monosacáridos/genética , Proteínas Bacterianas/genética
15.
Ecol Evol ; 12(4): e8854, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35475186

RESUMEN

Composition and diversity in gut microbiota are impacted by a wide variety of factors. The similarity of gut microbiota in related or sympatric species has been gaining recent traction. Here, 16S rRNA gene sequencing technology was employed to study the gut microbiota of three sympatric frog species, namely Odorrana tormota, O. graminea, and Amolops wuyiensis. In these three frog species, the most abundant phylum was Proteobacteria, followed by Bacteroidetes, Verrucomicrobia, and Firmicutes. The most abundant family was Burkholderiaceae in three species. The most dominant genera were Burkholderia, Caballeronia, and Paraburkholderia with the highest relative abundance in O. tormota, O. graminea, and A. wuyiensis, respectively. No differences were observed in alpha diversity indexes among the three frog species. However, bacterial similarity of gut microbiota was significantly different between O. tormota and A. wuyiensis and between O. graminea and A. wuyiensis. Metabolism-related gene function was predominantly enriched in the gut microbiota of the three evaluated frog species. From these findings, that the relative abundance of the gut microbiota and predicted gene functions differed in three species, we conclude that there were significant differences in the gut microbiota of the three species. Similar alpha diversity and interspecific bacterial similarity in the gut might be related to bacterial transmission among the three Anura frogs evaluated in this study.

16.
J Clin Anesth ; 77: 110632, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34929497

RESUMEN

STUDY OBJECTIVE: A randomized controlled study demonstrated that an optimized intraoperative infection control program targeting basic preventive measures can reduce Staphylococcus aureus transmission and surgical site infections. In this study we address potential limitations of operating room heterogeneity of infections and compliance with behavioral interventions following adoption into clinical practice. DESIGN: A post-implementation prospective case-cohort study. SETTING: Twenty-three operating rooms at a large teaching hospital. PATIENTS: A total of 801 surgical patients [425 (53%) women; 350 (44%) ASA > 2, age 54.6 ± 15.9 years] were analyzed for the primary and 804 for the secondary outcomes. INTERVENTIONS: A multifaceted, evidence-based intraoperative infection control program involving hand hygiene, vascular care, and environmental cleaning improvements was implemented for 23 operating room environments. Bacterial transmission monitoring was used to provide monthly feedback for intervention optimization. MEASUREMENTS: S. aureus transmission (primary) and surgical site infection (secondary). MATERIALS AND METHODS: The incidence of S. aureus transmission and surgical site infection before (3.5 months) and after (4.5 months) infection control optimization was assessed. Optimization was defined by a sustained reduction in anesthesia work area bacterial reservoir isolate counts. Poisson regression with robust error variances was used to estimate the incidence risk ratio (IRR) of intraoperative S. aureus transmission and surgical site infection for the independent variable of optimization. MAIN RESULTS: Optimization was associated with decreased S. aureus transmission [24% before (85/357) to 9% after (42/444), IRR 0.39, 95% CI 0.28 to 0.56, P < .001] and surgical site infections [8% before (29/360) and 3% after (15/444) (IRR 0.42, 95% CI 0.23 to 0.77, P = .005; adjusted for American Society of Anesthesiologists' physical status, aIRR 0.45, 95% CI 0.25 to 0.82, P = .009]. CONCLUSION: An optimized intraoperative infection control program targeting improvements in basic preventive measures is an effective and feasible approach for reducing S. aureus transmission and surgical site infection development.


Asunto(s)
Infección Hospitalaria , Infecciones Estafilocócicas , Adulto , Anciano , Estudios de Cohortes , Infección Hospitalaria/epidemiología , Infección Hospitalaria/prevención & control , Estudios de Factibilidad , Femenino , Humanos , Control de Infecciones , Persona de Mediana Edad , Infecciones Estafilocócicas/epidemiología , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/prevención & control , Staphylococcus aureus , Infección de la Herida Quirúrgica/epidemiología , Infección de la Herida Quirúrgica/prevención & control
17.
Front Immunol ; 12: 774018, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34925344

RESUMEN

The epidermis constitutes a continuous external layer covering the body, offering protection against bacteria, the most abundant living organisms that come into contact with this barrier. The epidermis is heavily colonized by commensal bacterial organisms that help protect against pathogenic bacteria. The highly regulated and dynamic interaction between the epidermis and commensals involves the host's production of nutritional factors promoting bacterial growth together to chemical and immunological bacterial inhibitors. Signal trafficking ensures the system's homeostasis; conditions that favor colonization by pathogens frequently foster commensal growth, thereby increasing the bacterial population size and inducing the skin's antibacterial response, eliminating the pathogens and re-establishing the normal density of commensals. The microecological conditions of the epidermis favors Gram-positive organisms and are unsuitable for long-term Gram-negative colonization. However, the epidermis acts as the most important host-to-host transmission platform for bacteria, including those that colonize human mucous membranes. Bacteria are frequently shared by relatives, partners, and coworkers. The epidermal bacterial transmission platform of healthcare workers and visitors can contaminate hospitalized patients, eventually contributing to cross-infections. Epidermal transmission occurs mostly via the hands and particularly through fingers. The three-dimensional physical structure of the epidermis, particularly the fingertips, which have frictional ridges, multiplies the possibilities for bacterial adhesion and release. Research into the biology of bacterial transmission via the hands is still in its infancy; however, tribology, the science of interacting surfaces in relative motion, including friction, wear and lubrication, will certainly be an important part of it. Experiments on finger-to-finger transmission of microorganisms have shown significant interindividual differences in the ability to transmit microorganisms, presumably due to genetics, age, sex, and the gland density, which determines the physical, chemical, adhesive, nutritional, and immunological status of the epidermal surface. These studies are needed to optimize interventions and strategies for preventing the hand transmission of microorganisms.


Asunto(s)
Infecciones Bacterianas/transmisión , Epidermis/microbiología , Bacterias/crecimiento & desarrollo , Epidermis/inmunología , Dedos/microbiología , Mano/microbiología , Humanos , Microbiota
18.
Genome Biol ; 22(1): 204, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34348764

RESUMEN

BACKGROUND: Human-to-human transmission of symbiotic, anaerobic bacteria is a fundamental evolutionary adaptation essential for membership of the human gut microbiota. However, despite its importance, the genomic and biological adaptations underpinning symbiont transmission remain poorly understood. The Firmicutes are a dominant phylum within the intestinal microbiota that are capable of producing resistant endospores that maintain viability within the environment and germinate within the intestine to facilitate transmission. However, the impact of host transmission on the evolutionary and adaptive processes within the intestinal microbiota remains unknown. RESULTS: We analyze 1358 genomes of Firmicutes bacteria derived from host and environment-associated habitats. Characterization of genomes as spore-forming based on the presence of sporulation-predictive genes reveals multiple losses of sporulation in many distinct lineages. Loss of sporulation in gut Firmicutes is associated with features of host-adaptation such as genome reduction and specialized metabolic capabilities. Consistent with these data, analysis of 9966 gut metagenomes from adults around the world demonstrates that bacteria now incapable of sporulation are more abundant within individuals but less prevalent in the human population compared to spore-forming bacteria. CONCLUSIONS: Our results suggest host adaptation in gut Firmicutes is an evolutionary trade-off between transmission range and colonization abundance. We reveal host transmission as an underappreciated process that shapes the evolution, assembly, and functions of gut Firmicutes.


Asunto(s)
Firmicutes/genética , Microbioma Gastrointestinal/genética , Genoma Bacteriano , Adaptación al Huésped/genética , Microbiota/genética , Esporas Bacterianas/genética , Simbiosis/genética , Anaerobiosis/genética , Evolución Biológica , Firmicutes/crecimiento & desarrollo , Humanos , Metagenoma , Esporas Bacterianas/crecimiento & desarrollo
19.
Front Cell Infect Microbiol ; 11: 639450, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33996623

RESUMEN

Streptococcus pneumoniae (also called pneumococcus) is not only a commensal that frequently colonizes the human upper respiratory tract but also a pathogen that causes pneumonia, sepsis, and meningitis. The mechanism of pneumococcal infection has been extensively studied, but the process of transmission has not been fully elucidated because of the lack of tractable animal models. Novel animal models of transmission have enabled further progress in investigating pneumococcal transmission mechanisms including the processes such as pneumococcal shedding, survival in the external environment, and adherence to the nasopharynx of a new host. Herein, we present a review on these animal models, recent research findings about pneumococcal transmission, and factors influencing the host-pneumococcus interaction.


Asunto(s)
Meningitis , Infecciones Neumocócicas , Neumonía , Animales , Humanos , Nasofaringe , Streptococcus pneumoniae
20.
J Hosp Infect ; 115: 5-9, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33940092

RESUMEN

This study explored the bacterial transmission between patients and dogs during dog-assisted therapy (DAT). Twenty children (55% girls) with a median age of 7 years (range 3-17 years) were included. Two dogs assisted and the conditions were more restricted hygienically with dog 2. Samples from child and dog were collected and cultured before and after each DAT visit. The results showed that dog 1 transmitted bacteria repeatedly to the children. No bacteria were transmitted with dog 2. In conclusion, exchange of bacteria can occur between dog and child during DAT, but it can be reduced by simple infection control measures.


Asunto(s)
Terapia Asistida por Animales , Animales , Bacterias , Niño , Perros , Humanos , Animales de Servicio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA