RESUMEN
One of the most noticeable environmental discontinuities in mountains is the transition that exists in vegetation below and above the treeline. In the North Patagonian Andean lakes (between 900 and 1950 m a.s.l.), we analyzed the bacterial community composition of lakes in relation to surrounding vegetation (erected trees, krummholz belt, and bare rocks), dissolved organic carbon (DOC), and total dissolved nutrients (nitrogen, TDN and phosphorus, TDP). We observed a decrease in DOC, TDP, and TDN concentrations with altitude, reflecting shifts in the source inputs entering the lakes by runoff. Cluster analysis based on bacterial community composition showed a segregation of the lakes below treeline, from those located above. This first cluster was characterized by the cyanobacteria Cyanobium PCC-6307, while in the krummholz belt and bare rocks, bacterial communities were dominated by Actinobacteria hgcl-clade and Proteobacteria (Sandarakinorhabdus and Rhodovarius), with the presence of pigments such as actinorhodopsin, carotenoids, and bacteriochlorophyll a. The net relatedness index (NRI), which considers the community phylogenetic dispersion, showed that lakes located on bare rocks were structured by environmental filtering, while communities of lakes below treeline were structured by species interactions such as competition. Beta-diversity was higher among lakes below than among lakes located above the treeline. The contribution of species turnover was more important than nestedness. Our study brings light on how bacterial communities may respond to changes in the surrounding vegetation, highlighting the importance of evaluating different aspects of community structure to understand metacommunity organization.
Asunto(s)
Bacterias , Lagos , Filogenia , Lagos/microbiología , Lagos/química , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Cianobacterias/genética , Cianobacterias/clasificación , Microbiota , Nitrógeno/análisis , Carbono/análisis , Carbono/metabolismo , Fósforo/análisis , Biodiversidad , Altitud , Árboles/microbiología , ArgentinaRESUMEN
Assessing the bacterial community composition across cacao crops is important to understand its potential role as a modulator of cadmium (Cd) translocation to plant tissues under field conditions; Cd mobility between soil and plants is a complex and multifactorial problem that cannot be captured only by experimentation. Although microbes have been shown to metabolize and drive the speciation of Cd under controlled conditions, regardless of the link between soil bacterial community (SBC) dynamics and Cd mobilization in the rhizosphere, only a few studies have addressed the relationship between soil bacterial community composition (SBCC) and Cd content in cacao seeds (Cdseed). Therefore, this study aimed to explore the association between SBCC and different factors influencing the distribution of Cd across cacao crop systems. This study comprised 225 samples collected across five farms, where we used an amplicon sequencing approach to characterize the bacterial community composition. The soil Cd concentration alone (Cdsoil) was a poor predictor of Cdseed. Still, we found that this relationship was more apparent when the variation within farms was controlled, suggesting a role of heterogeneity within farms in modulating Cd translocation and, thus, seed Cd content. Our results provide evidence of the link between soil bacterial communities and the distribution of Cd across Colombian cacao crops, and highlight the importance of incorporating fine-spatial-scale studies to advance the understanding of factors driving Cd uptake and accumulation in cacao plants. IMPORTANCE: Cadmium (Cd) content in cacao crops is an issue that generates interest due to the commercialization of chocolate for human consumption. Several studies provided evidence about the non-biological factors involved in its translocation into the cacao plant. However, factors related to this process, including soil bacterial community composition (SBCC), still need to be addressed. It is well known that soil microbiome could impact compounds' chemical transformation, including Cd, on the field. Here, we found the first evidence of the link between soil bacterial community composition and Cd concentration in cacao soils and seeds. It highlights the importance of including the variation of bacterial communities to assess the factors driving the Cd translocation into cacao seeds. Moreover, the results highlight the relevance of the spatial heterogeneity within and across cacao farms, influencing the variability of Cd concentrations.
Asunto(s)
Bacterias , Cacao , Cadmio , Productos Agrícolas , Microbiota , Rizosfera , Semillas , Microbiología del Suelo , Contaminantes del Suelo , Cadmio/metabolismo , Cadmio/análisis , Cacao/microbiología , Cacao/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/análisis , Colombia , Productos Agrícolas/microbiología , Productos Agrícolas/metabolismo , Semillas/microbiología , Semillas/metabolismo , Suelo/químicaRESUMEN
The gut microbiota is a complex community composed by several microorganisms that interact in the maintenance of homeostasis and contribute to physiological processes, including brain function. The relationship of the taxonomic composition of the gut microbiota with neurological diseases such as autism, Parkinson's, Alzheimer's, anxiety, and depression is widely recognized. The immune system is an important intermediary between the gut microbiota and the central nervous system, being one of the communication routes of the gut-brain axis. Although the complexity of the relationship between inflammation and epilepsy has not yet been elucidated, inflammatory processes are similar in many ways to the consequences of dysbiosis and contribute to disease progression. This study aimed to analyze the taxonomic composition of the gut microbiota of rats treated with prednisolone in a kindling model of epilepsy. Male Wistar rats (90 days, n = 24) divided into four experimental groups: sodium chloride solution 0.9 g%, diazepam 2 mg/kg, prednisolone 1 mg/kg, and prednisolone 5 mg/kg administered intraperitoneally (i.p.) for 14 days. The kindling model was induced by pentylenetetrazole (PTZ) 25 mg/kg i.p. on alternate days. The taxonomic profile was established by applying metagenomic DNA sequencing. There was no change in alpha diversity, and the composition of the gut microbiota between prednisolone and diazepam was similar. The significant increase in Verrucomicrobia, Saccharibacteria, and Actinobacteria may be related to the protective activity against seizures and inflammatory processes that cause some cases of epilepsy. Further studies are needed to investigate the functional influence that these species have on epilepsy and the inflammatory processes that trigger it.
Asunto(s)
Microbioma Gastrointestinal , Pentilenotetrazol , Animales , Masculino , Prednisolona , Ratas , Ratas Wistar , Convulsiones/inducido químicamenteRESUMEN
The Seriola genus includes species of worldwide commercial importance due to its rapid growth and easy adaptability to confinement conditions. However, like other fish species, large mortalities occur during their early life stages, where the main problems are caused by opportunistic bacteria. Disease control strategies are thus urgently needed. The present study aimed to evaluate the efficacy of phage vB_Pd_PDCC-1 during the early development of longfin yellowtail (Seriola rivoliana), as well as its effect on microbial communities. This broad-host-range phage was added to the culture every 3 days starting from the egg-stage until 12 days after hatching (DAH) at a concentration of 1.41×1010 plaque-forming units (PFU) per mL and at a multiplicity of infection (MOI) of 1. The results showed positive effects (p<0.05) on egg hatching, survival, growth, and pigmentation area in treated larvae. Moreover, high-throughput sequencing analysis of 16S rRNA genes showed that phage administration did not produce significant changes (p>0.05) in the composition and structure of the associated microbiota. However, sequences affiliated to the Gammaproteobacteria class were displaced by those belonging to the Alphaproteobacteria class over time regardless of the treatment received. At the family level, there was a decrease in Rhodobacteraceae, Pseudoalteromonadaceae, and Flavobacteriaceae in both groups over time. To our best knowledge, this study represents the first attempt to evaluate the effect of a phage as a biological control agent during ontogenetic development of longfin yellowtail larvae. KEY POINTS: ⢠Phages can be used against proliferation of Vibrio in fish cultures. ⢠Seriola includes several important commercial fish species due to its rapid growth. ⢠Phages do not cause significant changes in the associated microbiota.
Asunto(s)
Bacteriófagos , Vibrio , Animales , Bacteriófagos/genética , Peces , Myoviridae , ARN Ribosómico 16S/genéticaRESUMEN
As one of the most important components of the lake ecosystem, microorganisms from the freshwater and sediment play an important role in many ecological processes. However, the difference and correlation of bacterial community between these two niches were not clear. This study investigated the diversity of microbial community of freshwater and sediment samples from fifteen locations in Poyang Lake wetland. The correlation between the bacterial community and physicochemical property of Poyang Lake wetland was analyzed by artificial neural network (ANN). Our results demonstrated that the freshwater and sediment bacterial community were dominated by groups of the Bacteroidetes (23.33%) and ß-Proteobacteria (22.54%) separately, whereas, Canalipalpata, Bacillariophyta, Gemmatimonadetes, and Verrucomicrobia were detected in freshwater niches only. Phylogenetic analysis further indicated that bacterial composition in freshwater significantly differed with the sediment niches. There are 34 unique species accounted for 85% in fresh water samples and 28 unique species accounted for 82% in sediment samples. Cluster analysis further proved that all the samples from freshwater niches clustered closely together, far from the rest sediment samples. ANN analysis revealed that the freshwater with high N and P nutrients will greatly increase the diversity of the bacterial communities. In general, both environmental physicochemical properties, not each factor independently, contributed to the shift in the bacterial community structure. The five tributaries (Gan, Fu, Xin, Rao, Xiu Rivers) play a vital role in shaping the bacterial communities of Poyang Lake. This study provides new insights for understanding of microbial community compositions and structures of Poyang Lake wetland.
Asunto(s)
Bacterias/aislamiento & purificación , Sedimentos Geológicos/microbiología , Lagos/microbiología , Microbiota , Bacterias/clasificación , Bacterias/genética , China , Sedimentos Geológicos/química , Lagos/química , Redes Neurales de la Computación , Nitrógeno/análisis , Nitrógeno/metabolismo , Fósforo/análisis , Fósforo/metabolismo , Filogenia , HumedalesRESUMEN
Anthropogenic pressures on tropical forests are rapidly intensifying, but our understanding of their implications for biological diversity is still very limited, especially with regard to soil biota, and in particular soil bacterial communities. Here we evaluated bacterial community composition and diversity across a gradient of land use intensity in the eastern Amazon from undisturbed primary forest, through primary forests varyingly disturbed by fire, regenerating secondary forest, pasture, and mechanized agriculture. Soil bacteria were assessed by paired-end Illumina sequencing of 16S rRNA gene fragments (V4 region). The resulting sequences were clustered into operational taxonomic units (OTU) at a 97% similarity threshold. Land use intensification increased the observed bacterial diversity (both OTU richness and community heterogeneity across space) and this effect was strongly associated with changes in soil pH. Moreover, land use intensification and subsequent changes in soil fertility, especially pH, altered the bacterial community composition, with pastures and areas of mechanized agriculture displaying the most contrasting communities in relation to undisturbed primary forest. Together, these results indicate that tropical forest conversion impacts soil bacteria not through loss of diversity, as previously thought, but mainly by imposing marked shifts on bacterial community composition, with unknown yet potentially important implications for ecological functions and services performed by these communities.
Asunto(s)
Biodiversidad , Bosques , Microbiología del Suelo , Agricultura , Bacterias/genética , ARN Ribosómico 16S , SueloRESUMEN
Resource identity and composition structure bacterial community, which in turn determines the magnitude of bacterial processes and ecological services. However, the complex interaction between resource identity and bacterial community composition (BCC) has been poorly understood so far. Using aquatic microcosms, we tested whether and how resource identity interacts with BCC in regulating bacterial respiration and bacterial functional diversity. Different aquatic macrophyte leachates were used as different carbon resources while BCC was manipulated through successional changes of bacterial populations in batch cultures. We observed that the same BCC treatment respired differently on each carbon resource; these resources also supported different amounts of bacterial functional diversity. There was no clear linear pattern of bacterial respiration in relation to time succession of bacterial communities in all leachates, i.e. differences on bacterial respiration between different BCC were rather idiosyncratic. Resource identity regulated the magnitude of respiration of each BCC, e.g. Ultricularia foliosa leachate sustained the greatest bacterial functional diversity and lowest rates of bacterial respiration in all BCC. We conclude that both resource identity and the BCC interact affecting the pattern and the magnitude of bacterial respiration in aquatic ecosystems.(AU)
A identidade e a composição do recurso estruturam a comunidade bacteriana, que, por sua vez, determina a magnitude dos processos bacterianos e seus serviços ecológicos. Porém, a complexa interação entre a identidade do recursos e a composição da comunidade bacteriana (CCB) tem sido pouco avaliada até o momento. Utilizando microcosmos aquáticos, nós testamos quando e como a identidade do recurso interage com a CCB na regulação da respiração bacteriana e da diversidade funcional bacteriana. Diferentes lixiviados de macrófitas aquáticas foram utilizados como diferentes fontes de carbono, enquanto que a CCB foi manipulada através de mudanças sucessionais das populações bacterianas em culturas de recrescimento. Nós observamos que tratamentos com a mesma CCB respiraram diferentemente em cada fonte de carbono; diferentes fontes também suportaram diferentes valores de diversidade funcional bacteriana. Não houve padrão linear claro de mudança na respiração bacteriana em relação ao tempo de sucessão das comunidades bacterianas nos lixiviados, i.e. diferenças na respiração bacteriana entre diferentes CCB foram idiossincráticas. A identidade do recurso regulou a magnitude da respiração, em cada CCB, e.g. o lixiviado de Ultricularia foliosa sustentou os maiores valores de diversidade funcional bacteriana e as menores taxas de respiração bacteriana em todas as CCB. Nós concluímos que a identidade do recurso e a CCB interagem afetando o padrão e a magnitude da respiração bacteriana em ecossistemas aquáticos.(AU)
Asunto(s)
Fenómenos Fisiológicos Bacterianos , Carbono/metabolismo , Microbiota , Brasil , Ecosistema , Clima TropicalRESUMEN
Abstract Resource identity and composition structure bacterial community, which in turn determines the magnitude of bacterial processes and ecological services. However, the complex interaction between resource identity and bacterial community composition (BCC) has been poorly understood so far. Using aquatic microcosms, we tested whether and how resource identity interacts with BCC in regulating bacterial respiration and bacterial functional diversity. Different aquatic macrophyte leachates were used as different carbon resources while BCC was manipulated through successional changes of bacterial populations in batch cultures. We observed that the same BCC treatment respired differently on each carbon resource; these resources also supported different amounts of bacterial functional diversity. There was no clear linear pattern of bacterial respiration in relation to time succession of bacterial communities in all leachates, i.e. differences on bacterial respiration between different BCC were rather idiosyncratic. Resource identity regulated the magnitude of respiration of each BCC, e.g. Ultricularia foliosa leachate sustained the greatest bacterial functional diversity and lowest rates of bacterial respiration in all BCC. We conclude that both resource identity and the BCC interact affecting the pattern and the magnitude of bacterial respiration in aquatic ecosystems.
Resumo A identidade e a composição do recurso estruturam a comunidade bacteriana, que, por sua vez, determina a magnitude dos processos bacterianos e seus serviços ecológicos. Porém, a complexa interação entre a identidade do recursos e a composição da comunidade bacteriana (CCB) tem sido pouco avaliada até o momento. Utilizando microcosmos aquáticos, nós testamos quando e como a identidade do recurso interage com a CCB na regulação da respiração bacteriana e da diversidade funcional bacteriana. Diferentes lixiviados de macrófitas aquáticas foram utilizados como diferentes fontes de carbono, enquanto que a CCB foi manipulada através de mudanças sucessionais das populações bacterianas em culturas de recrescimento. Nós observamos que tratamentos com a mesma CCB respiraram diferentemente em cada fonte de carbono; diferentes fontes também suportaram diferentes valores de diversidade funcional bacteriana. Não houve padrão linear claro de mudança na respiração bacteriana em relação ao tempo de sucessão das comunidades bacterianas nos lixiviados, i.e. diferenças na respiração bacteriana entre diferentes CCB foram idiossincráticas. A identidade do recurso regulou a magnitude da respiração, em cada CCB, e.g. o lixiviado de Ultricularia foliosa sustentou os maiores valores de diversidade funcional bacteriana e as menores taxas de respiração bacteriana em todas as CCB. Nós concluímos que a identidade do recurso e a CCB interagem afetando o padrão e a magnitude da respiração bacteriana em ecossistemas aquáticos.
Asunto(s)
Fenómenos Fisiológicos Bacterianos , Carbono/metabolismo , Microbiota , Brasil , Ecosistema , Clima TropicalRESUMEN
Abstract Resource identity and composition structure bacterial community, which in turn determines the magnitude of bacterial processes and ecological services. However, the complex interaction between resource identity and bacterial community composition (BCC) has been poorly understood so far. Using aquatic microcosms, we tested whether and how resource identity interacts with BCC in regulating bacterial respiration and bacterial functional diversity. Different aquatic macrophyte leachates were used as different carbon resources while BCC was manipulated through successional changes of bacterial populations in batch cultures. We observed that the same BCC treatment respired differently on each carbon resource; these resources also supported different amounts of bacterial functional diversity. There was no clear linear pattern of bacterial respiration in relation to time succession of bacterial communities in all leachates, i.e. differences on bacterial respiration between different BCC were rather idiosyncratic. Resource identity regulated the magnitude of respiration of each BCC, e.g. Ultricularia foliosa leachate sustained the greatest bacterial functional diversity and lowest rates of bacterial respiration in all BCC. We conclude that both resource identity and the BCC interact affecting the pattern and the magnitude of bacterial respiration in aquatic ecosystems.
Resumo A identidade e a composição do recurso estruturam a comunidade bacteriana, que, por sua vez, determina a magnitude dos processos bacterianos e seus serviços ecológicos. Porém, a complexa interação entre a identidade do recursos e a composição da comunidade bacteriana (CCB) tem sido pouco avaliada até o momento. Utilizando microcosmos aquáticos, nós testamos quando e como a identidade do recurso interage com a CCB na regulação da respiração bacteriana e da diversidade funcional bacteriana. Diferentes lixiviados de macrófitas aquáticas foram utilizados como diferentes fontes de carbono, enquanto que a CCB foi manipulada através de mudanças sucessionais das populações bacterianas em culturas de recrescimento. Nós observamos que tratamentos com a mesma CCB respiraram diferentemente em cada fonte de carbono; diferentes fontes também suportaram diferentes valores de diversidade funcional bacteriana. Não houve padrão linear claro de mudança na respiração bacteriana em relação ao tempo de sucessão das comunidades bacterianas nos lixiviados, i.e. diferenças na respiração bacteriana entre diferentes CCB foram idiossincráticas. A identidade do recurso regulou a magnitude da respiração, em cada CCB, e.g. o lixiviado de Ultricularia foliosa sustentou os maiores valores de diversidade funcional bacteriana e as menores taxas de respiração bacteriana em todas as CCB. Nós concluímos que a identidade do recurso e a CCB interagem afetando o padrão e a magnitude da respiração bacteriana em ecossistemas aquáticos.
RESUMEN
Ancient DNA (aDNA) analysis of lake sediments is a promising tool for detecting shifts in past microbial assemblages in response to changing environmental conditions. We examined sediment core samples from subtropical, freshwater Laguna Blanca (Uruguay), which has been severely affected by cultural eutrophication since 1960 and where cyanobacterial blooms, particularly those of the saxitoxin-producer Cylindrospermopsis raciborskii, have been reported since the 1990s. Samples corresponding to ~1846, 1852, 2000 and 2007 AD were selected to perform denaturing gradient gel electrophoresis (DGGE) analysis of the 16S-23S rRNA intergenic transcribed spacer (ribosomal ITS) to compare their prokaryotic assemblage composition. Each stratum showed different ITS patterns, but the composition of 21st century samples was clearly different than those of mid-19th century. This compositional change was correlated with shifts in sediment organic matter and chlorophyll a content, which were significantly higher in recent samples. The presence of saxitoxin-producing cyanobacteria was addressed by quantitative real-time PCR of the sxtU gene involved in toxin biosynthesis. This gene was present only in recent samples, for which clone libraries and ITS sequencing indicated the presence of Cyanobacteria. Phylogenetic analyses identified C. raciborskii only in the 2000 sample, shortly after several years when blooms were recorded in the lake. These data suggest the utility of aDNA for the reconstruction of microbial assemblage shifts in subtropical lakes, at least on centennial scales. The application of aDNA analysis to genes involved in cyanotoxin synthesis extends the applicability of molecular techniques in palaeolimnological studies to include key microbial community characteristics of great scientific and social interest.