Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.933
Filtrar
1.
Mol Med ; 30(1): 151, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39278948

RESUMEN

Erythropoietin (EPO), expressed in red blood progenitor cells, primarily regulates erythropoiesis by binding to its receptor. Besides anemia, recent studies have identified new therapeutic indications for EPO that are not connected to red blood cell formation. Elevated EPO levels harm bone homeostasis in adult organisms and are associated with increased osteoclast; however, the underlying molecular mechanisms remain unclear. This study demonstrated that EPO enhanced osteoclast differentiation and bone resorption in vitro. We showed that EPO promoted osteoclast formation by up-regulating PPARγ expression through activating the Jak2/ERK signaling pathway. Consistently, PPARγ antagonists rescued the hyperactivation of osteoclasts due to EPO, while PPARγ agonists reversed the EMP9-mediated decrease in osteoclast differentiation. Further, exposing female mice to EPO for two months led to a decrease in bone mass and increased osteoclast numbers. The present results suggested that EPO promotes osteoclastogenesis by regulating the Jak2/ERK/ PPARγ signaling pathway. From a clinical perspective, the risk of compromised bone health should be considered when using EPO to treat anemia in post-operative patients with intertrochanteric fractures of the femur, as it could significantly impact the patient's recovery and quality of life.


Asunto(s)
Diferenciación Celular , Eritropoyetina , Osteoclastos , PPAR gamma , Eritropoyetina/farmacología , Eritropoyetina/metabolismo , Animales , PPAR gamma/metabolismo , Osteoclastos/metabolismo , Osteoclastos/efectos de los fármacos , Ratones , Femenino , Diferenciación Celular/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Janus Quinasa 2/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Humanos , Regulación hacia Arriba/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Resorción Ósea/metabolismo , Ratones Endogámicos C57BL
2.
Biotechnol Bioeng ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39295202

RESUMEN

To quantify and visualize both bone formation and resorption within osteochondral explants cultured ex vivo is challenging with the current analysis techniques. An approach that enables monitoring of bone remodeling dynamics is longitudinal microcomputed tomography (µCT), a non-destructive technique that relies on repeated µCT scanning and subsequent registration of consecutive scans. In this study, a two-compartment culture system suitable for osteochondral explants that allowed for µCT scanning during ex vivo culture was established. Explants were scanned repeatedly in a fixed orientation, which allowed assessment of bone remodeling due to adequate image registration. Using this method, bone formation was found to be restricted to the outer surfaces when cultured statically. To demonstrate that the culture system could capture differences in bone remodeling, explants were cultured statically and under dynamic compression as loading promotes osteogenesis. No quantitative differences between static and dynamic culture were revealed. Still, only in dynamic conditions, bone formation was visualized on trabecular surfaces located within the inner cores, suggesting enhanced bone formation towards the center of the explants upon mechanical loading. Taken together, the ex vivo culture system in combination with longitudinal µCT scanning and subsequent registration of images demonstrated potential for evaluating bone remodeling within explants.

3.
Calcif Tissue Int ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39245783

RESUMEN

The incidence of osteoporosis and related fractures increases significantly with age, impacting public health and associated costs. Postmenopausal osteoporosis results from increased bone resorption due to decreased estrogen levels. The endocannabinoid system, especially cannabidiol (CBD), has shown therapeutic potential in modulating bone formation. This study investigated the effects of administration of CBD in rats after the onset of with ovariectomy-induced osteopenia (OVX). Forty-eight female Sprague‒Dawley rats were divided into four groups (n = 12): OVX + CBD, SHAM + CBD, OVX + vehicle, and SHAM + vehicle. CBD was administered intraperitoneally for 3 weeks. After euthanasia, the bone quality, mechanical properties, and bone microarchitecture of the femurs and lumbar vertebrae were assessed by microcomputed tomography (micro-CT), bone densitometry, mechanical tests, and histological and immunohistochemical analyses. CBD treatment improved the bone mineral density (BMD) of the lumbar vertebrae and increased the BV/TV% and Tb.N in the femoral neck. There were also improvements in the mechanical properties, such as the maximum force and stiffness of the femurs and vertebrae. CBD significantly increased the bone matrix in osteopenic femurs and vertebrae, Although did not significantly influence the expression of RANKL and OPG, in ovariectomized animals, there was an increase in osteoblasts and a decrease in osteoclasts. Determining the optimal timing for CBD use in relation to postovariectomy bone loss remains a crucial issue. Understanding when and how CBD can be most effective in preventing or treating bone loss is essential to emphasize the importance of early diagnosis and treatment of osteoporosis. However, further studies are needed to explore in more detail the efficacy and safety of CBD in the treatment of postmenopausal osteoporosis.

4.
World J Diabetes ; 15(9): 1858-1861, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39280185

RESUMEN

It is widely recognized that chronic hyperglycemia decreases bone quality, although little is known about the impact of the rapid correction of chronic hyperglycemia on the quality of bone remodeling. This spotlight article explores this correlation by focusing on the stages of bone remodeling linked to glucose levels.

5.
Anim Nutr ; 18: 340-355, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39290856

RESUMEN

This study was aimed to investigate the effects of dietary calcitriol or quercetin supplementation on eggshell and bone quality of laying hens. In trial 1, 72 Hy-Line Brown layers (80-week-old) with weak-shelled strength (25 to 30 N) were assigned into 4 dietary treatments with 6 replicates of 3 birds and fed a basal diet (4% calcium level) or basal diets supplemented with 0.5% calcium, 5 µg/kg calcitriol or 500 mg/kg quercetin for 4 weeks. In trial 2, 360 Hy-Line Brown layers (60-week-old) were divided into 3 groups with 8 replicates of 15 birds: control group (basal diet), calcitriol group (basal diet + 5 µg/kg calcitriol), and quercetin group (basal diet + 500 mg/kg quercetin). This trial lasted for 12 weeks. The results showed that dietary calcitriol or quercetin improved eggshell quality in both trials (P < 0.05). In trial 2, compared with the control group, both calcitriol and quercetin supplementations improved femoral bone quality, calcium retention of hens and calcium content in uterine fluid at 18.5 h post-oviposition (PO) (P < 0.05), along with enhancing uterine morphology. Compared to the control group, supplemental calcitriol or quercetin up-regulated the relative mRNA expression levels of uterine transient receptor potential cation channel, subfamily V, member 6 (TRPV6) at 8.5 h PO and plasma membrane calcium-ATPase (PMCA), vitamin D receptor (VDR), estrogen receptor alpha (ERα) at 18.5 h PO (P < 0.05), but down-regulated the uterine caspase 3 (CASP3) relative mRNA expression level at 8.5 h PO (P < 0.05). Meanwhile, the femoral relative mRNA expression levels of tartrate-resistant acid phosphatase (TRAP) (up-regulated at 8.5 and 18.5 h PO) and alkaline phosphatase (ALP) (up-regulated at 8.5 h PO but down-regulated at 18.5 h PO) were also affected by calcitriol or quercetin supplementation (P < 0.05). Compared to the calcitriol, quercetin increased hen-day egg production and femoral medullary bone volume/bone tissue volume but reduced femoral stiffness (P < 0.05), which were accompanied by increased relative mRNA expression levels of uterine TRPV6, estrogen receptor beta (ERß) at 18.5 h PO (P < 0.05). Overall, both dietary calcitriol and quercetin could improve eggshell and bone quality by modulating calcium metabolism of aged layers. Compared to calcitriol, dietary quercetin up-regulated the expression of uterine calcium transporters, without affecting eggshell quality.

6.
Bone ; 188: 117235, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39147353

RESUMEN

Aging leads to a reduced anabolic response to mechanical stimuli and a loss of bone mass and structural integrity. Chemotherapy agents such as doxorubicin exacerbate the degeneration of aging skeleton and further subject older cancer patients to a higher fracture risk. To alleviate this clinical problem, we proposed and tested a novel mechanobiology-based therapy. Building upon prior findings that i) Yoda1, the Piezo1 agonist, promoted bone growth in young adult mice and suppressed bone resorption markers in aged mice, and ii) moderate tibial loading protected bone from breast cancer-induced osteolysis, we hypothesized that combined Yoda1 and moderate loading would improve the structural integrity of adult and aged skeletons in vivo and protect bones from deterioration after chemotherapy. We first examined the effects of 4-week Yoda1 (dose 5 mg/kg, 5 times/week) and moderate tibial loading (4.5 N peak load, 4 Hz, 300 cycles for 5 days/week), individually and combined, on mature mice (∼50 weeks of age). Combined Yoda1 and loading was found to mitigate age-associated cortical and trabecular bone loss better than individual interventions. As expected, the non-treated controls experienced an average drop of cortical polar moment of inertia (Ct.pMOI) by -4.3 % over four weeks and the bone deterioration occurred in the majority (64 %) of the samples. Relative to no treatment, loading alone, Yoda1 alone, and combined Yoda1 and loading increased Ct.pMOI by +7.3 %, +9.5 %, +12.0 % and increased the % of samples with positive Ct.pMOI changes by +32 %, +26 %, and +43 %, respectively, suggesting an additive protection of aging-related bone loss for the combined therapy. We further tested if the treatment efficacy was preserved in mature mice following two weeks (six injections) of doxorubicin at the dose of 2.5 or 5 mg/kg. As expected, doxorubicin increased osteocyte apoptosis, altered bone remodeling, and impaired bone structure. However, the effects induced by DOX were too severe to be rescued by Yoda1 and loading, alone or combined, although loading and Yoda1 individually, or combined, increased the number of mice showing positive responsiveness by 0 %, +15 %, and +29 % relative to no intervention after doxorubicin exposure. Overall, this study supported the potentials and challenges of the Yoda1-based strategy in mitigating the detrimental skeletal effects caused by aging and doxorubicin.


Asunto(s)
Envejecimiento , Doxorrubicina , Animales , Doxorrubicina/efectos adversos , Envejecimiento/efectos de los fármacos , Envejecimiento/fisiología , Femenino , Ratones , Tibia/efectos de los fármacos , Tibia/diagnóstico por imagen , Tibia/patología , Resorción Ósea/patología , Resorción Ósea/tratamiento farmacológico , Resorción Ósea/inducido químicamente , Ratones Endogámicos C57BL , Fenómenos Biomecánicos/efectos de los fármacos , Microtomografía por Rayos X , Biofisica , Tiofenos/farmacología
7.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 53(4): 450-459, 2024 Aug 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-39183057

RESUMEN

Bone remodeling and bone regeneration are essential for preserving skeletal integrity and maintaining mineral homeostasis. T cells, as key members of adaptive immunity, play a pivotal role in bone remodeling and bone regeneration by producing a range of cytokines and growth factors. In the physiological state, T cells are involved in the maintenance of bone homeostasis through interactions with mesenchymal stem cells, osteoblasts, and osteoclasts. In pathological states, T cells participate in the pathological process of different types of osteoporosis through interaction with estrogen, glucocorticoids, and parathyroid hormone. During fracture healing for post-injury repair, T cells play different roles during the inflammatory hematoma phase, the bone callus formation phase and the bone remodeling phase. Targeting T cells thus emerges as a potential strategy for regulating bone homeostasis. This article reviews the research progress on related mechanisms of T cells immunity involved in bone remodeling and bone regeneration, with a view to providing a scientific basis for targeting T cells to regulate bone remodeling and bone regeneration.


Asunto(s)
Regeneración Ósea , Remodelación Ósea , Linfocitos T , Remodelación Ósea/inmunología , Remodelación Ósea/fisiología , Humanos , Regeneración Ósea/inmunología , Linfocitos T/inmunología , Animales
8.
Reprod Biol Endocrinol ; 22(1): 106, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39164703

RESUMEN

Hormonal changes in pregnant and lactating women significantly affect bone metabolism and overall stress levels, positioning them as a unique group within the orthodontic population. Fluctuations in estrogen, progesterone, prolactin, and other hormones are closely linked to bone remodeling and the periodontal tissue's response to inflammation caused by dental plaque. Hormones such as thyrotropin, leptin, and melatonin also play crucial roles in pregnancy and bone remodeling, with potential implications for orthodontic tooth movement. Additionally, adverse personal behaviors and changes in dietary habits worsen periodontal conditions and complicate periodontal maintenance during orthodontic treatment. Notably, applying orthodontic force during pregnancy and lactation may trigger stress responses in the endocrine system, altering hormone levels. However, these changes do not appear to adversely affect the mother or fetus. This review comprehensively examines the interaction between hormone levels and orthodontic tooth movement in pregnant and lactating women, offering insights to guide clinical practice.


Asunto(s)
Lactancia , Humanos , Femenino , Lactancia/fisiología , Lactancia/metabolismo , Embarazo , Hormonas/metabolismo , Hormonas/sangre , Técnicas de Movimiento Dental/métodos , Remodelación Ósea/fisiología
9.
J Dent Res ; 103(9): 916-925, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-39101670

RESUMEN

Evidence concerning the osteotoxic effects of chemotherapy (doxorubicin) has been previously described. Periodontitis also progressively increases in patients receiving chemotherapy; however, the beneficial effects of melatonin and metformin on the alleviation of doxorubicin-induced osteotoxicity have never been investigated. Therefore, we investigated the negative impact of doxorubicin on alveolar bone homeostasis and the benefits of melatonin and metformin on the attenuation of doxorubicin-induced alveolar bone toxicity. Male Wistar rats were divided into 4 groups to receive either 1 mL of normal saline solution as a control group, 3 mg/kg of doxorubicin, 3 mg/kg of doxorubicin plus 10 mg/kg of melatonin, or 3 mg/kg of doxorubicin plus 250 mg/kg of metformin. Doxorubicin treatment was given on days 0, 4, 8, 15, 22, and 29, while interventions were given daily on days 0 to 29. Following euthanasia, blood and alveolar bones were collected for evaluation of oxidative stress, bone remodeling, inflammation, microarchitecture, and periodontal condition. We found that doxorubicin increased systemic oxidative stress, decreased antioxidative capacity, increased inflammation, decreased bone formation, increased bone reabsorption, impaired microarchitecture, and impaired periodontal condition of the alveolar bone. Although cotreatment with melatonin or metformin resulted in some improvement in these parameters, cotreatment with melatonin was more effective than cotreatment with metformin in terms of decreasing oxidative stress, reducing bone resorption, and improving microarchitecture and periodontal condition. All of these findings highlight the potential for antioxidants, especially melatonin, to ameliorate doxorubicin-induced alveolar bone toxicity.


Asunto(s)
Pérdida de Hueso Alveolar , Proceso Alveolar , Antioxidantes , Doxorrubicina , Melatonina , Metformina , Estrés Oxidativo , Ratas Wistar , Melatonina/farmacología , Melatonina/uso terapéutico , Animales , Metformina/farmacología , Metformina/uso terapéutico , Doxorrubicina/toxicidad , Masculino , Ratas , Estrés Oxidativo/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Pérdida de Hueso Alveolar/prevención & control , Proceso Alveolar/efectos de los fármacos , Antibióticos Antineoplásicos/toxicidad , Remodelación Ósea/efectos de los fármacos , Microtomografía por Rayos X
10.
J Dent Res ; 103(9): 937-947, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-39104161

RESUMEN

Alveolar bone (AB) remodeling, including formation and absorption, is the foundation of orthodontic tooth movement (OTM). However, the sources and mechanisms underlying new bone formation remain unclear. Therefore, we aimed to understand the potential mechanism of bone formation during OTM, focusing on the leptin receptor+ (Lepr+) osteogenitors and periodontal ligament cells (PDLCs). We demonstrated that Lepr+ cells activated by force-induced PDLC apoptosis served as distinct osteoprogenitors during orthodontic bone regeneration. We investigated bone formation both in vivo and in vitro. Single-cell RNA sequencing analysis and lineage tracing demonstrated that Lepr represents a subcluster of stem cells that are activated and differentiate into osteoblasts during OTM. Targeted ablation of Lepr+ cells in a mouse model disrupted orthodontic force-guided bone regeneration. Furthermore, apoptosis and sequential fluorescent labeling assays revealed that the apoptosis of PDLCs preceded new bone deposition. We found that PDL stem cell-derived apoptotic vesicles activated Lepr+ cells in vitro. Following apoptosis inhibition, orthodontic force-activated osteoprogenitors and osteogenesis were significantly downregulated. Notably, we found that bone formation occurred on the compression side during OTM; this has been first reported here. To conclude, we found a potential mechanism of bone formation during OTM that may provide new insights into AB regeneration.


Asunto(s)
Apoptosis , Osteogénesis , Ligamento Periodontal , Receptores de Leptina , Técnicas de Movimiento Dental , Ligamento Periodontal/citología , Animales , Apoptosis/fisiología , Ratones , Técnicas de Movimiento Dental/métodos , Osteogénesis/fisiología , Células Madre/fisiología , Regeneración Ósea/fisiología , Osteoblastos , Diferenciación Celular , Proceso Alveolar/citología
11.
Comput Biol Med ; 181: 109026, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39168016

RESUMEN

Adaptive elasticity in cortical bone has traditionally been modeled using Strain Energy Density (SED). Recent studies have highlighted the importance of interstitial fluid in bone adaptation, yet no research has quantified the role of interstitial fluid pressure and its effects, specifically incorporating both SED and interstitial fluid pressure in the adaptation process. This study introduces a novel formulation combining theory of porous media and theory of adaptive elasticity that considers both SED and interstitial fluid's pressure in cortical bone adaptation. The formulation is solved using ANSYS Fluent and a MATLAB script, and sensitivity analyses were conducted, analyzing various porosities, loading magnitudes, anisotropic properties of cortical bone, and involvement coefficients of interstitial fluid's pressure. This study reveals that bones with different vascular porosities (PV) tend to achieve similar density distributions under uniform loading over time. This highlights the significant role of interstitial fluid pressure in accelerating the convergence to optimal bone properties, especially in specimens with larger PV porosities. The findings emphasize the importance of fluid pressure in bone remodeling, aligning with previous studies. Furthermore, this study demonstrates that considering transversely isotropic material properties can significantly alter the remodeling configuration compared to isotropic material properties. This highlights the importance of accurately representing the anisotropic nature of cortical bone in models to better predict its adaptive responses. However, aspects such as fluid density variations and bone geometry changes remain unexplored, suggesting directions for future research. Overall, this research enhances the understanding of cortical bone adaptation and its mechanical interactions.


Asunto(s)
Hueso Cortical , Líquido Extracelular , Modelos Biológicos , Líquido Extracelular/fisiología , Porosidad , Anisotropía , Humanos , Hueso Cortical/fisiología , Adaptación Fisiológica/fisiología , Presión
12.
Front Cell Dev Biol ; 12: 1441381, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39139448

RESUMEN

Preparative regimens before Hematopoietic Cell Transplantation (HCT) damage the bone marrow (BM) microenvironment, potentially leading to secondary morbidity and even mortality. The precise effects of cytotoxic preconditioning on bone and BM remodeling, regeneration, and subsequent hematopoietic recovery over time remain unclear. Moreover, the influence of recipient age and cytotoxic dose have not been fully described. In this study, we longitudinally investigated bone and BM remodeling after busulfan treatment with low intensity (LI) and high intensity (HI) regimens as a function of animal age. As expected, higher donor chimerism was observed in young mice in both LI and HI regimens compared to adult mice. Noticeably in adult mice, significant engraftment was only observed in the HI group. The integrity of the blood-bone marrow barrier in calvarial BM blood vessels was lost after busulfan treatment in the young mice and remained altered even 6 weeks after HCT. In adult mice, the severity of vascular leakage appeared to be dose-dependent, being more pronounced in HI compared to LI recipients. Interestingly, no noticeable change in blood flow velocity was observed following busulfan treatment. Ex vivo imaging of the long bones revealed a reduction in the frequency and an increase in the diameter and density of the blood vessels shortly after treatment, a phenomenon that largely recovered in young mice but persisted in older mice after 6 weeks. Furthermore, analysis of bone remodeling indicated a significant alteration in bone turnover at 6 weeks compared to earlier timepoints in both young and adult mice. Overall, our results reveal new aspects of bone and BM remodeling, as well as hematopoietic recovery, which is dependent on the cytotoxic dose and recipient age.

13.
Artículo en Inglés | MEDLINE | ID: mdl-39105616

RESUMEN

This study aimed to elucidate the vertebral bone density variations associated with adolescent idiopathic scoliosis (AIS), specifically examining the impact of unilateral muscle paralysis using an integrated approach combining Frost's Mechanostat theory, a three-dimensional subject-specific finite element model and a musculoskeletal model of the L2 vertebra. The findings revealed a spectrum of bone density values ranging from 0.29 to 0.31 g/cm3, along with vertebral micro-strain levels spanning from 300 to 2200, consistent with existing literature. Furthermore, the ratio of maximum von Mises stress between the concave and convex side in the AIS model with intact muscles was approximately 1.08, which decreased by 4% due following unilateral paralysis of longissimus thoracis pars thoracic muscle. Overall, this investigation contributes to a deeper understanding of AIS biomechanics and lays the groundwork for future research endeavors aimed at optimizing clinical management approaches for individuals with this condition.

14.
Prog Orthod ; 25(1): 30, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39098934

RESUMEN

BACKGROUND: Palatal expansion is a common way of treating maxillary transverse deficiency. Under mechanical force, the midpalatal suture is expanded, causing local immune responses. This study aimed to determine whether macrophages participate in bone remodeling of the midpalatal suture during palatal expansion and the effects on bone remodeling. METHODS: Palatal expansion model and macrophage depletion model were established. Micro-CT, histological staining, and immunohistochemical staining were used to investigate the changes in the number and phenotype of macrophages during palatal expansion as well as the effects on bone remodeling of the midpalatal suture. Additionally, the effect of mechanically induced M2 macrophages on palatal osteoblasts was also elucidated in vitro. RESULTS: The number of macrophages increased significantly and polarized toward M2 phenotype with the increase of the expansion time, which was consistent with the trend of bone remodeling. After macrophage depletion, the function of osteoblasts and bone formation at the midpalatal suture were impaired during palatal expansion. In vitro, conditioned medium derived from M2 macrophages facilitated osteogenic differentiation of osteoblasts and decreased the RANKL/OPG ratio. CONCLUSIONS: Macrophages through polarizing toward M2 phenotype participated in midpalatal suture bone remodeling during palatal expansion, which may provide a new idea for promoting bone remodeling from the perspective of regulating macrophage polarization.


Asunto(s)
Remodelación Ósea , Macrófagos , Osteoblastos , Técnica de Expansión Palatina , Microtomografía por Rayos X , Remodelación Ósea/fisiología , Animales , Hueso Paladar , Ligando RANK , Suturas Craneales , Osteogénesis/fisiología , Diferenciación Celular , Ratones , Osteoprotegerina , Masculino , Estrés Mecánico , Fenotipo
15.
Artículo en Inglés | MEDLINE | ID: mdl-39128852

RESUMEN

OBJECTIVES: This study aimed to compare the efficacy of two techniques-acellular dermal matrix (ADM) grafting and tenting technique (TT)-for soft tissue height (STH) augmentation simultaneous to implant placement to minimize peri-implant crestal bone level (CBL) changes. METHODS: Forty patients with a healed single mandibular posterior edentulous site with a thin soft tissue phenotype were enrolled. Twenty patients received simultaneously to implant placement ADM grafting, while the others received submerged healing abutment (TT). Clinical peri-implant soft tissue height and radiographic CBL changes were measured at restoration delivery and 1-year follow-up. RESULTS: Both techniques effectively increased soft tissue thickness, resulting in a final average STH of 3.4 ± 0.5 mm after augmentation. On average, soft tissue increased by 1.6 ± 0.5 mm in group ADM and by 1.8 ± 0.4 mm in group TT after augmentation. In Group ADM, mesial CBL decreased from 0.4 ± 0.3 mm to 0.1 ± 0.2 mm, and distal CBL decreased from 0.5 ± 0.3 mm to 0.2 ± 0.3 mm over 1 year. In Group TT, mesial CBL remained stable at 0.3 ± 0.2 mm, while distal CBL reduced slightly from 0.5 ± 0.5 mm to 0.3 ± 0.2 mm. Both groups showed minimal changes in CBL, indicating great stability (pmesial = 0.003, pdistal = 0.004). TT was particularly effective in preventing mesial bone loss (pmesial = 0.019). The mesial CBL changes significantly differed between groups (p = 0.019), and not significantly at distal sites (p = 0.944). Neither treatment exhibited significant bone remodeling below the implant shoulder. CONCLUSION: This study suggests that both techniques were successful in STH augmentation, and they may effectively reduce peri-implant crestal bone level changes, with TT being slightly superior. TT was more prone to post-surgical complications. This RCT was not registered before participant recruitment and randomization.

16.
Front Endocrinol (Lausanne) ; 15: 1429567, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39188913

RESUMEN

Bone is a dynamically active tissue whose health status is closely related to its construction and remodeling, and imbalances in bone homeostasis lead to a wide range of bone diseases. The sulfated glycoprotein C-type lectin structural domain family 11 member A (Clec11a) is a key factor in bone mass regulation that significantly promotes the osteogenic differentiation of bone marrow mesenchymal stem cells and osteoblasts and stimulates chondrocyte proliferation, thereby promoting longitudinal bone growth. More importantly, Clec11a has high therapeutic potential for treating various bone diseases and can enhance the therapeutic effects of the parathyroid hormone against osteoporosis. Clec11a is also involved in the stress/adaptive response of bone to exercise via mechanical stimulation of the cation channel Pieoz1. Clec11a plays an important role in promoting bone health and preventing bone disease and may represent a new target and novel drug for bone disease treatment. Therefore, this review aims to explore the role and possible mechanisms of Clec11a in the skeletal system, evaluate its value as a potential therapeutic target against bone diseases, and provide new ideas and strategies for basic research on Clec11a and preventing and treating bone disease.


Asunto(s)
Remodelación Ósea , Lectinas Tipo C , Humanos , Lectinas Tipo C/metabolismo , Animales , Remodelación Ósea/fisiología , Osteogénesis/fisiología , Huesos/metabolismo , Huesos/fisiología , Enfermedades Óseas/terapia , Enfermedades Óseas/metabolismo , Osteoblastos/metabolismo , Osteoblastos/fisiología , Diferenciación Celular
17.
Front Pharmacol ; 15: 1456796, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39188952

RESUMEN

Osteoporosis is a common systemic metabolic disease characterized by a decrease in bone density and bone mass, destruction of bone tissue microstructure, and increased bone fragility leading to fracture susceptibility. Pharmacological treatment of osteoporosis is the focus of current research, and anti-osteoporosis drugs usually play a role in inhibiting bone resorption, promoting bone formation, and having a dual role. However, most of the drugs have the disadvantages of single target and high toxic and side effects. There are many types of traditional Chinese medicines (TCM), from a wide range of sources and mostly plants. Herbal plants have unique advantages in regulating the relationship between osteoporosis and the immune system, acupuncture therapy has significant therapeutic effects in combination with medicine for osteoporosis. The target cells and specific molecular mechanisms of TCM in preventing and treating osteoporosis have not been fully elucidated. At present, there is a lack of comprehensive understanding of the pathological mechanism of the disease. Therefore, a better understanding of the pathological signaling pathways and key molecules involved in the pathogenesis of osteoporosis is crucial for the design of therapeutic targets and drug development. In this paper, we review the development and current status of anti-osteoporosis drugs currently in clinical application and under development to provide relevant basis and reference for drug prevention and treatment of osteoporosis, with the aim of promoting pharmacological research and new drug development.

18.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-39183065

RESUMEN

Orthodontic treatment is a commonly utilized method for improving both facial aesthetics and occlusal function. During orthodontic treatment irregular, nodular labial protuberances on the labial side of the anterior teeth may occasionally occur, varying in number and size, which is closely connected to the differential bone remodeling patterns on the internal and external surfaces of the labial alveolar bone. Labial protuberances can not only affect the aesthetic results of orthodontic treatment, but also pose potential risks to periodontal health. Currently, it is believed that the influencing factors of the formation of the labial protuberances may be related to the patient's gender and age, tooth movement speed, and extent of anterior teeth retraction. Labial protuberances typically resolve spontaneously, however, if it is persistent, alveoloplasty may be necessary for treatment. This review provides a summary on the occurrence hypothesis, influencing factors of formation, potential biological mechanisms, and corresponding treatment methods of labial protuberances during orthodontic treatment.

19.
Biomedicines ; 12(8)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39200100

RESUMEN

Osteoporosis, a metabolic bone disorder characterized by decreased bone mass per unit volume, poses a significant global health burden due to its association with heightened fracture risk and adverse impacts on patients' quality of life. This review synthesizes the current understanding of the pathophysiological mechanisms underlying osteoporosis, with a focus on key regulatory pathways governing osteoblast and osteoclast activities. These pathways include RANK/RANKL/OPG, Wingless-int (Wnt)/ß-catenin, and Jagged1/Notch1 signaling, alongside the involvement of parathyroid hormone (PTH) signaling, cytokine networks, and kynurenine in bone remodeling. Pharmacotherapeutic interventions targeting these pathways play a pivotal role in osteoporosis management. Anti-resorptive agents, such as bisphosphonates, estrogen replacement therapy/hormone replacement therapy (ERT/HRT), selective estrogen receptor modulators (SERMs), calcitonin, anti-RANKL antibodies, and cathepsin K inhibitors, aim to mitigate bone resorption. Conversely, anabolic agents, including PTH and anti-sclerostin drugs, stimulate bone formation. In addition to pharmacotherapy, nutritional supplementation with calcium, vitamin D, and vitamin K2 holds promise for osteoporosis prevention. However, despite the availability of therapeutic options, a substantial proportion of osteoporotic patients remain untreated, highlighting the need for improved clinical management strategies. This comprehensive review aims to provide clinicians and researchers with a mechanistic understanding of osteoporosis pathogenesis and the therapeutic mechanisms of existing medications. By elucidating these insights, this review seeks to inform evidence-based decision-making and optimize therapeutic outcomes for patients with osteoporosis.

20.
Tissue Cell ; 90: 102525, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39178577

RESUMEN

MicroRNAs represent a class of small RNAs that act to silence genes post-transcriptionally by inhibiting the translation of target messenger RNAs, and this study aimed to understand how miRNAs influence the set-up of periodontal disease. Periodontitis was induced by inserting a ligature into the left first mandibular molar in a rat model, which was kept for the entire 56 days-time of experiment. After 56 days post-periodontitis induction, the histopathological analysis showed an apical extension of the junctional epithelium, with areas of hyperplasia, exocytosis, and a mixed inflammatory infiltrate with a predominance of neutrophils, lymphocytes, and eventual plasma cells in the deeper layers. The cement surface showed areas of irregularity, covered by cementoblasts and irregular surfaces, confirming the set-up of periodontitis. In the sequencing analysis, 26,404 genes were identified, with 132 reaching statistical significance. Among genes with a statistical difference, 18 were found to encode for microRNAs. The identified microRNAs are primarily involved in bone remodeling by acting on fibroblast growth factors, and collagen production. These outcomes demonstrate a signaling role in bone resorption, which is consistent with the histopathological observations that show the installation of inflammation with epithelial migration and the beginning of the repair process, with cementum resorption. The disclosure of how miRNAs may influence the maintaining of periodontal disease will help the development of new dental materials for the prophylaxis and treatment of alveolar bone resorption.


Asunto(s)
Modelos Animales de Enfermedad , MicroARNs , Animales , MicroARNs/metabolismo , MicroARNs/genética , Ratas , Enfermedades Periodontales/patología , Enfermedades Periodontales/genética , Enfermedades Periodontales/metabolismo , Masculino , Regulación de la Expresión Génica , Periodontitis/patología , Periodontitis/genética , Periodontitis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA