Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.581
Filtrar
1.
Sci Rep ; 14(1): 21654, 2024 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-39289437

RESUMEN

To investigate the spinal cord neuron apoptosis and neuroprotective mechanism of nerve growth factorganismsor (NGF) gene mediated by recombinant adenovirus (Ad-NGF) via peripheral transfection in mice with experimental autoimmune encephalomyelitis (EAE). Forty healthy female C57BL/6 mice were randomly divided into a control group, adenovirus (AdV) group, EAE group, and Ad-NGF transfection group; the control group received no treatment; the AdV group received adenovirus injection via the tail vein; the EAE and Ad-NGF transfection groups were induced with experimental autoimmune encephalomyelitis (EAE) using myelin oligodendrocyte glycoprotein 35-55 (MOG35-55), Ad-NGF transfection group received Ad-NGF injection via the tail vein, and daily neurological impairment scores were obtained. AQThe TUNEL method was employed to observe spinal neuron apoptosis in each group of mice; protein immunoblotting (western blot) and RT-PCR were used to measure NGF levels in the spinal cord tissues of each group, and western blotting was used to assess levels of cleaved caspase-3, Bax, and Bcl-2. ELISA and RT-PCR were employed to detect protein and mRNA levels of neuron-specific enolase (NSE) in spinal cord tissues, respectively. The control group and AdV mice did not develop symptoms. Compared to the EAE group, in the Ad-NGF transfection group, neurological function scores, TUNEL-positive cell counts, the ratio of NeuN + TUNEL to NeuN, levels of Bax and cleaved caspase-3 apoptotic proteins were significantly reduced, while Bcl-2 protein expression was increased. Expression levels of NGF, NGF-mRNA, NSE, and NSE-mRNA in spinal cord tissues were significantly elevated (P < 0.01). Immunofluorescence labeling revealed a significant punctate aggregation of apoptotic cells in spinal neurons of the EAE group, while the aggregation phenomenon was less pronounced in the Ad-NGF transfection group. Ad-NGF transfected by the periphery has a protective effect on spinal cord neurons in EAE mice by up-regulation NGF level, down-regulating apoptotic protein Caspase-3 in spinal cord neurons, inhibiting spinal cord neuron apoptosis and promoting NSE expression.


Asunto(s)
Adenoviridae , Apoptosis , Encefalomielitis Autoinmune Experimental , Ratones Endogámicos C57BL , Factor de Crecimiento Nervioso , Neuronas , Médula Espinal , Transfección , Animales , Factor de Crecimiento Nervioso/genética , Factor de Crecimiento Nervioso/metabolismo , Adenoviridae/genética , Médula Espinal/metabolismo , Médula Espinal/patología , Ratones , Neuronas/metabolismo , Femenino , Encefalomielitis Autoinmune Experimental/terapia , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Neuroprotección , Vectores Genéticos/genética , Vectores Genéticos/administración & dosificación , Terapia Genética/métodos
2.
Drug Dev Ind Pharm ; : 1-20, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39226131

RESUMEN

Hepatocellular carcinoma (HCC) is a healthcare concern that causes most cancer-linked deaths around the world. This work was aimed at unraveling the anticancer potential of acamprosate and development of mesoporous silica nanoparticle (MSN) drug delivery system to increase the therapeutic efficacy of acamprosate. For this purpose, the MSNs were synthesized and encapsulated with acamprosate (MSN-Acamp). The MSN and MSN-Acamp were characterized by DLS, Zeta potential, UV spectroscopy, SEM, FTIR, XRD, DFT, and XPS. Biological effects were evaluated by MTT and lactate dehydrogenase assays. The apoptotic mode of cell death was evaluated by fluorescence imaging and DNA fragmentation assay. Cell cycle assessment and Annexin V-FITC/PI staining were performed to depict the phase of cell arrest and stage of apoptotic cells respectively. The acamprosate was found to exhibit cytotoxic effect and MSN-Acamp exhibited an increased cytotoxicity. Apoptotic mode of cell death was revealed by fluorescence imaging as nuclear fragmentation, production of reactive oxygen species (ROS), loss of membrane potential in mitochondria, and chromatin condensation/fragmentation were found. The docking results revealed that acamprosate had a considerable binding affinity with Bcl-2, Mcl-1, EGFR, and mTOR proteins. Overall, our results indicated that acamprosate and MSN-Acamp had a potent apoptotic effect and MSNs are propitious drug carriers to increase therapeutic effect in HCC.

3.
Int Immunopharmacol ; 142(Pt B): 113132, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39288621

RESUMEN

Cutaneous lupus erythematosus (CLE) is an autoimmune disease characterized by chronic skin inflammation and recurrent lesions. Recent studies have highlighted the pivotal role of cellular senescence in the pathogenesis of LE, and the efficacy of senolytic B-cell lymphoma 2 (BCL-2) inhibitors in selectively eliminating senescent cells has been demonstrated across diverse diseases. However, the therapeutic potential of senolytic BCL-2 inhibitors in treating CLE remains uncertain. In this study, we introduced a novel topical application of senolytic ABT-737 gel, showing its efficacy in ameliorating skin lesions, histopathological characteristics, and immune complex deposition of C3 and IgG in a humanized CLE mouse model. Mechanistically, the senescent cells in skin lesions of CLE mice were reduced through the application of ABT-737 gel. These findings suggest that the senolytic ABT-737 gel delayed the progression of CLE by targeting senescent cell populations. In conclusion, our study provides promising preclinical evidence supporting the therapeutic potential of ABT-737 gel for CLE treatment.

4.
Cell Commun Signal ; 22(1): 441, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39272099

RESUMEN

Mitochondria-targeting agents, known as mitocans, are emerging as potent cancer therapeutics due to pronounced metabolic and apoptotic adaptations in the mitochondria of cancer cells. ONC212, an imipridone-family compound initially identified as a ClpP agonist, is currently under investigation as a potential mitocan with demonstrated preclinical efficacy against multiple malignancies. Despite this efficacy, the molecular mechanism underlying the cell death induced by ONC212 remains unclear. This study systematically investigates the mitochondrial involvement and signaling cascades associated with ONC212-induced cell death, utilizing HeLa and A549 cancer cells. Treated cancer cells exhibited characteristic apoptotic features, such as annexin-V positivity and caspase-3 activation; however, these occurred independently of typical mitochondrial events like membrane potential loss (ΔΨm) and cytochrome c release, as well as caspase-8 activation associated with the extrinsic pathway. Additionally, ONC212 treatment increased the expression of anti-apoptotic proteins Bcl-2 and Bcl-xL, which impeded apoptosis, as the overexpression of Bcl-2-GFP and Bcl-xL-GFP significantly reduced ONC212-mediated cell death. Furthermore, combining a sub-lethal dose of the Bcl-2/Bcl-xL inhibitor Navitoclax with ONC212 markedly augmented caspase-3 activation and cell death, still without any notable ΔΨm loss or cytochrome c release. Moreover, inhibition of caspase-9 activity unexpectedly augmented, rather than attenuated, caspase-3 activation and the subsequent cell death. Collectively, our research identifies ONC212 as an atypical mitochondrial-independent, yet Bcl-2/Bcl-xL-inhibitable, caspase-3-mediated apoptotic cell death inducer, highlighting its potential for combination therapies in tumors with defective mitochondrial apoptotic signaling.


Asunto(s)
Compuestos de Anilina , Apoptosis , Caspasa 3 , Sinergismo Farmacológico , Mitocondrias , Sulfonamidas , Humanos , Apoptosis/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Compuestos de Anilina/farmacología , Sulfonamidas/farmacología , Caspasa 3/metabolismo , Células HeLa , Activación Enzimática/efectos de los fármacos , Células A549 , Citocromos c/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Antineoplásicos/farmacología , Compuestos de Bencilo , Compuestos Heterocíclicos con 3 Anillos
5.
Crit Rev Food Sci Nutr ; : 1-26, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39257284

RESUMEN

Breast cancer remains a leading cause of cancer-related mortality among women worldwide. One of its defining features is resistance to apoptosis, driven by aberrant expression of apoptosis-related proteins, notably the overexpression of anti-apoptotic Bcl-2 proteins. These proteins enable breast cancer cells to evade apoptosis and develop resistance to chemotherapy, underscoring their critical role as therapeutic targets. Diet plays a significant role in breast cancer risk, potentially escalating or inhibiting cancer development. Recognizing the limitations of current treatments, extensive research is focused on exploring bioactive compounds derived from natural sources such as plants, fruits, vegetables, and spices. These compounds are valued for their ability to exert potent anticancer effects with minimal toxicity and side effects. While literature extensively covers the effects of various dietary compounds in inducing apoptosis in cancer cells, comprehensive information specifically on how dietary bioactive compounds modulate anti-apoptotic Bcl-2 protein expression in breast cancer is limited. This review aims to provide a comprehensive understanding of the interaction between Bcl-2 proteins and caspases in the regulation of apoptosis, as well as the impact of dietary bioactive compounds on the modulation of anti-apoptotic Bcl-2 in breast cancer. It further explores how these interactions influence breast cancer progression and treatment outcomes.

6.
Front Pharmacol ; 15: 1445034, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39239646

RESUMEN

Background: Rosmarinic acid (RA), a natural phenolic acid, exhibits promising anti-cancer properties. The abnormal expression of microRNA (miRNA) regulates the gene expression and plays a role as an oncogenic or tumor suppressor in TNBC. However, the biological role of RA in miR-30a-5p on BCL2L11 during MDA-MB-231 induced breast cancer stem-like cells (BCSCs) progression and its regulatory mechanism have not been elucidated. Objective: To investigate whether RA inhibited the silencing effect of miR-30a-5p on the BCL2L11 gene and promoted apoptosis in BCSCs. Materials and Methods: We assessed the migration, colony formation, proliferation, cell cycle, and apoptosis of BCSCs after RA treatment using the wound-healing assay, colony formation assay, CCK-8 assay, and flow cytometry, respectively. The expression of mRNA and protein levels of BCL-2, Bax, BCL2L11, and P53 genes in BCSCs after RA treatment was obtained by real-time polymerase chain reaction and Western blot. Differential miRNA expression in BCSCs was analyzed by high-throughput sequencing. Targetscan was utilized to predict the targets of miR-30a-5p. The dual luciferase reporter system was used for validation of the miR-30a-5p target. Results: Wound-healing assay, colony formation assay, CCK-8 assay, and cell cycle assay results showed that RA inhibited migration, colony formation and viability of BCSCs, and cell cycle arrest in the G0-G1 phase. At the highest dose of RA, we noticed cell atrophy, while the arrest rate at 100 µg/mL RA surpassed that at 200 µg/mL RA. Apoptotic cells appeared early (Membrane Associated Protein V FITC+, PI-) or late (Membrane Associated Protein V FITC+, PI+) upon administration of 200 µg/mL RA, Using high-throughput sequencing to compare the differences in miRNA expression, we detected downregulation of miR-30a-5p expression, and the results of dual luciferase reporter gene analysis indicated that BCL2L11 was a direct target of miR-30a-5p. Conclusion: RA inhibited the silencing effect of miR-30a-5p on the BCL2L11 gene and enhanced apoptosis in BCSCs.

7.
Ann Hematol ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39264433

RESUMEN

Response to BH3 mimetics in multiple myeloma (MM) correlates with CCND1-rearrangement or expression of anti-apoptotic molecules, particularly Bcl-2 and Mcl-1. Our study investigates the relationship between cytogenetic abnormalities (CGAs) and intracellular Bcl-2 and Mcl-1 expression in myeloma plasma cells (MPCs) using flow cytometry (FCM). We measured median fluorescence intensity (MFI) of Bcl-2 and Mcl-1 in 163 bone marrow samples (143 MM, 20 controls) across various cell types. Both Bcl-2MFI and Mcl-1MFI were significantly higher in MPCs compared to other cells, with Bcl-2 MFI exceeding Mcl-1 MFI in MPCs. Bcl-2 expression peaked in CCND1-rearranged cases, while Mcl-1 expression was highest in cases with 1q21 gain/amplification. Notably, 65-74% of cases with other CGAs exhibited moderate to strong Bcl-2 or Mcl-1 expression, indicating potential utility of BH3 mimetics in this group, while 25% showed dim to absent expression of one or both markers, suggesting potential futility in these patients. Our study highlights FCM's potential for rapid Bcl-2 and Mcl-1 quantification, surpassing traditional methods. We propose that direct measurement of Bcl-2 and Mcl-1 expression in PCs by FCM, combined with cytogenetic characterization, could improve therapeutic decision-making regarding the use of BH3 mimetics in MM, potentially enhancing outcomes and overcoming resistance.

8.
Discov Oncol ; 15(1): 451, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39287751

RESUMEN

OBJECTIVE: Acute myeloid leukemia (AML) is a malignant clonal proliferative disease with a high mortality rate. The combination therapy of BCL-2 inhibitor Venetoclax (VEN) and hypomethylating agents (HMAs) has significant anti-leukemia activity. METHODS: We analyzed the efficacy, safety and immune response characteristics of AML patients who were unfit for high-dose chemotherapy and accepted the medication of VEN + HMAs. RESULTS: After VEN + HMAs treatment, 31 newly diagnosed AML patients had the morphologic leukemia-free state rate (MLFS%) of 80.6% (25/31), complete response rate (CR%) of 54.8% (17/31), the minimal residual disease negative rate (MRD-%) of 51.6% (16/31), and the median progression-free survival (PFS) of 14 months. After treatment, the proportion of bone marrow primitive cells, the MRD level, white blood cell (WBC) count, fibrinogen (FIB) level and the proportion of B cells were significantly decreased. The red blood cell (RBC) count, hemoglobin (HGB) level, platelet count (PLT) count, activated partial thromboplastin time (APTT), the proportion of total T cells, CD8 + T cells and the IFN-γ level were significantly increased. After VEN + HMAs treatment, 12 relapsed AML patients had a MLFS% of 50% (6/12), CR% of 33.3% (4/12), MRD-% of 25% (3/12), and a median PFS of 7 months. After treatment, the proportion of bone marrow primitive cells and MRD level were slightly decreased, the proportions of CD8 + T cells and NK cells were significantly increased, the proportion of B cells and IL-10 level were significantly decreased. 12 AML patients who receive microtransplantation (MST) treatment using VEN + HMAs as a pretreatment regimen had a PFS of 20.5 months, which was much greater than VEN + HMAs group alone. Hematological recovery was better in the MST group with significantly increased RBC count, HGB level and PLT count. The most common adverse events were myelosuppression, agranulocytosis, infection and cardiovascular toxicity. No fatal adverse events were reported. CONCLUSION: The combination of BCL-2 inhibitors and HMAs had good efficacy and safety in AML patients who were unfit for high-dose chemotherapy, which may improve the immune microenvironment and enhance anti-leukemia immune response.

9.
Artículo en Inglés | MEDLINE | ID: mdl-39295433

RESUMEN

High-grade B-cell lymphomas (HGBCL) represent a heterogeneous group of very rare mature B-cell lymphomas. The 4th revised edition of the WHO Classification of Tumors of Hematopoietic and Lymphoid Tissues (WHO-HAEM) previously defined two categories of HGBCL: the so-called double-hit (DHL) and triple-hit (THL) lymphomas, which were related to forms harboring MYC and BCL2 and/or BCL6 rearrangements, and HGBCL, NOS (not otherwise specified), corresponding to entities with intermediate characteristics between diffuse large B-cell lymphoma (DLBCL) and Burkitt lymphoma (BL), without rearrangement of the MYC and BCL2, and/or BCL6 genes. In the 5th edition of the WHO-HAEM, DHL with MYC and BCL2 rearrangements or THL were reassigned as DLBCL/HGBCL with MYC and BCL2 rearrangements (DLBCL/HGBL-MYC/BCL2), whereas the category HGBCL, NOS remains unchanged. Characterized by an aggressive clinical presentation and a poor prognosis, HGBCL is often diagnosed at an advanced, widespread stage, leading to potential disseminated forms with a leukemic presentation, or spreading to the bone marrow (BM) or other biological fluids. Flow cytometric immunophenotypic study of these disseminated cells can provide a rapid method to identify HGBCL. However, due to the scarcity of cases, only limited data about the immunophenotypic features of HGBCL by multiparametric flow cytometry are available. In addition, identification of HGBCL cells by this technique may be challenging due to clinical, pathological, and biological features that can overlap with other distinct lymphoid malignancies, including Burkitt lymphoma (BL), diffuse large B-cell lymphoma (DLBCL), and even B acute lymphoblastic leukemia (B-ALL). In this study, we aimed to characterize the detailed immunophenotypic portrait of HGBCL, evaluating by multiparametric flow cytometry (MFC) the expression of 26 markers on biological samples obtained from a cohort of 10 newly-diagnosed cases and comparing their level of expression with normal peripheral blood (PB) B lymphocytes (n = 10 samples), tumoral cells from patients diagnosed with B-ALL (n = 30), BL (n = 13), or DLBCL (n = 22). We then proposed a new and simple approach to rapidly distinguish disseminated forms of HGBCL, BL, and DLBCL, using the combination of MFC data for CD38, BCL2, and CD39, the three most discriminative markers explored in this study. We finally confirmed the utility of the scoring system previously proposed by Khanlari to distinguish HGBCL cells from B lymphoblasts of B-ALL. In conclusion, we described a distinct immunophenotypic portrait of HGBCL cells and proposed a strategy to differentiate these cells from other aggressive B lymphoma entities in biological samples.

10.
Artículo en Inglés | MEDLINE | ID: mdl-39222192

RESUMEN

Multifunctional therapies have emerged as innovative strategies in cancer treatment. In this research article, we proposed a nanostructured lipid carrier (NLC) designed for the topical treatment of cutaneous melanoma, which simultaneously delivers 5-FU and Bcl-2 siRNA. The characterized nanoparticles exhibited a diameter of 259 ± 9 nm and a polydispersion index of 0.2, indicating a uniform size distribution. The NLCs were primarily localized in the epidermis, effectively minimizing the systemic release of 5-FU across skin layers. The ex vivo skin model revealed the formation of a protective lipid film, decreasing the desquamation process of the stratum corneum which can be associated to an effect of increasing permeation. In vitro assays demonstrated that A375 melanoma cells exhibited a higher sensitivity to the treatment compared to non-cancerous cells, reflecting the expected difference in their metabolic rates. The uptake of NLC by A375 cells reached approximately 90% within 4 h. The efficacy of Bcl-2 knockdown was thoroughly assessed using ELISA, Western blot, and qRT-PCR analyses, revealing a significant knockdown and synergistic action of the NLC formulation containing 5-FU and Bcl-2 siRNA (at low concentration --100 pM). Notably, the silencing of Bcl-2 mRNA also impacted other members of the Bcl-2 protein family, including Mcl-1, Bcl-xl, BAX, and BAK. The observed modulation of these proteins strongly indicated the activation of the apoptosis pathway, suggesting a successful inhibition of melanoma growth and prevention of its in vitro spread.

11.
Cancer Biomark ; 41(1): 55-68, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39213050

RESUMEN

BACKGROUND: Myelodysplastic syndrome (MDS) features bone marrow failure and a heightened risk of evolving into acute myeloid leukemia (AML), increasing with age and reducing overall survival. Given the unfavorable outcomes of MDS, alternative treatments are necessary. Glutamine, the most abundant amino acid in the blood, is metabolized first by the enzyme glutaminase (GLS). OBJECTIVES: To investigate whether GLS is involved in the progression of MDS. The efficacy of GLS inhibitors (CB839 or IPN60090) and BCL2 inhibitor venetoclax was also examined. METHODS: We employed GLS inhibitors (CB839, IPN60090) and the BCL2 inhibitor venetoclax, prepared as detailed. MDS and AML cell lines were cultured under standard and modified (hypoxic, glutamine-free) conditions. Viability, proliferation, and caspase activity were assessed with commercial kits. RT-PCR quantified gene expression post-shRNA transfection. Mitochondrial potential, ATP levels, proteasome activity, and metabolic functions were evaluated using specific assays. Statistical analyses (t-tests, ANOVA) validated the findings. RESULTS: The glutamine-free medium inhibited the growth of MDS cells. GLS1 expression was higher in AML cells than in normal control samples (GSE15061), whereas GLS2 expression was not. Treatment of MDS and AML cells for 72 h was inhibited in a dose-dependent manner by GLS inhibitors. Co-treatment with the B-cell lymphoma 2 (BCL2) inhibitor venetoclax and GLS inhibitors increased potency. Cells transfected with GLS1 short hairpin RNA showed suppressed proliferation under hypoxic conditions and increased sensitivity to venetoclax. CONCLUSIONS: Targeting glutaminolysis and BCL2 inhibition enhances the therapeutic efficacy and has been proposed as a novel strategy for treating high-risk MDS and AML.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes , Glutaminasa , Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Sulfonamidas , Tiadiazoles , Glutaminasa/antagonistas & inhibidores , Glutaminasa/metabolismo , Glutaminasa/genética , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Síndromes Mielodisplásicos/tratamiento farmacológico , Síndromes Mielodisplásicos/patología , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/metabolismo , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Sulfonamidas/farmacología , Tiadiazoles/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Bencenoacetamidas/farmacología , Compuestos de Bencilideno/farmacología , Apoptosis/efectos de los fármacos , Sulfuros
12.
Expert Opin Pharmacother ; : 1-25, 2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39211945

RESUMEN

INTRODUCTION: Chronic lymphocytic leukemia (CLL) or small lymphocytic lymphoma (SLL), characterized by its monoclonal lymphoproliferative nature, is an indolent but incurable malignancy. The treatment landscape of CLL/SLL has drastically transformed in the last decade since the introduction of targeted therapy and immune-effector T-cell therapy. The paradigm shift from chemoimmunotherapy to targeted and cellular therapies was largely driven by improved efficacy and safety. With the success of targeted therapies, novel agents and combinations are rapidly emerging on the horizon. AREAS COVERED: In this review, we will summarize clinical evidence supporting current and emerging therapies with emphasis on investigational therapies and novel combinations of commercial agents. Clinical trials were identified via clinicaltrials.gov, and a PubMed literature search was last performed in June 2024. EXPERT OPINION: With the availability of more effective and better-tolerated treatments for CLL/SLL, the role of early intervention should be further investigated due to its potential to alter disease course, delay progression, and improve overall survival rates. With many highly effective agents and combinations expected to become commercially available, attention to safety profiles and careful selection of patients for each treatment will be critical, with consideration of comorbidities, logistical issues, and financial burden of treatment.

13.
Hum Pathol ; 152: 105639, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39151736

RESUMEN

We present a series of 9 follicular lymphomas that progressed/transformed into classical Hodgkin lymphoma (CHL). Three cases of CHL showed a syncytial pattern (SCHL) making the differential diagnosis to Gray zone lymphoma (GZL) challenging. None of these three cases presented in the mediastinum. Based in all molecular data analyzed (BCL2/BCL6 FISH studies, IgH PCR and TNGS with a customized gene panel) we did find clonal relationship between the BCL2-positive FL cases and their CHL components in all cases. The three SCHL/GZL cases showed an activated phenotype according to Hans algorithm, presented the t(14; 18)(q32; q21), two out of three showed B cell markers and all expressed CD30 and p53. Interestingly, we identified three BCL2-negative FL cases with a further diagnosis of CHL expanding the spectrum of these association. In one of these three cases a different mutational profile was found in both the FL and the CHL components. All this data together suggests that CHL associated to BCL2-positive FL could be originated in a common progenitor cell (CPC) that give rise to both FL and CHL, acquiring this last component further genetic events in a linear fashion. On the other hand, no clonal relationship between CHL and BCL2-negative FL could be found, suggesting a fortuity association. Nevertheless, ample series of cases studied with more sensitive techniques are needed to confirm our hypothesis.


Asunto(s)
Biomarcadores de Tumor , Enfermedad de Hodgkin , Linfoma Folicular , Proteínas Proto-Oncogénicas c-bcl-2 , Humanos , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Linfoma Folicular/patología , Linfoma Folicular/genética , Linfoma Folicular/diagnóstico , Enfermedad de Hodgkin/patología , Enfermedad de Hodgkin/genética , Enfermedad de Hodgkin/metabolismo , Enfermedad de Hodgkin/diagnóstico , Masculino , Femenino , Persona de Mediana Edad , Anciano , Adulto , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/genética , Hibridación Fluorescente in Situ , Diagnóstico Diferencial , Mutación , Anciano de 80 o más Años
14.
Medicina (Kaunas) ; 60(8)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39202474

RESUMEN

Background and Objectives: PIN1 is overexpressed in several human cancers, including prostate cancer, breast cancer, and oral squamous carcinomas. Juglone (J), derived from walnut, was reported to selectively inhibit PIN1 by modifying its sulfhydryl groups. In this study, the potential effects of juglone, also known as PIN1 inhibitor, on oral cancer and carcinogenesis were investigated at the molecular level. Materials and Methods: 4-Nitroquinoline N-oxide (4-NQO) was used to create an oral cancer model in animals. Wistar rats were divided into five groups: Control, NQO, Juglone, NQO+J, and NQO+J*. The control group received the basal diet and tap water throughout the experiment. The NQO group received 4-NQO for 8 weeks in drinking water only. The Juglone group was administered intraperitoneally in a juglone solution for 10 weeks (1 mg/kg/day). The NQO+J group received 4-NQO in drinking water for 8 weeks, starting 1 week after the cessation of 4-NQO treatment. They were then administered intraperitoneally in a juglone solution for 10 weeks. (1 mg/kg/day). NQO+J* group: received 4 NQO for 8 weeks in drinking water and administered intraperitoneally in a juglone solution for 10 weeks (1 mg/kg/day). They were sacrificed at the end of the 22-week experimental period. The tongue tissues of the rats were isolated after the experiment, morphological changes were investigated by histological examinations, and the molecular apoptotic process was investigated by rt-qPCR and western blot. Results: Histological results indicate that tumors are formed in the tongue tissue with 4-NQO, and juglone treatment largely corrects the epithelial changes that developed with 4-NQO. It has been determined that apoptotic factors p53, Bax, and caspases are induced by the effect of juglone, while antiapoptotic factors such as Bcl-2 are suppressed. However, it was observed that the positive effects were more pronounced in rats given juglone together with 4-NQO. Conclusions: The use of PIN1 inhibitors such as juglone in place of existing therapeutic approaches might be a promising and novel approach to the preservation and treatment of oral cancer and carcinogenesis. However, further research is required to investigate the practical application of such inhibitors.


Asunto(s)
4-Nitroquinolina-1-Óxido , Modelos Animales de Enfermedad , Neoplasias de la Boca , Naftoquinonas , Ratas Wistar , Animales , Naftoquinonas/farmacología , Naftoquinonas/uso terapéutico , 4-Nitroquinolina-1-Óxido/toxicidad , Ratas , Neoplasias de la Boca/inducido químicamente , Neoplasias de la Boca/patología , Masculino , Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo , Apoptosis/efectos de los fármacos , Carcinogénesis/efectos de los fármacos
15.
Eur J Pharm Biopharm ; 203: 114454, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39142541

RESUMEN

In our previous studies, 3-O-ß-D-galactosylated resveratrol (Gal-Res) was synthesized by structural modification and then 3-O-ß-D-galactosylated resveratrol polydopamine nanoparticles (Gal-Res NPs) were successfully prepared to improve the bioavailability and liver distribution of Res. However, the pharmacodynamic efficacy and specific mechanism of Gal-Res NPs on hepatocellular carcinoma remain unclear. Herein, liver cancer model mice were successfully constructed by xenograft tumor modeling. Gal-Res NPs (34.2 mg/kg) significantly inhibited tumor growth of the liver cancer model mice with no significant effect on their body weight and no obvious toxic effect on major organs. Additionally, in vitro cellular uptake assay showed that Gal-Res NPs (37.5 µmol/L) increased the uptake of Gal-Res by Hepatocellular carcinoma (HepG2) cells, and significantly inhibited the cell migration and invasion. The experimental results of Hoechst 33342/propyl iodide (PI) double staining and flow cytometry both revealed that Gal-Res NPs could remarkably promote cell apoptosis. Moreover, the Western blot results revealed that Gal-Res NPs significantly regulated the Bcl-2/Bax and AKT/GSK3ß/ß-catenin signaling pathways. Taken together, the in vitro/in vivo results demonstrated that Gal-Res NPs significantly improved the antitumor efficiency of Gal-Res, which is a potential antitumor drug delivery system.


Asunto(s)
Apoptosis , Carcinoma Hepatocelular , Galactosa , Indoles , Neoplasias Hepáticas , Nanopartículas , Polímeros , Resveratrol , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Resveratrol/farmacología , Resveratrol/administración & dosificación , Resveratrol/química , Resveratrol/farmacocinética , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Polímeros/química , Humanos , Indoles/administración & dosificación , Indoles/química , Indoles/farmacología , Células Hep G2 , Ratones , Nanopartículas/química , Galactosa/química , Apoptosis/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Movimiento Celular/efectos de los fármacos , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Portadores de Fármacos/química
16.
Oncoimmunology ; 13(1): 2394247, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39206097

RESUMEN

Disrupting mitochondrial function in malignant cells is a promising strategy to enhance anticancer immunity. We have recently demonstrated that depriving colorectal cancer cells of serine results in mitochondrial dysfunction coupled with the cytosolic accumulation of mitochondrial DNA and consequent activation of CGAS- and STING-dependent tumor-targeting immune responses.


Asunto(s)
ADN Mitocondrial , Mitocondrias , Animales , Humanos , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/patología , ADN Mitocondrial/metabolismo , ADN Mitocondrial/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/inmunología , Nucleotidiltransferasas/metabolismo
17.
Cureus ; 16(7): e65159, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39176367

RESUMEN

BACKGROUND AND AIM:  According to reports on cancer incidence in 2020, breast cancer became the leading malignancy among women worldwide. This multistep disease involves genetic and environmental factors. Paclitaxel, a naturally occurring antimitotic substance, is a widely used chemotherapeutic drug for treating various human malignancies, including breast cancer. However, its major drawback is its extensive toxicity. This limitation can be mitigated through combination therapy with natural products like luteolin. Studies suggest that luteolin has anticancer properties, as it inhibits cancer cell growth and induces apoptosis in breast, lung, and colon cancers. This study aims to investigate the synergistic anticancer effects of combining luteolin and paclitaxel on breast cancer cells. METHODS: Breast cancer cell line (MDA-MB-231) was utilized for this study. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was then conducted to check the cell viability. This was followed by a morphology study conducted under a phase contrast microscope. Morphological analysis revealed pronounced cell shrinkage and membrane blebbing, indicative of apoptosis when treated with the combination at their IC50 values. Gene expression results further confirmed the anticancer properties by showing significant downregulation of the B-cell lymphoma-2 (BCL-2) anti-apoptotic gene. These findings suggest that the luteolin-paclitaxel combination exerts a synergistic effect, enhancing anticancer activity in breast cancer cells. Reverse transcriptase polymerase chain reaction (RT-PCR) was done to analyze the genes involved in apoptosis. Finally, the data collected was statistically analyzed to confirm the reliability of the study. RESULTS: The combination of 1 µM/ml of paclitaxel and increasing concentrations of luteolin showed a great percentage of reduction in cell viability and the IC50 value of luteolin concentration was around 40 µM/ml. The morphology study revealed that the cancer cells showed shrinkage and blebbing on treatment with 40 µM/ml. At the same IC50 concentration, the combination of luteolin and paclitaxel resulted in a significant downregulation of BCL-2 mRNA expression in breast cancer cells compared to luteolin alone. CONCLUSION: The combination of paclitaxel and luteolin has a synergistic effect on breast cancer cells and shows potential as a treatment for various cancers. Given these promising results, the paclitaxel and luteolin combination could be developed into a potent therapeutic strategy for treating various cancers. Future research should include in vivo studies to further assess the therapeutic potential and safety profile of this combination.

18.
Cancers (Basel) ; 16(16)2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39199601

RESUMEN

Outcomes are poor in patients with advanced or relapsed Ewing sarcoma (EWS) and current treatments have significant short- and long-term side effects. New, less toxic and more effective treatments are urgently needed. MER proto-oncogene tyrosine kinase (MERTK) promotes tumor cell survival, metastasis, and resistance to cytotoxic and targeted therapies in a variety of cancers. MERTK was ubiquitously expressed in five EWS cell lines and five patient samples. Moreover, data from CRISPR-based library screens indicated that EWS cell lines are particularly dependent on MERTK. Treatment with MRX-2843, a first-in-class, MERTK-selective tyrosine kinase inhibitor currently in clinical trials, decreased the phosphorylation of MERTK and downstream signaling in a dose-dependent manner in A673 and TC106 cells and provided potent anti-tumor activity against all five EWS cell lines, with IC50 values ranging from 178 to 297 nM. Inhibition of MERTK correlated with anti-tumor activity, suggesting MERTK inhibition as a therapeutic mechanism of MRX-2843. Combined treatment with MRX-2843 and BCL-2 inhibitors venetoclax or navitoclax provided enhanced therapeutic activity compared to single agents. These data highlight MERTK as a promising therapeutic target in EWS and provide rationale for the development of MRX-2843 for the treatment of EWS, especially in combination with BCL-2 inhibitors.

19.
Cell Commun Signal ; 22(1): 415, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39192247

RESUMEN

The antiapoptotic protein BCL2A1 is highly, but very heterogeneously expressed in Diffuse Large B-cell Lymphoma (DLBCL). Particularly in the context of resistance to current therapies, BCL2A1 appears to play an important role in protecting cancer cells from the induction of cell death. Reducing BCL2A1 levels may have therapeutic potential, however, no specific inhibitor is currently available. In this study, we hypothesized that the signaling network regulated by epigenetic readers may regulate the transcription of BCL2A1 and hence that inhibition of Bromodomain and Extra-Terminal (BET) proteins may reduce BCL2A1 expression thus leading to cell death in DLBCL cell lines. We found that the mechanisms of action of acetyl-lysine competitive BET inhibitors are different from those of proteolysis targeting chimeras (PROTACs) that induce the degradation of BET proteins. Both classes of BETi reduced the expression of BCL2A1 which coincided with a marked downregulation of c-MYC. Mechanistically, BET inhibition attenuated the constitutively active canonical nuclear factor kappa-light-chain-enhancer of activated B-cells (NFκB) signaling pathway and inhibited p65 activation. Furthermore, signal transducer of activated transcription (STAT) signaling was reduced by inhibiting BET proteins, targeting another pathway that is often constitutively active in DLBCL. Both pathways were also inhibited by the IκB kinase inhibitor TPCA-1, resulting in decreased BCL2A1 and c-MYC expression. Taken together, our study highlights a novel complex regulatory network that links BET proteins to both NFκB and STAT survival signaling pathways controlling both BCL2A1 and c-MYC expression in DLBCL.


Asunto(s)
Linfoma de Células B Grandes Difuso , FN-kappa B , Proteínas Proto-Oncogénicas c-bcl-2 , Proteínas Proto-Oncogénicas c-myc , Transducción de Señal , Humanos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Transducción de Señal/efectos de los fármacos , FN-kappa B/metabolismo , Línea Celular Tumoral , Linfoma de Células B Grandes Difuso/metabolismo , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/patología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Apoptosis/efectos de los fármacos , Proteínas que Contienen Bromodominio , Proteínas , Antígenos de Histocompatibilidad Menor
20.
Bioorg Chem ; 151: 107687, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39096559

RESUMEN

Increasing the levels of antiapoptotic Bcl-2 proteins is an important way that cancer cells utilize to get out of apoptosis, underscoring their significance as promising targets for anticancer therapies. Lately, a primary compound 1 bearing thiazolidine-2,4-dione was discovered to exhibit comparable Mcl-1 inhibitory activity in comparison to WL-276. Herein, thirty-nine thiazolidine-2,4-dione analogs were yielded through incorporating different biphenyl moieties (R1), amino acid side chains (R2) and sulfonamides (R3) on 1. The findings indicated that certain compounds exhibited favorable inhibitory effects against Bcl-2/Mcl-1, while demonstrating limited or negligible binding affinity towards Bcl-xL. In particular, compounds 16 and 20 exhibited greater Bcl-2/Mcl-1 inhibition compared to AT-101, WL-276 and 1. Moreover, they demonstrated notable antiproliferative effects and significantly induced apoptosis in U937 cells. The western blot and co-immunoprecipitation assays confirmed that 20 could induce alterations in the expression of apoptosis-associated proteins to result in apoptosis through on-target Bcl-2 and Mcl-1 inhibition. In addition, 20 exhibited favorable stability profiles in both rat plasma and rat liver microsomes. In total, 20 could be used as a promising compound to discover Bcl-2/Mcl-1 dual inhibitors with favorable therapeutic properties.


Asunto(s)
Antineoplásicos , Apoptosis , Proliferación Celular , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas , Ensayos de Selección de Medicamentos Antitumorales , Proteína 1 de la Secuencia de Leucemia de Células Mieloides , Proteínas Proto-Oncogénicas c-bcl-2 , Tiazolidinedionas , Humanos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/antagonistas & inhibidores , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Relación Estructura-Actividad , Proliferación Celular/efectos de los fármacos , Estructura Molecular , Apoptosis/efectos de los fármacos , Tiazolidinedionas/farmacología , Tiazolidinedionas/química , Tiazolidinedionas/síntesis química , Animales , Ratas , Desarrollo de Medicamentos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA