Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Intervalo de año de publicación
1.
Mol Cell ; 84(9): 1667-1683.e10, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38599210

RESUMEN

The nucleus is composed of functionally distinct membraneless compartments that undergo phase separation (PS). However, whether different subnuclear compartments are connected remains elusive. We identified a type of nuclear body with PS features composed of BAZ2A that associates with active chromatin. BAZ2A bodies depend on RNA transcription and BAZ2A non-disordered RNA-binding TAM domain. Although BAZ2A and H3K27me3 occupancies anticorrelate in the linear genome, in the nuclear space, BAZ2A bodies contact H3K27me3 bodies. BAZ2A-body disruption promotes BAZ2A invasion into H3K27me3 domains, causing H3K27me3-body loss and gene upregulation. Weak BAZ2A-RNA interactions, such as with nascent transcripts, promote BAZ2A bodies, whereas the strong binder long non-coding RNA (lncRNA) Malat1 impairs them while mediating BAZ2A association to chromatin at nuclear speckles. In addition to unraveling a direct connection between nuclear active and repressive compartments through PS mechanisms, the results also showed that the strength of RNA-protein interactions regulates this process, contributing to nuclear organization and the regulation of chromatin and gene expression.


Asunto(s)
Cromatina , Histonas , ARN Largo no Codificante , Cromatina/metabolismo , Cromatina/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Humanos , Histonas/metabolismo , Histonas/genética , Núcleo Celular/metabolismo , Núcleo Celular/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Células HeLa , Transcripción Genética , ARN/metabolismo , ARN/genética , Animales , Regulación de la Expresión Génica
2.
Sci Rep ; 14(1): 5228, 2024 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-38433277

RESUMEN

BAZ2A, an epigenetic regulatory factor that affects ribosomal RNA transcription, has been shown to be highly expressed in several cancers and promotes tumor cell migration. This study explored the expression and mechanism of BAZ2A in tumorigenesis at the pan-cancer level. The Cancer Genome Atlas, Gene Expression Omnibus databases and TIMER2.0, cBioPortal and other tools were used to analyze the level of expression of BAZ2A in various tumor tissues and to examine the relationship between BAZ2A and survival, prognosis, mutation and immune invasion. In vitro experiments were performed to assess the function of BAZ2A in cancer cells. Using combined transcriptome and proteome analysis, we examined the possible mechanism of BAZ2A in tumors. BAZ2A exhibited high expression levels in multiple tumor tissues and displayed a significant association with cancer patient prognosis. The main type of BAZ2A genetic variation in cancer is gene mutation. Downregulation of BAZ2A inhibited proliferation, migration, and invasion and promoted apoptosis in LM6 liver cancer cell. The mechanism of BAZ2A in cancer development may involve lipid metabolism. These results help expand our understanding of BAZ2A in tumorigenesis and development and suggest BAZ2A may serve as a prognostic and diagnostic factor in several cancers.


Asunto(s)
Neoplasias Hepáticas , Multiómica , Humanos , Pronóstico , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Carcinogénesis , Transformación Celular Neoplásica , Proteínas que Contienen Bromodominio , Proteínas Cromosómicas no Histona
3.
Braz J Otorhinolaryngol ; 90(1): 101343, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37925811

RESUMEN

OBJECTIVES: Nasopharyngeal Carcinoma (NPC) is a common malignant tumor of nasopharyngeal mucosal epithelium in clinical practice. Radiotherapy and chemotherapy are the main treatment methods at present, but the therapeutic effect is still unsatisfactory. Studies have shown that exosomes and microRNAs (miRNAs) play an important role in the development of cancer. Therefore, this study aimed to investigate the effects of NPC derived exosomes on NPC and their molecular mechanisms. METHODS: Serum was collected from healthy subjects, Epstein-Barr Virus (EBV) infected patients and NPC patients (n = 9 group) and exosomes were extracted separately. High-throughput sequencing of exosomes was performed to screen differentially expressed miRNAs. The function of the screened miRNA was identified by treating NPC cells with exosomes. The target gene of miRNA was identified using the dual-luciferase assay. Real-Time quantitative Polymerase Chain Reaction (RT-qPCR) was used to determine the levels of miR-99a-5p and Bromodomain Adjacent Tozinc finger domain protein 2A (BAZ2A). Cell Counting Kit-8 assay, flow cytometry, and wound healing assay were utilized to detect cell viability, cell cycle and apoptosis, and migration ability. The protein levels were evaluated by Western blot. RESULTS: MiR-99a-5p was identified as the most significant differentially expressed miRNA in exosomes (p < 0.05). The proliferation and migration of NPC cells were extremely facilitated by exosomes, accompanied by the suppressed apoptosis, upregulated BAZ2A, Monocyte Chemotactic Protein-1 (MCP1), and Vascular Endothelial Growth Factor A (VEGFA), and downregulation of Interleukin (IL)-1ß and Nuclear Transcription Factor-κB (NF-κB) (p < 0.05). BAZ2A was a target gene of miR-99a-5p. Furthermore, the regulatory effect of exosomes on the proliferation, migration, and apoptosis was significantly abolished by overexpression of miR-99a-5p or downregulation of BAZ2A (p < 0.05). CONCLUSION: NPC derived exosomes facilitated the proliferation and migration of NPC through regulating the miR-99a-5p/BAZ2A axis.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Exosomas , MicroARNs , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/patología , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Exosomas/genética , Exosomas/metabolismo , Exosomas/patología , Infecciones por Virus de Epstein-Barr/genética , Línea Celular Tumoral , Proliferación Celular , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patología , Regulación Neoplásica de la Expresión Génica , Proteínas que Contienen Bromodominio , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo
4.
Braz. j. otorhinolaryngol. (Impr.) ; 90(1): 101343, 2024. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1534078

RESUMEN

Abstract Objectives Nasopharyngeal Carcinoma (NPC) is a common malignant tumor of nasopharyngeal mucosal epithelium in clinical practice. Radiotherapy and chemotherapy are the main treatment methods at present, but the therapeutic effect is still unsatisfactory. Studies have shown that exosomes and microRNAs (miRNAs) play an important role in the development of cancer. Therefore, this study aimed to investigate the effects of NPC derived exosomes on NPC and their molecular mechanisms. Methods Serum was collected from healthy subjects, Epstein-Barr Virus (EBV) infected patients and NPC patients (n = 9 group) and exosomes were extracted separately. High-throughput sequencing of exosomes was performed to screen differentially expressed miRNAs. The function of the screened miRNA was identified by treating NPC cells with exosomes. The target gene of miRNA was identified using the dual-luciferase assay. Real-Time quantitative Polymerase Chain Reaction (RT-qPCR) was used to determine the levels of miR-99a-5p and Bromodomain Adjacent Tozinc finger domain protein 2A (BAZ2A). Cell Counting Kit-8 assay, flow cytometry, and wound healing assay were utilized to detect cell viability, cell cycle and apoptosis, and migration ability. The protein levels were evaluated by Western blot. Results MiR-99a-5p was identified as the most significant differentially expressed miRNA in exosomes (p< 0.05). The proliferation and migration of NPC cells were extremely facilitated by exosomes, accompanied by the suppressed apoptosis, upregulated BAZ2A, Monocyte Chemotactic Protein-1 (MCP1), and Vascular Endothelial Growth Factor A (VEGFA), and downregulation of Interleukin (IL)-1β and Nuclear Transcription Factor-κB (NF-κB) (p< 0.05). BAZ2A was a target gene of miR-99a-5p. Furthermore, the regulatory effect of exosomes on the proliferation, migration, and apoptosis was significantly abolished by overexpression of miR-99a-5p or downregulation of BAZ2A (p< 0.05). Conclusion NPC derived exosomes facilitated the proliferation and migration of NPC through regulating the miR-99a-5p/BAZ2A axis.

5.
Int J Mol Sci ; 24(6)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36983070

RESUMEN

Anaplastic thyroid cancer (ATC) is a very rare, but extremely aggressive form of thyroid malignancy, responsible for the highest mortality rate registered for thyroid cancer. Treatment with taxanes (such as paclitaxel) is an important approach in counteracting ATC or slowing its progression in tumors without known genetic aberrations or those which are unresponsive to other treatments. Unfortunately, resistance often develops and, for this reason, new therapies that overcome taxane resistance are needed. In this study, effects of inhibition of several bromodomain proteins in paclitaxel-resistant ATC cell lines were investigated. GSK2801, a specific inhibitor of BAZ2A, BAZ2B and BRD9, was effective in resensitizing cells to paclitaxel. In fact, when used in combination with paclitaxel, it was able to reduce cell viability, block the ability to form colonies in an anchor-independent manner, and strongly decrease cell motility. After RNA-seq following treatment with GSK2801, we focused our attention on MYCN. Based on the hypothesis that MYCN was a major downstream player in the biological effects of GSK2801, we tested a specific inhibitor, VPC-70619, which showed effective biological effects when used in association with paclitaxel. This suggests that the functional deficiency of MYCN determines a partial resensitization of the cells examined and, ultimately, that a substantial part of the effect of GSK2801 results from inhibition of MYCN expression.


Asunto(s)
Carcinoma Anaplásico de Tiroides , Neoplasias de la Tiroides , Factores Generales de Transcripción , Humanos , Paclitaxel/farmacología , Carcinoma Anaplásico de Tiroides/patología , Proteína Proto-Oncogénica N-Myc/genética , Regulación hacia Abajo , Neoplasias de la Tiroides/tratamiento farmacológico , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/patología , Línea Celular , Línea Celular Tumoral , Proteínas Cromosómicas no Histona/genética , Factores de Transcripción/genética , Factores Generales de Transcripción/genética
6.
Biol Direct ; 17(1): 4, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35012615

RESUMEN

BACKGROUND: Cervical cancer (CC) is one of the most common malignancies affecting female worldwide. Long non-coding RNAs (lncRNAs) are increasingly indicated as crucial participants and promising therapeutic targets in human cancers. The main objective of this study was to explore the functions and mechanism of LINC00885 in CC. METHODS: RT-qPCR and western blot were used to detect RNA and protein levels. Functional and mechanism assays were respectively done for the analysis of cell behaviors and molecular interplays. RESULTS: Long intergenic non-coding RNA 885 (LINC00885) was discovered to be upregulated in CC tissues and cell lines through bioinformatics analysis and RT-qPCR. Overexpression of LINC00885 promoted proliferation and inhibited apoptosis, whereas its silence exerted opposite effects. The cytoplasmic localization of LINC00885 was ascertained and furthermore, LINC00885 competitively bound with miR-3150b-3p to upregulate BAZ2A expression in CC cells. Rescue assays confirmed that LINC00885 regulated CC proliferation and apoptosis through miR-3150b-3p/BAZ2A axis. Finally, we confirmed that LINC00885 aggravated tumor growth through animal experiments. CONCLUSIONS: LINC00885 exerted oncogenic function in CC via regulating miR-3150b-3p/BAZ2A axis. These findings suggested LINC00885 might serve as a potential promising therapeutic target for CC patients.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Neoplasias del Cuello Uterino , Animales , Línea Celular Tumoral , Proliferación Celular/genética , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/patología
7.
J Biol Chem ; 297(6): 101351, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34715126

RESUMEN

Bromodomain adjacent to zinc finger domain protein 2A (BAZ2A) (also called transcription termination factor-1 interacting protein 5), a key component of the nucleolar remodeling complex, recruits the nucleolar remodeling complex to ribosomal RNA genes, leading to their transcriptional repression. In addition to its tandem plant homeodomain-bromodomain that is involved in binding to acetylated histone H4, BAZ2A also contains a methyl-CpG-binding domain (MBD)-like Tip5/ARBP/MBD (TAM) domain that shares sequence homology with the MBD. In contrast with the methyl-CpG-binding ability of the canonical MBD, the BAZ2A TAM domain has been shown to bind to promoter-associated RNAs of ribosomal RNA genes and promoter DNAs of other genes independent of DNA methylation. Nevertheless, how the TAM domain binds to RNA/DNA mechanistically remains elusive. Here, we characterized the DNA-/RNA-binding basis of the BAZ2A TAM domain by EMSAs, isothermal titration calorimetry binding assays, mutagenesis analysis, and X-ray crystallography. Our results showed that the TAM domain of BAZ2A selectively binds to dsDNA and dsRNA and that it binds to the backbone of dsDNA in a sequence nonspecific manner, which is distinct from the base-specific binding of the canonical MBD. Thus, our results explain why the TAM domain of BAZ2A does not specifically bind to mCG or TG dsDNA like the canonical MBD and also provide insights for further biological study of BAZ2A acting as a transcription factor in the future.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , ADN/metabolismo , ARN/metabolismo , Proteínas Cromosómicas no Histona/química , ADN/química , Metilación de ADN , Humanos , Modelos Moleculares , Unión Proteica , Dominios Proteicos , ARN/química
8.
EMBO Rep ; 22(11): e53014, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34403195

RESUMEN

Prostate cancer (PCa) is one of the most prevalent cancers in men. Cancer stem cells are thought to be associated with PCa relapse. Here, we show that BAZ2A is required for PCa cells with a cancer stem-like state. BAZ2A genomic occupancy in PCa cells coincides with H3K14ac-enriched chromatin regions. This association is mediated by BAZ2A-bromodomain (BAZ2A-BRD) that specifically binds H3K14ac. BAZ2A associates with inactive enhancers marked by H3K14ac and repressing transcription of genes frequently silenced in aggressive and poorly differentiated PCa. BAZ2A-mediated repression is also linked to EP300 that acetylates H3K14ac. BAZ2A-BRD mutations or treatment with inhibitors abrogating BAZ2A-BRD/H3K14ac interaction impair PCa stem cells. Furthermore, pharmacological inactivation of BAZ2A-BRD impairs Pten-loss oncogenic transformation of prostate organoids. Our findings indicate a role of BAZ2A-BRD in PCa stem cell features and suggest potential epigenetic-reader therapeutic strategies to target BAZ2A in aggressive PCa.


Asunto(s)
Próstata , Neoplasias de la Próstata , Línea Celular Tumoral , Cromatina/genética , Proteínas Cromosómicas no Histona/metabolismo , Humanos , Masculino , Recurrencia Local de Neoplasia/genética , Células Madre Neoplásicas/metabolismo , Oncogenes , Próstata/metabolismo , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo
9.
Proc Natl Acad Sci U S A ; 117(7): 3637-3647, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32024754

RESUMEN

Prostate cancer (PCa) is the second leading cause of cancer death in men. Its clinical and molecular heterogeneities and the lack of in vitro models outline the complexity of PCa in the clinical and research settings. We established an in vitro mouse PCa model based on organoid technology that takes into account the cell of origin and the order of events. Primary PCa with deletion of the tumor suppressor gene PTEN (PTEN-del) can be modeled through Pten-down-regulation in mouse organoids. We used this system to elucidate the contribution of TIP5 in PCa initiation, a chromatin regulator that is implicated in aggressive PCa. High TIP5 expression correlates with primary PTEN-del PCa and this combination strongly associates with reduced prostate-specific antigen (PSA) recurrence-free survival. TIP5 is critical for the initiation of PCa of luminal origin mediated by Pten-loss whereas it is dispensable once Pten-loss mediated transformation is established. Cross-species analyses revealed a PTEN gene signature that identified a group of aggressive primary PCas characterized by PTEN-del, high-TIP5 expression, and a TIP5-regulated gene expression profile. The results highlight the modeling of PCa with organoids as a powerful tool to elucidate the role of genetic alterations found in recent studies in their time orders and cells of origin, thereby providing further optimization for tumor stratification to improve the clinical management of PCa.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Fosfohidrolasa PTEN/genética , Neoplasias de la Próstata/metabolismo , Animales , Carcinogénesis , Transformación Celular Neoplásica , Proteínas Cromosómicas no Histona/genética , Eliminación de Gen , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Noqueados , Fosfohidrolasa PTEN/metabolismo , Próstata/metabolismo , Neoplasias de la Próstata/genética
10.
EMBO J ; 39(23): e105606, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33433018

RESUMEN

Chromosomes have an intrinsic tendency to segregate into compartments, forming long-distance contacts between loci of similar chromatin states. How genome compartmentalization is regulated remains elusive. Here, comparison of mouse ground-state embryonic stem cells (ESCs) characterized by open and active chromatin, and advanced serum ESCs with a more closed and repressed genome, reveals distinct regulation of their genome organization due to differential dependency on BAZ2A/TIP5, a component of the chromatin remodeling complex NoRC. On ESC chromatin, BAZ2A interacts with SNF2H, DNA topoisomerase 2A (TOP2A) and cohesin. BAZ2A associates with chromatin sub-domains within the active A compartment, which intersect through long-range contacts. We found that ground-state chromatin selectively requires BAZ2A to limit the invasion of active domains into repressive compartments. BAZ2A depletion increases chromatin accessibility at B compartments. Furthermore, BAZ2A regulates H3K27me3 genome occupancy in a TOP2A-dependent manner. Finally, ground-state ESCs require BAZ2A for growth, differentiation, and correct expression of developmental genes. Our results uncover the propensity of open chromatin domains to invade repressive domains, which is counteracted by chromatin remodeling to establish genome partitioning and preserve cell identity.


Asunto(s)
Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Genoma , Células Madre Pluripotentes/metabolismo , Adenosina Trifosfatasas/metabolismo , Animales , Proteínas de Ciclo Celular , Diferenciación Celular , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , ADN-Topoisomerasas de Tipo II/metabolismo , Epigenómica , Regulación de la Expresión Génica , Histonas/metabolismo , Ratones , Células Madre Embrionarias de Ratones/citología , Células Madre Pluripotentes/citología , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Cohesinas
11.
Eur J Med Chem ; 139: 564-572, 2017 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-28837921

RESUMEN

The bromodomain adjacent to zinc finger domain protein 2A (BAZ2A) is implicated in aggressive prostate cancer. The BAZ2A bromodomain is a challenging target because of the shallow pocket of its natural ligand, the acetylated side chain of lysine. Here, we report the successful screening of a library of nearly 1500 small molecules by high-throughput docking and force field-based binding-energy evaluation. For seven of the 20 molecules selected in silico, evidence of binding to the BAZ2A bromodomain is provided by ligand-observed NMR spectroscopy. Two of these compounds show a favorable ligand efficiency of 0.42 kcal/mol per non-hydrogen atom in a competition-binding assay. The crystal structures of the BAZ2A bromodomain in complex with four fragment hits validate the predicted binding modes. The binding modes of compounds 1 and 3 are compatible with ligand growing for optimization of affinity for BAZ2A and selectivity against the close homologue BAZ2B.


Asunto(s)
Proteínas Cromosómicas no Histona/antagonistas & inhibidores , Descubrimiento de Drogas , Relación Dosis-Respuesta a Droga , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA