Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39312748

RESUMEN

The presence of abnormally oriented grains (AOGs) in sputter-deposited aluminum scandium nitride (AlScN) films significantly degrades their physical properties, compromising the performance of bulk acoustic wave (BAW) devices. This study utilizes first-principles calculations to reveal that in tetrahedral wurtzite AlScN film-doped Sc atoms tend to aggregate at the second nearest-neighbor positions, forming dense ScN octahedral structures. The rock-salt (RS) ScN continued to grow due to further Sc aggregation. However, due to inadequate scandium flux, embryonic RS structures cannot be sustained, resulting in the nucleation of AOGs at the (111) faces of the octahedral ScN structure. Electron microscopy studies indicated that AOGs possess wurtzite structures and originate at tilted grain boundaries. These boundaries were characterized as RS ScN with more Sc atoms. This corroborated the theoretical predictions. BAW resonators and filters fabricated from sputter-deposited AlScN films demonstrate that AOGs degraded the piezoelectricity of AlScN, reducing the resonator's electromechanical coupling coefficient (Keff2). Measurements showed that AOG density increased from edge to center of the 8 in. wafer, resulting in a 3% decrease in average Keff2 in the resonators and a 137 MHz decrease in the filter bandwidth at 5 dB.

2.
Micromachines (Basel) ; 15(5)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38793210

RESUMEN

Improving measurement accuracy is the core issue with surface acoustic wave (SAW) micro-force sensors. An electrode transducer can stimulate not only the SAW but also the bulk acoustic wave (BAW). A portion of the BAW can be picked up by the receiving transducer, leading to an unwanted or spurious signal. This can harm the device's frequency response characteristics, thereby potentially reducing the precision of the micro-force sensor's measurements. This paper examines the influence of anisotropy on wave propagation, and it also performs a phase-matching analysis between interdigital transducers (IDTs) and bulk waves. Two solutions are shown to reduce the influence of BAW for SAW micro sensors, which are arranged with acoustic absorbers at the ends of the substrate and in grooving in the piezoelectric substrate. Three different types of sensors were manufactured, and the test results showed that the sidelobes of the SAW micro-force sensor could be effectively inhibited (3.32 dB), thereby enhancing the sensitivity and performance of sensor detection. The SAW micro-force sensor manufactured using the new process was tested and the following results were obtained: the center frequency was 59.83 MHz, the fractional bandwidth was 1.33%, the range was 0-1000 mN, the linearity was 1.02%, the hysteresis was 0.59%, the repeatability was 1.11%, and the accuracy was 1.34%.

3.
Biosensors (Basel) ; 14(2)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38391985

RESUMEN

Custom electronics tailored for ultrasonic applications with four ultrasonic transmit-receive channels and a nominal 25 MHz single channel frequency were developed for ultrasound BAW and SAW biosensor uses. The designed integrated microcontroller, supported by Python with a SciPy library, and the developed system measured the time of flight (TOF) and other wave properties to characterize the acoustic properties of a bulk of the liquid in a microchannel or acoustic properties of biological species attached to an analytic surface in real time. The system can utilize both piezoelectric and capacitive micromachined ultrasound transducers. The device demonstrated a linear response to changes in water salinity. This response was primarily attributed to the time-of-flight (TOF) changes related to the varying solution density. Furthermore, real-time DNA oligonucleotide-based interactions between oligonucleotides immobilized on the device's analytical area and oligonucleotides attached to gold nanoparticles (Au NPs) in the solution were demonstrated. The biological interaction led to an exponential decrease in the acoustic interfacial wave propagating across the interface between the solution and the solid surface of the sensor, the TOF signal. This decrease was attributed to the increase in the effective density of the solution in the vicinity of the sensor's analytical area, as Au NPs modified by oligonucleotides were binding to the analytical area. The utilization of Au NPs in oligonucleotide surface binding yields a considerably stronger sensor signal than previously observed in earlier CMUT-based TOF biosensor prototypes.


Asunto(s)
Nanopartículas del Metal , Ultrasonido , Oro , Transductores , Diseño de Equipo , Oligonucleótidos
4.
Nanotechnology ; 35(17)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38181437

RESUMEN

Development of bulk acoustic wave filters with ultra-wide pass bands and operating at high frequencies for 5thand 6thgeneration telecommunication applications and micro-scale actuators, energy harvesters and sensors requires lead-free piezoelectric thin films with high electromechanical coupling and compatible with Si technology. In this paper, the epitaxial growth of 36°Y-X and 30°X-Y LiNbO3films by direct liquid injection chemical vapour deposition on Si substrates by using epitaxial SrTiO3layers, grown by molecular beam epitaxy, has been demonstrated. The stability of the interfaces and chemical interactions between SrTiO3, LiNbO3and Si were studied experimentally and by thermodynamical calculations. The experimental conditions for pure 36°Y-X orientation growth have been optimized. The piezoelectricity of epitaxial 36°Y-X LiNbO3/SrTiO3/Si films was confirmed by means of piezoelectric force microscopy measurements and the ferroelectric domain inversion was attained at 85 kV.cm-1as expected for the nearly stoichiometric LiNbO3. According to the theoretical calculations, 36°Y-X LiNbO3films on Si could offer an electromechanical coupling of 24.4% for thickness extension excitation of bulk acoustic waves and a comparable figure of merit of actuators and vibrational energy harvesters to that of standard PbZr1-xTixO3films.

5.
Micromachines (Basel) ; 14(11)2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-38004837

RESUMEN

Lateral modes are responsible for the in-band spurious resonances that appear on BAW resonators, degrading the in-band filter response. In this work, a fast computational method based on the transmission line matrix (TLM) method is employed to model the lateral resonances of BAW resonators. Using the precomputed dispersion curves of Lamb waves and an equivalent characteristic impedance for the TE1 mode, a network of transmission lines is used to calculate the magnitude of field distributions on the electrodes. These characteristics are specific to the stack layer configuration. The model's implementation is based on nodal Y matrices, from which particle displacement profiles are coupled to the electric domain via piezoelectric constitutive relations. Consequently, the input impedance of the resonator is obtained. The model exhibits strong agreement with FEM simulations of FBARs and SMRs, and with measurements of several SMRs. The proposed model can provide accurate predictions of resonator input impedance, which is around 200 times faster than conventional FEM.

6.
Ultrasonics ; 133: 107038, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37196574

RESUMEN

The fast reduction of the physical size of film bulk acoustic wave resonators as a layered structure implies the intensification of the electric field which can induce large deformation in the functioning state of devices as a circuit element. Consequently, the nonlinear behavior of the resonator and accompanying properties are to be included and evaluated in the development and optimization for performance improvement. With this objective, the nonlinear formulation of a multilayered film bulk acoustic resonator is presented for the analysis of vibration frequencies and mode shapes with the consideration of larger mechanical deformation. The dominantly linear relationship between the voltage or deformation and frequency is obtained to understand the nonlinear behavior and properties which have been subjected to extensive research analytically and experimentally to satisfy the application needs in all modes of communications and network technology.

7.
Materials (Basel) ; 16(6)2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36984049

RESUMEN

This work presents a study on the homogeneity and thermal stability of Al0.7Sc0.3N films sputtered from Al-Sc segmented targets. The films are sputtered on Si substrates to assess their structural properties and on SiO2/Mo-based stacked acoustic mirrors to derive their piezoelectric activity from the frequency response of acoustic resonators. Post-deposition annealing at temperatures up to 700 °C in a vacuum are carried out to test the stability of the Al0.7Sc0.3N films and their suitability to operate at high temperatures. Despite the relatively constant radial composition of the films revealed from RBS measurements, a severe inhomogeneity in the piezoelectric activity is observed across the wafer, with significantly poorer activity in the central zone. RBS combined with NRA analysis shows that the zones of lower piezoelectric activity are likely to show higher surface oxygen adsorption, which is attributed to higher ion bombardment during the deposition process, leading to films with poorer crystalline structures. AFM analysis reveals that the worsening of the material properties in the central area is also accompanied by an increased roughness. XRD analysis also supports this hypothesis, even suggesting the possibility of a ScN non-piezoelectric phase coexisting with the AlScN piezoelectric phase. Thermal treatments do not result in great improvements in terms of piezoelectric activity and crystalline structure.

8.
Discov Nano ; 18(1): 25, 2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36847870

RESUMEN

Piezoelectric microelectromechanical system (piezo-MEMS)-based mass sensors including the piezoelectric microcantilevers, surface acoustic waves (SAW), quartz crystal microbalance (QCM), piezoelectric micromachined ultrasonic transducer (PMUT), and film bulk acoustic wave resonators (FBAR) are highlighted as suitable candidates for highly sensitive gas detection application. This paper presents the piezo-MEMS gas sensors' characteristics such as their miniaturized structure, the capability of integration with readout circuit, and fabrication feasibility using multiuser technologies. The development of the piezoelectric MEMS gas sensors is investigated for the application of low-level concentration gas molecules detection. In this work, the various types of gas sensors based on piezoelectricity are investigated extensively including their operating principle, besides their material parameters as well as the critical design parameters, the device structures, and their sensing materials including the polymers, carbon, metal-organic framework, and graphene.

9.
Sensors (Basel) ; 22(10)2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35632263

RESUMEN

With the introduction of the working principle of coupled resonators, the coupled bulk acoustic wave (BAW) Micro-Electro-Mechanical System (MEMS) resonators have been attracting much attention. In this paper, coupled BAW MEMS resonators are discussed, including the coupling theory, the actuation and sensing theory, the transduction mechanism, and the applications. BAW MEMS resonators normally exhibit two types of vibration modes: lateral (in-plane) modes and flexural (out-of-plane) modes. Compared to flexural modes, lateral modes exhibit a higher stiffness with a higher operating frequency, resulting in a lower internal loss. Also, the lateral mode has a higher Q factor, as the fluid damping imposes less influence on the in-plane motion. The coupled BAW MEMS resonators in these two vibration modes are investigated in this work and their applications for sensing, timing, and frequency reference are also presented.

10.
Micromachines (Basel) ; 13(2)2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35208399

RESUMEN

Implantable medical devices have been facing the severe challenge of wireless communication for a long time. Acoustically actuated magnetoelectric (ME) transducer antennas have attracted lots of attention due to their miniaturization, high radiation efficiency and easy integration. Here, we fully demonstrate the possibility of using only one bulk acoustic wave (BAW) actuated ME transducer antenna (BAW ME antenna) for communication by describing the correspondence between the BAW ME antenna and components of the traditional transmitter in detail. Specifically, we first demonstrate that the signal could be modulated by applying a direct current (DC) magnetic bias and exciting different resonance modes of the BAW ME antenna with frequencies ranging from medium frequency (MF) (1.5 MHz) to medium frequency (UHF) (2 GHz). Then, two methods of adjusting the radiation power of the BAW ME antenna are proposed to realize signal amplification, including increasing the input voltage and using higher order resonance. Finally, a method based on electromagnetic (EM) perturbation is presented to simulate the transmission process of the BAW ME antenna via the finite element analysis (FEA) model. The simulation results match the radiation pattern of magnetic dipoles perfectly, which verifies both the model and our purpose.

11.
Micromachines (Basel) ; 14(1)2022 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-36677104

RESUMEN

The past few decades have witnessed the ultra-fast development of wireless telecommunication systems, such as mobile communication, global positioning, and data transmission systems. In these applications, radio frequency (RF) acoustic devices, such as bulk acoustic waves (BAW) and surface acoustic waves (SAW) devices, play an important role. As the integration technology of BAW and SAW devices is becoming more mature day by day, their application in the physical and biochemical sensing and actuating fields has also gradually expanded. This has led to a profusion of associated literature, and this article particularly aims to help young professionals and students obtain a comprehensive overview of such acoustic technologies. In this perspective, we report and discuss the key basic principles of SAW and BAW devices and their typical geometries and electrical characterization methodology. Regarding BAW devices, we give particular attention to film bulk acoustic resonators (FBARs), due to their advantages in terms of high frequency operation and integrability. Examples illustrating their application as RF filters, physical sensors and actuators, and biochemical sensors are presented. We then discuss recent promising studies that pave the way for the exploitation of these elastic wave devices for new applications that fit into current challenges, especially in quantum acoustics (single-electron probe/control and coherent coupling between magnons and phonons) or in other fields.

12.
Micromachines (Basel) ; 12(6)2021 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-34205469

RESUMEN

MEMS/NEMS resonators are widely studied in biological detection, physical sensing, and quantum coupling. This paper reviews the latest research progress of MEMS/NEMS resonators with different structures. The resonance performance, new test method, and manufacturing process of single or double-clamped resonators, and their applications in mass sensing, micromechanical thermal analysis, quantum detection, and oscillators are introduced in detail. The material properties, resonance mode, and application in different fields such as gyroscope of the hemispherical structure, microdisk structure, drum resonator are reviewed. Furthermore, the working principles and sensing methods of the surface acoustic wave and bulk acoustic wave resonators and their new applications such as humidity sensing and fast spin control are discussed. The structure and resonance performance of tuning forks are summarized. This article aims to classify resonators according to different structures and summarize the working principles, resonance performance, and applications.

13.
Micromachines (Basel) ; 13(1)2021 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-35056189

RESUMEN

Lab-on-a-chip (LOC) technology has gained primary attention in the past decade, where label-free biosensors and microfluidic actuation platforms are integrated to realize such LOC devices. Among the multitude of technologies that enables the successful integration of these two features, the piezoelectric acoustic wave method is best suited for handling biological samples due to biocompatibility, label-free and non-invasive properties. In this review paper, we present a study on the use of acoustic waves generated by piezoelectric materials in the area of label-free biosensors and microfluidic actuation towards the realization of LOC and POC devices. The categorization of acoustic wave technology into the bulk acoustic wave and surface acoustic wave has been considered with the inclusion of biological sample sensing and manipulation applications. This paper presents an approach with a comprehensive study on the fundamental operating principles of acoustic waves in biosensing and microfluidic actuation, acoustic wave modes suitable for sensing and actuation, piezoelectric materials used for acoustic wave generation, fabrication methods, and challenges in the use of acoustic wave modes in biosensing. Recent developments in the past decade, in various sensing potentialities of acoustic waves in a myriad of applications, including sensing of proteins, disease biomarkers, DNA, pathogenic microorganisms, acoustofluidic manipulation, and the sorting of biological samples such as cells, have been given primary focus. An insight into the future perspectives of real-time, label-free, and portable LOC devices utilizing acoustic waves is also presented. The developments in the field of thin-film piezoelectric materials, with the possibility of integrating sensing and actuation on a single platform utilizing the reversible property of smart piezoelectric materials, provide a step forward in the realization of monolithic integrated LOC and POC devices. Finally, the present paper highlights the key benefits and challenges in terms of commercialization, in the field of acoustic wave-based biosensors and actuation platforms.

14.
Sensors (Basel) ; 21(1)2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33374747

RESUMEN

In this paper, the perspectives of using the features of acoustic wave propagation to design rotation rate sensors (RRS) are discussed. The possibility of developing the solid-state sensitive elements (SE) of RRS on acoustic waves of circular polarization is shown. The theoretical basis of bulk acoustic wave propagation under rotation is given. The direct excitation of circularly polarized acoustic wave (CPAW) is considered, the design of the CPAW emitting transducer is offered. The results of experimental studies that indicated the circular nature of the particle motions in the radiated wave are discussed. The principally new concept of the RRS SE design on CPAW, being able to operate under high vibration and acceleration, is proposed. The experimental results revealed a high correlation with theoretical and numerical predictions and confirmed RRS on CPAW operability.

15.
Micromachines (Basel) ; 11(10)2020 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-33023173

RESUMEN

Microfluidic separation technology has garnered significant attention over the past decade where particles are being separated at a micro/nanoscale in a rapid, low-cost, and simple manner. Amongst a myriad of separation technologies that have emerged thus far, acoustic microfluidic separation techniques are extremely apt to applications involving biological samples attributed to various advantages, including high controllability, biocompatibility, and non-invasive, label-free features. With that being said, downsides such as low throughput and dependence on external equipment still impede successful commercialization from laboratory-based prototypes. Here, we present a comprehensive review of recent advances in acoustic microfluidic separation techniques, along with exemplary applications. Specifically, an inclusive overview of fundamental theory and background is presented, then two sets of mechanisms underlying acoustic separation, bulk acoustic wave and surface acoustic wave, are introduced and discussed. Upon these summaries, we present a variety of applications based on acoustic separation. The primary focus is given to those associated with biological samples such as blood cells, cancer cells, proteins, bacteria, viruses, and DNA/RNA. Finally, we highlight the benefits and challenges behind burgeoning developments in the field and discuss the future perspectives and an outlook towards robust, integrated, and commercialized devices based on acoustic microfluidic separation.

16.
Sensors (Basel) ; 20(9)2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32354019

RESUMEN

We study the effects of medium rotation on bulk acoustic wave (BAW) propagation. For a theoretical analysis of the BAW propagation characteristics, a motion equation for the plane harmonic waves propagating orthogonal to the rotation axis of the propagation medium was analytically resolved. We found that during medium rotation, the polarization of the waves becomes elliptical with the ratio of the polarization ellipse axes explicitly proportional to the angular velocity of the medium rotation, thereby opening the way for the design of sensitive elements (SE) for perspective angular motion sensors (AMS). Next, an analytical dependence of the SE informative parameter on the Poisson's ratio of the acoustic duct material was obtained. The rotation effect on the dispersion of BAW propagation velocity was studied. Two approaches to the perspective SE design were proposed. An experimental study of a specially designed test assembly and SE model demonstrated high correlation with theoretical predictions and provided an estimate of a potential SE. Therefore, we believe that the study of acoustic wave propagation under nonclassical conditions is a promising direction for prospective solid-state AMS on based on BAW polarization effects design.

17.
Sensors (Basel) ; 20(9)2020 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-32397502

RESUMEN

The influence of humidity on the density, shear elastic module, viscosity, and thickness of the mushroom Pleurotus eryngii and Ganoderma lucidum mycelium films was studied. These data were obtained by comparing the theoretical and experimental frequency dependencies of the complex electrical impedance of bulk acoustic wave (BAW) resonator loaded by mycelium film using the least-squares method. This procedure was performed for the BAW resonator with pointed films for the relative humidity range of 17%-56% at the room temperature. As a result, the changes of the density, shear elastic module, viscosity, and thickness of the films under study, due to the water vapor adsorption, were determined. It has been established that the properties of mycelium films are restored after removing from the water vapor. So, these results show the possibility of using investigated mycelium films as sensitive layers for acoustic humidity sensors.


Asunto(s)
Acústica , Humedad , Micelio/química , Pleurotus/química , Reishi/química
18.
Ultrasonics ; 94: 92-101, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30595389

RESUMEN

The dependence of the performance of thin film bulk acoustic resonator (FBAR) and solidly mounted resonator (SMR), on their areas is studied with the aid of finite element method (FEM) software. Dual step frame method is applied for both types of the resonators in order to improve their quality factors at resonance and at antiresonance frequency when they are miniaturized. The important role of the material quality in promoting the benefit of this method is also emphasized in this study.

19.
Trends Analyt Chem ; 117: 280-290, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32461706

RESUMEN

Cellular analysis is a central concept for both biology and medicine. Over the past two decades, acoustofluidic technologies, which marry acoustic waves with microfluidics, have significantly contributed to the development of innovative approaches for cellular analysis. Acoustofluidic technologies enable precise manipulations of cells and the fluids that confine them, and these capabilities have been utilized in many cell analysis applications. In this review article, we examine various applications where acoustofluidic methods have been implemented, including cell imaging, cell mechanotyping, circulating tumor cell phenotyping, sample preparation in clinics, and investigation of cell-cell interactions and cell-environment responses. We also provide our perspectives on the technological advantages, limitations, and potential future directions for this innovative field of methods.

20.
Ultrasonics ; 82: 209-216, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28886445

RESUMEN

The spatial three dimensional variation of the polarization ellipse characterizing an elastic movement of the solid particles in the harmonically oscillating ultrasonic fields is studied. Such a variation comes into sight because of the interference of various elastic modes generated during the excitation and/or scattering of acoustic waves by the inhomogeneities located on the solid surface. In order to confirm this effect, an innovative method based on finite element approach is used showing a rule to find the form and orientation of the elastic polarization ellipse in general case. Polarization plane may have an arbitrary orientation in anisotropic crystals. The dispersive parameters of the spatially changeable ellipse of polarization in a substrate with perturbed boundary conditions depend on the polarization and on the relative complex-valued amplitudes of the partial elastic modes which contribute differently to the sum of acoustic fields at every point of analysis. Results of a detailed investigation of the mentioned effects in an interdigital transducer formed by aluminum electrodes on the ST-X cut of quartz substrate are presented.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA