Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros











Intervalo de año de publicación
1.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(4): 751-757, 2024 Aug 25.
Artículo en Chino | MEDLINE | ID: mdl-39218601

RESUMEN

Traditional gait analysis systems are typically complex to operate, lack portability, and involve high equipment costs. This study aims to establish a musculoskeletal dynamics calculation process driven by Azure Kinect. Building upon the full-body model of the Anybody musculoskeletal simulation software and incorporating a foot-ground contact model, the study utilized Azure Kinect-driven skeletal data from depth videos of 10 participants. The in-depth videos were prepossessed to extract keypoint of the participants, which were then adopted as inputs for the musculoskeletal model to compute lower limb joint angles, joint contact forces, and ground reaction forces. To validate the Azure Kinect computational model, the calculated results were compared with kinematic and kinetic data obtained using the traditional Vicon system. The forces in the lower limb joints and the ground reaction forces were normalized by dividing them by the body weight. The lower limb joint angle curves showed a strong correlation with Vicon results (mean ρ values: 0.78 ~ 0.92) but with root mean square errors as high as 5.66°. For lower limb joint force prediction, the model exhibited root mean square errors ranging from 0.44 to 0.68, while ground reaction force root mean square errors ranged from 0.01 to 0.09. The established musculoskeletal dynamics model based on Azure Kinect shows good prediction capabilities for lower limb joint forces and vertical ground reaction forces, but some errors remain in predicting lower limb joint angles.


Asunto(s)
Simulación por Computador , Extremidad Inferior , Humanos , Fenómenos Biomecánicos , Extremidad Inferior/fisiología , Marcha/fisiología , Articulación de la Rodilla/fisiología , Programas Informáticos , Análisis de la Marcha/métodos , Articulaciones/fisiología , Captura de Movimiento
2.
MethodsX ; 13: 102861, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39092279

RESUMEN

Automatic pose estimation has become a valuable tool for the study of human behavior, including dyadic interactions. It allows researchers to analyze the nuanced dynamics of interactions more effectively, and facilitates the integration of behavioral data with other modalities (EEG, etc.). However, many technical difficulties remain. Particularly, for parent-infant interactions, automatic pose estimation for infants is unpredictable; the immature proportions and smaller bodies of children may cause misdetections. OpenPose is one tool that has shown high performance in pose tracking from video, even in infants. However, OpenPose is limited to 2D (i.e., coordinates relative to the image space). This may be undesirable in a multitude of paradigms (e.g., naturalistic settings). We developed a method for expanding the functionality of OpenPose to 3D, tailored to parent-infant interaction paradigms. This method merges the estimations from OpenPose with the depth information from a depth camera to obtain a 3D pose that works even for young infants.•Video recordings of interactions of parents and infants are taken using a dual color-depth camera.•2D-positions of parents and their infants are estimated from the color video.•Using the depth camera, we transform the 2D estimations into real-world 3D positions, allowing movement analysis in full-3D space.

3.
J Biomech ; 170: 112160, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38824704

RESUMEN

A single depth camera provides a fast and easy approach to performing biomechanical assessments in a clinical setting; however, there are currently no established methods to reliably determine joint angles from these devices. The primary aim of this study was to compare joint angles as well as the between-day reliability of direct kinematics to model-constrained inverse kinematics recorded using a single markerless depth camera during a range of clinical and athletic movement assessments.A secondary aim was to determine the minimum number of trials required to maximize reliability. Eighteen healthy participants attended two testing sessions one week apart. Tasks included treadmill walking, treadmill running, single-leg squats, single-leg countermovement jumps, bilateral countermovement jumps, and drop vertical jumps. Keypoint data were processed using direct kinematics as well as in OpenSim using a full-body musculoskeletal model and inverse kinematics. Kinematic methods were compared using statistical parametric mapping and between-day reliability was calculated using intraclass correlation coefficients, mean absolute error, and minimal detectable change. Keypoint-derived inverse kinematics resulted in significantly smaller hip flexion (range = -9 to -2°), hip abduction (range = -3 to -2°), knee flexion (range = -5° to -2°), and greater dorsiflexion angles (range = 6-15°) than direct kinematics. Both markerless kinematic methods had high between-day reliability (inverse kinematics ICC 95 %CI = 0.83-0.90; direct kinematics ICC 95 %CI = 0.80-0.93). For certain tasks and joints, keypoint-derived inverse kinematics resulted in greater reliability (up to 0.47 ICC) and smaller minimal detectable changes (up to 13°) than direct kinematics. Performing 2-4 trials was sufficient to maximize reliability for most tasks. A single markerless depth camera can reliably measure lower limb joint angles, and skeletal model-constrained inverse kinematics improves lower limb joint angle reliability for certain tasks and joints.


Asunto(s)
Articulación de la Cadera , Humanos , Masculino , Femenino , Adulto , Fenómenos Biomecánicos , Reproducibilidad de los Resultados , Articulación de la Cadera/fisiología , Articulación de la Rodilla/fisiología , Rango del Movimiento Articular/fisiología , Extremidad Inferior/fisiología , Modelos Biológicos , Movimiento/fisiología , Adulto Joven
4.
Healthcare (Basel) ; 12(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38727488

RESUMEN

Lower back pain, a common issue among pregnant women, often complicates daily activities like standing up from a chair. Therefore, research into the standing motion of pregnant women is important, and many research studies have already been conducted. However, many of these studies were conducted in highly controlled environments, overlooking everyday scenarios such as using a desk for support when standing up, and their effects have not been adequately tested. To address this gap, we measured multimodal signals for a sit-to-stand (STS) movement with hand assistance and verified the changes using a t-test. To avoid imposing strain on pregnant women, we used 10 non-diseased young adults who wore jackets designed to simulate pregnancy conditions, thus allowing for more comprehensive and rigorous experimentation. We attached surface electromyography (sEMG) sensors to the erector spinae muscles of participants and measured changes in muscle activity, skeletal positioning, and center of pressure both before and after wearing a Maternity-Simulation Jacket. Our analysis showed that the jacket successfully mimicked key aspects of the movement patterns typical in pregnant women. These results highlight the possibility of developing practical strategies that more accurately mirror the real-life scenarios met by pregnant women, enriching the current research on their STS movement.

5.
Sensors (Basel) ; 24(6)2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38544032

RESUMEN

In the era of expanding manned space missions, understanding the biomechanical impacts of zero gravity on human movement is pivotal. This study introduces a novel and cost-effective framework that demonstrates the application of Microsoft's Azure Kinect body tracking technology as a motion input generator for subsequent OpenSim simulations in weightlessness. Testing rotations, locomotion, coordination, and martial arts movements, we validate the results' realism under the constraints of angular and linear momentum conservation. While complex, full-body coordination tasks face limitations in a zero gravity environment, our findings suggest possible approaches to device-free exercise routines for astronauts and reveal insights into the feasibility of hand-to-hand combat in space. However, some challenges remain in distinguishing zero gravity effects in the simulations from discrepancies in the captured motion input or forward dynamics calculations, making a comprehensive validation difficult. The paper concludes by highlighting the framework's practical potential for the future of space mission planning and related research endeavors, while also providing recommendations for further refinement.


Asunto(s)
Vuelo Espacial , Ingravidez , Humanos , Movimiento , Astronautas , Locomoción , Ejercicio Físico
6.
Heliyon ; 9(11): e21606, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38027881

RESUMEN

Human motion tracking is a valuable task for many medical applications. Marker-based optoelectronic systems are considered the gold standard in human motion tracking. However, their use is not always feasible in clinics and industrial environments. On the other hand, marker-less sensors became valuable tools, as they are inexpensive, noninvasive and easy to use. However, their accuracy can depend on many factors including sensor positioning, light conditions and body occlusions. In this study, following previous works on the feasibility of marker-less systems for human motion monitoring, we investigate the performance of the Microsoft Azure Kinect sensor in computing kinematic and dynamic measurements of static postures and dynamic movements. According to our knowledge, it is the first time that this sensor is compared with a Vicon marker-based system to assess the best camera positioning while observing the upper body part movements of people performing several tasks. Twenty-five healthy volunteers were monitored to evaluate the effects of the several testing conditions, including the Azure Kinect positions, the light conditions, and lower limbs occlusions, on the tracking accuracy of kinematic, dynamic, and motor control parameters. From the statistical analysis of the performed measurements, the camera in the frontal position was the most reliable, the lighting conditions had almost no effects on the tracking accuracy, while the lower limbs occlusion worsened the accuracy of the upper limbs. The assessment of human static postures and dynamic movements based on experimental data proves the feasibility of applying the Azure Kinect to the biomechanical monitoring of human motion in several fields.

7.
Data Brief ; 49: 109334, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37600140

RESUMEN

A dataset of body tracking information is presented. The dataset consists of 315 captured walking sequences. Each sequence is simultaneously captured by two Azure Kinect devices. The two captures are interleaved to effectively double the frame rate. Fifteen participants partook in this experiment. Each experiment consists of seven walking actions, and having three predefined trajectories per experiment. That results in 21 sequences per participant. The data were collected using the Azure Kinect Sensor SDK. They were later processed using the official tools and libraries provided by Microsoft. For each sequence and trajectory, the positions and orientations of thirty-two tracked joints were obtained and saved. The dataset is structured as follows. The experiments from each subject are saved in a single directory. Each directory contains multiple JSON files of timestamped body tracking information to enable the fusion of the two device streams. A calibration file is also provided, enabling the mapping of the coordinates between the two Azure Kinect devices capturing the data (mapping the coordinates of the device known as the Subordinate device to the Master device coordinate system). This data can be used to train neural networks for human motion prediction tasks or test pre-existing algorithms on Azure Kinect data. This dataset could also aid in gait recognition and analysis, as well as in performing action recognition and other surveillance activities. The dataset can be found at https://zenodo.org/record/7997856.

8.
Sensors (Basel) ; 23(11)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37299744

RESUMEN

The study of visuomotor adaptation (VMA) capabilities has been encompassed in various experimental protocols aimed at investigating human motor control strategies and/or cognitive functions. VMA-oriented frameworks can have clinical applications, primarily in the investigation and assessment of neuromotor impairments caused by conditions such as Parkinson's disease or post-stroke, which affect the lives of tens of thousands of people worldwide. Therefore, they can enhance the understanding of the specific mechanisms of such neuromotor disorders, thus being a potential biomarker for recovery, with the aim of being integrated with conventional rehabilitative programs. Virtual Reality (VR) can be entailed in a framework targeting VMA since it allows the development of visual perturbations in a more customizable and realistic way. Moreover, as has been demonstrated in previous works, a serious game (SG) can further increase engagement thanks to the use of full-body embodied avatars. Most studies implementing VMA frameworks have focused on upper limb tasks and have utilized a cursor as visual feedback for the user. Hence, there is a paucity in the literature about VMA-oriented frameworks targeting locomotion tasks. In this article, the authors present the design, development, and testing of an SG-based framework that addresses VMA in a locomotion activity by controlling a full-body moving avatar in a custom VR environment. This workflow includes a set of metrics to quantitatively assess the participants' performance. Thirteen healthy children were recruited to evaluate the framework. Several quantitative comparisons and analyses were run to validate the different types of introduced visuomotor perturbations and to evaluate the ability of the proposed metrics to describe the difficulty caused by such perturbations. During the experimental sessions, it emerged that the system is safe, easy to use, and practical in a clinical setting. Despite the limited sample size, which represents the main limitation of the study and can be compensated for with future recruitment, the authors claim the potential of this framework as a useful instrument for quantitatively assessing either motor or cognitive impairments. The proposed feature-based approach gives several objective parameters as additional biomarkers that can integrate the conventional clinical scores. Future studies might investigate the relation between the proposed biomarkers and the clinical scores for specific disorders such as Parkinson's disease and cerebral palsy.


Asunto(s)
Enfermedad de Parkinson , Accidente Cerebrovascular , Realidad Virtual , Niño , Humanos , Enfermedad de Parkinson/diagnóstico , Interfaz Usuario-Computador , Locomoción
9.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 40(2): 350-357, 2023 Apr 25.
Artículo en Chino | MEDLINE | ID: mdl-37139768

RESUMEN

The gait acquisition system can be used for gait analysis. The traditional wearable gait acquisition system will lead to large errors in gait parameters due to different wearing positions of sensors. The gait acquisition system based on marker method is expensive and needs to be used by combining with the force measurement system under the guidance of rehabilitation doctors. Due to the complex operation, it is inconvenient for clinical application. In this paper, a gait signal acquisition system that combines foot pressure detection and Azure Kinect system is designed. Fifteen subjects are organized to participate in gait test, and relevant data are collected. The calculation method of gait spatiotemporal parameters and joint angle parameters is proposed, and the consistency analysis and error analysis of the gait parameters of proposed system and camera marking method are carried out. The results show that the parameters obtained by the two systems have good consistency (Pearson correlation coefficient r ≥ 0.9, P < 0.05) and have small error (root mean square error of gait parameters is less than 0.1, root mean square error of joint angle parameters is less than 6). In conclusion, the gait acquisition system and its parameter extraction method proposed in this paper can provide reliable data acquisition results as a theoretical basis for gait feature analysis in clinical medicine.


Asunto(s)
Marcha , Extremidad Inferior , Humanos , Fenómenos Biomecánicos , Pie , Análisis de la Marcha , Reproducibilidad de los Resultados
10.
Front Robot AI ; 10: 1155542, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36950282

RESUMEN

Introduction: Measuring kinematic behavior during robot-assisted gait therapy requires either laborious set up of a marker-based motion capture system or relies on the internal sensors of devices that may not cover all relevant degrees of freedom. This presents a major barrier for the adoption of kinematic measurements in the normal clinical schedule. However, to advance the field of robot-assisted therapy many insights could be gained from evaluating patient behavior during regular therapies. Methods: For this reason, we recently developed and validated a method for extracting kinematics from recordings of a low-cost RGB-D sensor, which relies on a virtual 3D body model to estimate the patient's body shape and pose in each frame. The present study aimed to evaluate the robustness of the method to the presence of a lower limb exoskeleton. 10 healthy children without gait impairment walked on a treadmill with and without wearing the exoskeleton to evaluate the estimated body shape, and 8 custom stickers were placed on the body to evaluate the accuracy of estimated poses. Results & Conclusion: We found that the shape is generally robust to wearing the exoskeleton, and systematic pose tracking errors were around 5 mm. Therefore, the method can be a valuable measurement tool for the clinical evaluation, e.g., to measure compensatory movements of the trunk.

11.
Sensors (Basel) ; 23(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36617138

RESUMEN

Time-of-flight cameras are widely adopted in a variety of indoor applications ranging from industrial object measurement to human activity recognition. However, the available products may differ in terms of the quality of the acquired point cloud, and the datasheet provided by the constructors may not be enough to guide researchers in the choice of the perfect device for their application. Hence, this work details the experimental procedure to assess time-of-flight cameras' error sources that should be considered when designing an application involving time-of-flight technology, such as the bias correction and the temperature influence on the point cloud stability. This is the first step towards a standardization of the metrological characterization procedure that could ensure the robustness and comparability of the results among tests and different devices. The procedure was conducted on Kinect Azure, Basler Blaze 101, and Basler ToF 640 cameras. Moreover, we compared the devices in the task of 3D reconstruction following a procedure involving the measure of both an object and a human upper-body-shaped mannequin. The experiment highlighted that, despite the results of the previously conducted metrological characterization, some devices showed evident difficulties in reconstructing the target objects. Thus, we proved that performing a rigorous evaluation procedure similar to the one proposed in this paper is always necessary when choosing the right device.


Asunto(s)
Cuerpo Humano , Humanos
12.
Sensors (Basel) ; 23(2)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36679675

RESUMEN

The Azure Kinect DK is an RGB-D-camera popular in research and studies with humans. For good scientific practice, it is relevant that Azure Kinect yields consistent and reproducible results. We noticed the yielded results were inconsistent. Therefore, we examined 100 body tracking runs per processing mode provided by the Azure Kinect Body Tracking SDK on two different computers using a prerecorded video. We compared those runs with respect to spatiotemporal progression (spatial distribution of joint positions per processing mode and run), derived parameters (bone length), and differences between the computers. We found a previously undocumented converging behavior of joint positions at the start of the body tracking. Euclidean distances of joint positions varied clinically relevantly with up to 87 mm between runs for CUDA and TensorRT; CPU and DirectML had no differences on the same computer. Additionally, we found noticeable differences between two computers. Therefore, we recommend choosing the processing mode carefully, reporting the processing mode, and performing all analyses on the same computer to ensure reproducible results when using Azure Kinect and its body tracking in research. Consequently, results from previous studies with Azure Kinect should be reevaluated, and until then, their findings should be interpreted with caution.


Asunto(s)
Computadores , Humanos , Fenómenos Biomecánicos , Reproducibilidad de los Resultados
13.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-981549

RESUMEN

The gait acquisition system can be used for gait analysis. The traditional wearable gait acquisition system will lead to large errors in gait parameters due to different wearing positions of sensors. The gait acquisition system based on marker method is expensive and needs to be used by combining with the force measurement system under the guidance of rehabilitation doctors. Due to the complex operation, it is inconvenient for clinical application. In this paper, a gait signal acquisition system that combines foot pressure detection and Azure Kinect system is designed. Fifteen subjects are organized to participate in gait test, and relevant data are collected. The calculation method of gait spatiotemporal parameters and joint angle parameters is proposed, and the consistency analysis and error analysis of the gait parameters of proposed system and camera marking method are carried out. The results show that the parameters obtained by the two systems have good consistency (Pearson correlation coefficient r ≥ 0.9, P < 0.05) and have small error (root mean square error of gait parameters is less than 0.1, root mean square error of joint angle parameters is less than 6). In conclusion, the gait acquisition system and its parameter extraction method proposed in this paper can provide reliable data acquisition results as a theoretical basis for gait feature analysis in clinical medicine.


Asunto(s)
Humanos , Fenómenos Biomecánicos , Marcha , Extremidad Inferior , Pie , Análisis de la Marcha , Reproducibilidad de los Resultados
14.
Sensors (Basel) ; 22(23)2022 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-36501923

RESUMEN

With the development of 3D vision techniques, RGB-D cameras are increasingly used to allow easier and cheaper access to the third dimension. In this paper, we focus on testing the potential of the Kinect Azure RGB-D camera in the 3D reconstruction of indoor scenes. First, a series of investigations of the hardware was performed to evaluate its accuracy and precision. The results show that the measurements made with the Azure could be exploited for close-range survey applications. Second, we performed a methodological workflow for indoor reconstruction based on the Open3D framework, which was applied to two different indoor scenes. Based on the results, we can state that the quality of 3D reconstruction significantly depends on the architecture of the captured scene. This was supported by a comparison of the point cloud from the Kinect Azure with that from a terrestrial laser scanner and another from a mobile laser scanner. The results show that the average differences do not exceed 8 mm, which confirms that the Kinect Azure can be considered a 3D measurement system at least as reliable as a mobile laser scanner.

15.
Sensors (Basel) ; 22(21)2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36365870

RESUMEN

Motor impairments are among the most relevant, evident, and disabling symptoms of Parkinson's disease that adversely affect quality of life, resulting in limited autonomy, independence, and safety. Recent studies have demonstrated the benefits of physiotherapy and rehabilitation programs specifically targeted to the needs of Parkinsonian patients in supporting drug treatments and improving motor control and coordination. However, due to the expected increase in patients in the coming years, traditional rehabilitation pathways in healthcare facilities could become unsustainable. Consequently, new strategies are needed, in which technologies play a key role in enabling more frequent, comprehensive, and out-of-hospital follow-up. The paper proposes a vision-based solution using the new Azure Kinect DK sensor to implement an integrated approach for remote assessment, monitoring, and rehabilitation of Parkinsonian patients, exploiting non-invasive 3D tracking of body movements to objectively and automatically characterize both standard evaluative motor tasks and virtual exergames. An experimental test involving 20 parkinsonian subjects and 15 healthy controls was organized. Preliminary results show the system's ability to quantify specific and statistically significant (p < 0.05) features of motor performance, easily monitor changes as the disease progresses over time, and at the same time permit the use of exergames in virtual reality both for training and as a support for motor condition assessment (for example, detecting an average reduction in arm swing asymmetry of about 14% after arm training). The main innovation relies precisely on the integration of evaluative and rehabilitative aspects, which could be used as a closed loop to design new protocols for remote management of patients tailored to their actual conditions.


Asunto(s)
Enfermedad de Parkinson , Realidad Virtual , Humanos , Enfermedad de Parkinson/diagnóstico , Videojuego de Ejercicio , Calidad de Vida , Movimiento
16.
Sensors (Basel) ; 22(22)2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36433493

RESUMEN

RGB and depth cameras are extensively used for the 3D tracking of human pose and motion. Typically, these cameras calculate a set of 3D points representing the human body as a skeletal structure. The tracking capabilities of a single camera are often affected by noise and inaccuracies due to occluded body parts. Multiple-camera setups offer a solution to maximize coverage of the captured human body and to minimize occlusions. According to best practices, fusing information across multiple cameras typically requires spatio-temporal calibration. First, the cameras must synchronize their internal clocks. This is typically performed by physically connecting the cameras to each other using an external device or cable. Second, the pose of each camera relative to the other cameras must be calculated (Extrinsic Calibration). The state-of-the-art methods use specialized calibration session and devices such as a checkerboard to perform calibration. In this paper, we introduce an approach to the spatio-temporal calibration of multiple cameras which is designed to run on-the-fly without specialized devices or equipment requiring only the motion of the human body in the scene. As an example, the system is implemented and evaluated using Microsoft Azure Kinect. The study shows that the accuracy and robustness of this approach is on par with the state-of-the-art practices.


Asunto(s)
Calibración , Humanos , Movimiento (Física)
17.
Sensors (Basel) ; 22(16)2022 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-36016043

RESUMEN

Arm swinging is a typical feature of human walking: Continuous and rhythmic movement of the upper limbs is important to ensure postural stability and walking efficiency. However, several factors can interfere with arm swings, making walking more risky and unstable: These include aging, neurological diseases, hemiplegia, and other comorbidities that affect motor control and coordination. Objective assessment of arm swings during walking could play a role in preventing adverse consequences, allowing appropriate treatments and rehabilitation protocols to be activated for recovery and improvement. This paper presents a system for gait analysis based on Microsoft Azure Kinect DK sensor and its body-tracking algorithm: It allows noninvasive full-body tracking, thus enabling simultaneous analysis of different aspects of walking, including arm swing characteristics. Sixteen subjects with Parkinson's disease and 13 healthy controls were recruited with the aim of evaluating differences in arm swing features and correlating them with traditional gait parameters. Preliminary results show significant differences between the two groups and a strong correlation between the parameters. The study thus highlights the ability of the proposed system to quantify arm swing features, thus offering a simple tool to provide a more comprehensive gait assessment.


Asunto(s)
Enfermedad de Parkinson , Brazo , Fenómenos Biomecánicos , Marcha , Humanos , Caminata
18.
Sensors (Basel) ; 22(13)2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35808479

RESUMEN

Nowadays, the need for reliable and low-cost multi-camera systems is increasing for many potential applications, such as localization and mapping, human activity recognition, hand and gesture analysis, and object detection and localization. However, a precise camera calibration approach is mandatory for enabling further applications that require high precision. This paper analyzes the available two-camera calibration approaches to propose a guideline for calibrating multiple Azure Kinect RGB-D sensors to achieve the best alignment of point clouds in both color and infrared resolutions, and skeletal joints returned by the Microsoft Azure Body Tracking library. Different calibration methodologies using 2D and 3D approaches, all exploiting the functionalities within the Azure Kinect devices, are presented. Experiments demonstrate that the best results are returned by applying 3D calibration procedures, which give an average distance between all couples of corresponding points of point clouds in color or an infrared resolution of 21.426 mm and 9.872 mm for a static experiment and of 20.868 mm and 7.429 mm while framing a dynamic scene. At the same time, the best results in body joint alignment are achieved by three-dimensional procedures on images captured by the infrared sensors, resulting in an average error of 35.410 mm.


Asunto(s)
Gestos , Esqueleto , Calibración , Humanos
19.
Sensors (Basel) ; 22(12)2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35746424

RESUMEN

Abnormal movement of the head and neck is a typical symptom of Cervical Dystonia (CD). Accurate scoring on the severity scale is of great significance for treatment planning. The traditional scoring method is to use a protractor or contact sensors to calculate the angle of the movement, but this method is time-consuming, and it will interfere with the movement of the patient. In the recent outbreak of the coronavirus disease, the need for remote diagnosis and treatment of CD has become extremely urgent for clinical practice. To solve these problems, we propose a multi-view vision based CD severity scale scoring method, which detects the keypoint positions of the patient from the frontal and lateral images, and finally scores the severity scale by calculating head and neck motion angles. We compared the Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS) subscale scores calculated by our vision based method with the scores calculated by a neurologist trained in dyskinesia. An analysis of the correlation coefficient was then conducted. Intra-class correlation (ICC)(3,1) was used to measure absolute accuracy. Our multi-view vision based CD severity scale scoring method demonstrated sufficient validity and reliability. This low-cost and contactless method provides a new potential tool for remote diagnosis and treatment of CD.


Asunto(s)
Tortícolis , Estudios de Factibilidad , Humanos , Reproducibilidad de los Resultados , Proyectos de Investigación , Índice de Severidad de la Enfermedad , Tortícolis/diagnóstico , Resultado del Tratamiento
20.
Sensors (Basel) ; 22(10)2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35632211

RESUMEN

Analysing the dynamics in social interactions in indoor spaces entails evaluating spatial-temporal variables from the event, such as location and time. Additionally, social interactions include invisible spaces that we unconsciously acknowledge due to social constraints, e.g., space between people having a conversation with each other. Nevertheless, current sensor arrays focus on detecting the physically occupied spaces from social interactions, i.e., areas inhabited by physically measurable objects. Our goal is to detect the socially occupied spaces, i.e., spaces not physically occupied by subjects and objects but inhabited by the interaction they sustain. We evaluate the social representation of the space structure between two or more active participants, so-called F-Formation for small gatherings. We propose calculating body orientation and location from skeleton joint data sets by integrating depth cameras. The body orientation is derived by integrating the shoulders and spine joint data with head/face rotation data and spatial-temporal information from trajectories. From the physically occupied measurements, we can detect socially occupied spaces. In our user study implementing the system, we compared the capabilities and skeleton tracking datasets from three depth camera sensors, the Kinect v2, Azure Kinect, and Zed 2i. We collected 32 walking patterns for individual and dyad configurations and evaluated the system's accuracy regarding the intended and socially accepted orientations. Experimental results show accuracy above 90% for the Kinect v2, 96% for the Azure Kinect, and 89% for the Zed 2i for assessing socially relevant body orientation. Our algorithm contributes to the anonymous and automated assessment of socially occupied spaces. The depth sensor system is promising in detecting more complex social structures. These findings impact research areas that study group interactions within complex indoor settings.


Asunto(s)
Sistema Musculoesquelético , Algoritmos , Fenómenos Biomecánicos , Humanos , Esqueleto , Caminata
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA