Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Más filtros











Intervalo de año de publicación
1.
Front Microbiol ; 15: 1473099, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39376706

RESUMEN

Introduction: The rhizosphere is the zone of soil surrounding plant roots that is directly influenced by root exudates released by the plant, which select soil microorganisms. The resulting rhizosphere microbiota plays a key role in plant health and development by enhancing its nutrition or immune response and protecting it from biotic or abiotic stresses. In particular, plant growth-promoting rhizobacteria (PGPR) are beneficial members of this microbiota that represent a great hope for agroecology, since they could be used as bioinoculants for sustainable crop production. Therefore, it is necessary to decipher the molecular dialog between roots and PGPR in order to promote the establishment of bioinoculants in the rhizosphere, which is required for their beneficial functions. Methods: Here, the ability of root exudates from rapeseed (Brassica napus), pea (Pisum sativum), and ryegrass (Lolium perenne) to attract and feed three PGPR (Bacillus subtilis, Pseudomonas fluorescens, and Azospirillum brasilense) was measured and compared, as these responses are directly involved in the establishment of the rhizosphere microbiota. Results: Our results showed that root exudates differentially attracted and fed the three PGPR. For all beneficial bacteria, rapeseed exudates were the most attractive and induced the fastest growth, while pea exudates allowed the highest biomass production. The performance of ryegrass exudates was generally lower, and variable responses were observed between bacteria. In addition, P. fluorescens and A. brasilense appeared to respond more efficiently to root exudates than B. subtilis. Finally, we proposed to evaluate the compatibility of each plant-PGPR couple by assigning them a "love match" score, which reflects the ability of root exudates to enhance bacterial rhizocompetence. Discussion: Taken together, our results provide new insights into the specific selection of PGPR by the plant through their root exudates and may help to select the most effective exudates to promote bioinoculant establishment in the rhizosphere.

2.
Front Microbiol ; 15: 1441719, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39228378

RESUMEN

Arsenic (As) toxicity is a serious hazard to agricultural land due to growing industrialization, which has a negative effect on wheat crop yields. To address this issue, using seaweed extract and Azospirillum brasilense has emerged as an effective strategy for improving yield under stress conditions. However, the combined application of A. brasilense and seaweed extract in wheat crops under As toxicity has not been fully explored. The effectiveness of combining A. brasilense and seaweed extract in reducing As toxicity in wheat production was examined in this study through a 2-year pot experiment with nine treatments. These treatments included a control with no additives and two As concentrations (50 and 70 µM). At 50 and 70 µM, As was tested alone, with seaweed extract, with A. brasilense, and both. Significant results were achieved in reducing As toxicity in wheat crops. Arsenic at 70 µM proved more harmful than at 50 µM. The application of A. brasilense and seaweed extract was more effective in improving crop growth rates, chlorophyll levels, and stomatal conductance. The combined application notably decreased As concentration in wheat plants. It was concluded that applying A. brasilense and seaweed extract not only improves wheat growth but can also improve soil parameters under As toxicity conditions by increasing organic matter contents, boosting nutrient availability, and increasing the production of antioxidant enzymes.

3.
Front Microbiol ; 15: 1451514, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39252838

RESUMEN

Introduction: Plant growth-promoting bacteria (PGPB) have been primarily studied for atmospheric nitrogen (N) fixation but they also have the capacity to improve nutrition and yield of crop plants. Methods: Therefore, the objective of this research was to investigate the effects of inoculation with PGPB in association with different N rates on N uptake, grain yield, and oil concentration of dwarf castor beans in succession to legumes and grasses in Ilha Solteira, Brazil. The treatments consisted of N rates (0 to 180 kg ha-1 of N) and inoculation with three plant growth-promoting bacteria (Azospirillum brasiliense, Bacillus subtilis, and Pseudomonas fluorescens, applied by leaf) and a control with no-inoculation. Results: The grain and oil yields of castor beans were increased by 20 and 40% at a rate of 103 kg ha-1 of N in succession to grasses as compared to without N application. In addition, the grain yield of castor bean after legumes was increased by 28, 64, and 40% with estimated rates of 97, 113, and 92 kg ha-1 of N in combination with inoculations of A. brasilense, B. subtilis, and P. fluorescens as compared to without N application, respectively. Shoot, grain, and total N uptake were improved with foliar inoculation of A. brasilense, B. subtilis, and P. fluorescens at the N rates of 45, 90, and 135 kg ha-1, respectively. Discussion and conclusions: Topdressing of N at the rate of 103 kg ha-1 and foliar inoculation in succession to grasses and 180 kg ha-1 of N without the effect of foliar inoculation in succession to legumes are recommended for higher grain and oil yield of castor beans. Foliar inoculations with A. brasilense, B. subtilis, and P. fluorescens increased grain yield under reduced use of N fertilizer by 44, 37, and 49% in dwarf castor cultivation in succession to legumes, potentially contributing to sustainable agriculture.

4.
Braz J Microbiol ; 55(3): 2227-2237, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38954221

RESUMEN

Microorganisms are known to be a promising source of biopigments because they are easy to obtain, can be produced on a commercial scale, and are environmentally friendly. Therefore, the aim of this work was to characterize a brown pigment (BP) produced by HM053 in NFbHPN-lactate medium. The BP was extracted from the pellet (BPP) or supernatant (BPS), in the presence (BPPTrp, BPSTrp) or absence (BPPw, BPSw) of tryptophan (Trp). The UV-vis results were similar among all BP samples and compared with commercial melanin used as a standard, and the maximum absorption was observed around 200-220 nm. FTIR spectra showed that BP and commercial melanin had slight differences, with a small band between 3000-2840 cm- 1, related to C-H in the CH2 and CH3 aliphatic groups, which is not observed in the commercial melanin. Between BPP and BPS showed a different structure with bands in the region 1230-1070 cm- 1 related to groups C-O. The thermogravimetric curves for BPSw and BPSTrp showed similar behavior, with 4 stages of mass loss. The similarity between BPPw and BPPTrp with 2 stages of mass loss was also observed. Scanning electron microscopy results showed morphological differences between BPP and BPS, where BPP had a physical structure more homogeneous and a regular flat surface, while the BPS physical structure did not seem homogeneous and the surface was uneven with some spherical structures as commercial melanin.


Asunto(s)
Azospirillum brasilense , Melaninas , Triptófano , Triptófano/metabolismo , Triptófano/química , Melaninas/química , Melaninas/metabolismo , Azospirillum brasilense/metabolismo , Azospirillum brasilense/química , Azospirillum brasilense/genética , Pigmentos Biológicos/química , Espectroscopía Infrarroja por Transformada de Fourier , Medios de Cultivo/química
5.
Biochem Biophys Res Commun ; 722: 150154, 2024 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-38795456

RESUMEN

Azospirillum brasilense is a non-photosynthetic α-Proteobacteria, belongs to the family of Rhodospirillaceae and produces carotenoids to protect itself from photooxidative stress. In this study, we have used Resonance Raman Spectra to show similarity of bacterioruberins of Halobacterium salinarum to that of A. brasilense Cd. To navigate the role of genes involved in carotenoid biosynthesis, we used mutational analysis to inactivate putative genes predicted to be involved in carotenoid biosynthesis in A. brasilense Cd. We have shown that HpnCED enzymes are involved in the biosynthesis of squalene (C30), which is required for the synthesis of carotenoids in A. brasilense Cd. We also found that CrtI and CrtP desaturases were involved in the transformation of colorless squalene into the pink-pigmented carotenoids. This study elucidates role of some genes which constitute very pivotal role in biosynthetic pathway of carotenoid in A. brasilense Cd.


Asunto(s)
Azospirillum brasilense , Carotenoides , Escualeno , Carotenoides/metabolismo , Azospirillum brasilense/metabolismo , Azospirillum brasilense/genética , Escualeno/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Vías Biosintéticas , Espectrometría Raman
6.
BMC Plant Biol ; 24(1): 314, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654167

RESUMEN

BACKGROUND: Water stress is a major danger to crop yield, hence new approaches to strengthen plant resilience must be developed. To lessen the negative effects of water stress on wheat plants, present study was arranged to investigate the role of synergistic effects of biochar, trans-zeatin riboside (t-ZR), and Azospirillum brasilense on soil improvement and enzymatic activity in water-stressed wheat. RESULTS: In a three-replication experiment comprising of four treatments (T0: Control, T1: Drought stress (DS), T2: DS + t-ZR with biochar, T3: DS + A. brasilense with biochar), we observed notable improvements in soil quality and enzymatic activities in water-stressed wheat plants with the application of t-ZR and A. brasilense with biochar. In drought stress, Treatment having the application of A. brasilense with biochar performs best as compared to the other and significant increased the enzymatic activities such as peroxidase (7.36%), catalase (8.53%), superoxide dismutase (6.01%), polyphenol oxidase (14.14%), and amylase (16.36%) in wheat plants. Different enzymatic activities showed different trends of results. Soil organic C, dissolved organic C, dissolved organic N also enhanced 29.46%, 8.59%, 22.70% respectively with the application of A. brasilense with biochar under drought stress condition. CONCLUSIONS: The synergistic action of A. brasilense and biochar creates an effective microbiological environment that supports essential plant physiological processes during drought stress. This enhancement is attributed to improved soil fertility and increased organic matter content, highlighting the potential of these novel strategies in mitigating water stress effects and enhancing crop resilience.


Asunto(s)
Azospirillum brasilense , Carbón Orgánico , Suelo , Triticum , Triticum/metabolismo , Azospirillum brasilense/fisiología , Suelo/química , Deshidratación , Sequías
7.
BMC Plant Biol ; 24(1): 268, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605320

RESUMEN

BACKGROUND: Considering the challenges posed by nitrogen (N) pollution and its impact on food security and sustainability, it is crucial to develop management techniques that optimize N fertilization in croplands. Our research intended to explore the potential benefits of co-inoculation with Azospirillum brasilense and Bacillus subtilis combined with N application rates on corn plants. The study focused on evaluating corn photosynthesis-related parameters, oxidative stress assay, and physiological nutrient use parameters. Focus was placed on the eventual improved capacity of plants to recover N from applied fertilizers (AFR) and enhance N use efficiency (NUE) during photosynthesis. The two-year field trial involved four seed inoculation treatments (control, A. brasilense, B. subtilis, and A. brasilense + B. subtilis) and five N application rates (0 to 240 kg N ha-1, applied as side-dress). RESULTS: Our results suggested that the combined effects of microbial consortia and adequate N-application rates played a crucial role in N-recovery; enhanced NUE; increased N accumulation, leaf chlorophyll index (LCI), and shoot and root growth; consequently improving corn grain yield. The integration of inoculation and adequate N rates upregulated CO2 uptake and assimilation, transpiration, and water use efficiency, while downregulated oxidative stress. CONCLUSIONS: The results indicated that the optimum N application rate could be reduced from 240 to 175 kg N ha-1 while increasing corn yield by 5.2%. Furthermore, our findings suggest that replacing 240 by 175 kg N ha-1 of N fertilizer (-65 kg N ha-1) with microbial consortia would reduce CO2 emission by 682.5 kg CO2 -e ha-1. Excessive N application, mainly with the presence of beneficial bacteria, can disrupt N-balance in the plant, alter soil and bacteria levels, and ultimately affect plant growth and yield. Hence, highlighting the importance of adequate N management to maximize the benefits of inoculation in agriculture and to counteract N loss from agricultural systems intensification.


Asunto(s)
Fertilizantes , Zea mays , Nitrógeno/análisis , Dióxido de Carbono , Agricultura , Suelo
8.
Can J Microbiol ; 70(5): 150-162, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38427979

RESUMEN

This study characterizes seedling exudates of peas, tomatoes, and cucumbers at the level of chemical composition and functionality. A plant experiment confirmed that Rhizobium leguminosarum bv. viciae 3841 enhanced growth of pea shoots, while Azospirillum brasilense Sp7 supported growth of pea, tomato, and cucumber roots. Chemical analysis of exudates after 1 day of seedling incubation in water yielded differences between the exudates of the three plants. Most remarkably, cucumber seedling exudate did not contain detectable sugars. All exudates contained amino acids, nucleobases/nucleosides, and organic acids, among other compounds. Cucumber seedling exudate contained reduced glutathione. Migration on semi solid agar plates containing individual exudate compounds as putative chemoattractants revealed that R. leguminosarum bv. viciae was more selective than A. brasilense, which migrated towards any of the compounds tested. Migration on semi solid agar plates containing 1:1 dilutions of seedling exudate was observed for each of the combinations of bacteria and exudates tested. Likewise, R. leguminosarum bv. viciae and A. brasilense grew on each of the three seedling exudates, though at varying growth rates. We conclude that the seedling exudates of peas, tomatoes, and cucumbers contain everything that is needed for their symbiotic bacteria to migrate and grow on.


Asunto(s)
Azospirillum brasilense , Cucumis sativus , Pisum sativum , Rhizobium leguminosarum , Plantones , Solanum lycopersicum , Solanum lycopersicum/microbiología , Solanum lycopersicum/crecimiento & desarrollo , Cucumis sativus/microbiología , Cucumis sativus/crecimiento & desarrollo , Plantones/crecimiento & desarrollo , Plantones/microbiología , Rhizobium leguminosarum/crecimiento & desarrollo , Rhizobium leguminosarum/metabolismo , Azospirillum brasilense/crecimiento & desarrollo , Azospirillum brasilense/metabolismo , Pisum sativum/microbiología , Pisum sativum/crecimiento & desarrollo , Raíces de Plantas/microbiología , Raíces de Plantas/crecimiento & desarrollo , Quimiotaxis , Exudados de Plantas/química , Exudados de Plantas/metabolismo
9.
Polymers (Basel) ; 16(5)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38475295

RESUMEN

Azospirillum brasilense Sp7 produces PHB, which is covered by granule-associated proteins (GAPs). Phasins are the main GAPs. Previous studies have shown phasins can regulate PHB synthesis. When A. brasilense grows under stress conditions, it uses sigma factors to transcribe genes for survival. One of these factors is the σ24 factor. This study determined the possible interaction between phasins and the σ24 factor or phasin-σ24 factor complex and DNA. Three-dimensional structures of phasins and σ24 factor structures were predicted using the I-TASSER and SWISS-Model servers, respectively. Subsequently, a molecular docking between phasins and the σ24 factor was performed using the ClusPro 2.0 server, followed by molecular docking between protein complexes and DNA using the HDOCK server. Evaluation of the types of ligand-receptor interactions was performed using the BIOVIA Discovery Visualizer for three-dimensional diagrams, as well as the LigPlot server to obtain bi-dimensional diagrams. The results showed the phasins (Pha4Abs7 or Pha5Abs7)-σ24 factor complex was bound near the -35 box of the promoter region of the phaC gene. However, in the individual interaction of PhaP5Abs7 and the σ24 factor, with DNA, both proteins were bound to the -35 box. This did not occur with PhaP4Abs7, which was bound to the -10 box. This change could affect the transcription level of the phaC gene and possibly affect PHB synthesis.

10.
Braz J Microbiol ; 55(1): 101-109, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38214876

RESUMEN

MicroRNA (miRNA) is a class of non-coding RNAs. They play essential roles in plants' physiology, as in the regulation of plant development, response to biotic and abiotic stresses, and symbiotic processes. This work aimed to better understand the importance of maize's miRNA during Azospirillum-plant interaction when the plant indole-3-acetic acid (IAA) production was inhibited with yucasin, an inhibitor of the TAM/YUC pathway. Twelve cDNA libraries from a previous Dual RNA-Seq experiment were used to analyze gene expression using a combined analysis approach. miRNA coding genes (miR) and their predicted mRNA targets were identified among the differentially expressed genes. Statistical differences among the groups indicate that Azospirillum brasilense, yucasin, IAA concentration, or all together could influence the expression of several maize's miRNAs. The miRNA's probable targets were identified, and some of them were observed to be differentially expressed. Dcl4, myb122, myb22, and morf3 mRNAs were probably regulated by their respective miRNAs. Other probable targets were observed responding to the IAA level, the bacterium, or all of them. A. brasilense was able to influence the expression of some maize's miRNA, for example, miR159f, miR164a, miR169j, miR396c, and miR399c. The results allow us to conclude that the bacterium can influence directly or indirectly the expression of some of the identified mRNA targets, probably due to an IAA-independent pathway, and that they are somehow involved in the previously observed physiological effects.


Asunto(s)
Azospirillum brasilense , MicroARNs , Azospirillum brasilense/genética , Azospirillum brasilense/metabolismo , Zea mays/metabolismo , Ácidos Indolacéticos/metabolismo , Plantas/metabolismo , MicroARNs/genética , ARN Mensajero/metabolismo
11.
Microorganisms ; 11(7)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37512900

RESUMEN

As the use of microbial inoculants in agriculture rises, it becomes important to understand how the environment may influence microbial ability to promote plant growth. This work examines whether there are light dependencies in the biological functions of Azospirillum brasilense, a commercialized prolific grass-root colonizer. Though classically defined as non-phototrophic, A. brasilense possesses photoreceptors that could perceive light conducted through its host's roots. Here, we examined the light dependency of atmospheric biological nitrogen fixation (BNF) and auxin biosynthesis along with supporting processes including ATP biosynthesis, and iron and manganese uptake. Functional mutants of A. brasilense were studied in light and dark environments: HM053 (high BNF and auxin production), ipdC (capable of BNF, deficient in auxin production), and FP10 (capable of auxin production, deficient in BNF). HM053 exhibited the highest rate of nitrogenase activity with the greatest light dependency comparing iterations in light and dark environments. The ipdC mutant showed similar behavior with relatively lower nitrogenase activity observed, while FP10 did not show a light dependency. Auxin biosynthesis showed strong light dependencies in HM053 and FP10 strains, but not for ipdC. Ferrous iron is involved in BNF, and a light dependency was observed for microbial 59Fe2+ uptake in HM053 and ipdC, but not FP10. Surprisingly, a light dependency for 52Mn2+ uptake was only observed in ipdC. Finally, ATP biosynthesis was sensitive to light across all three mutants favoring blue light over red light compared to darkness with observed ATP levels in descending order for HM053 > ipdC > FP10.

12.
Polymers (Basel) ; 15(14)2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37514417

RESUMEN

Gram-negative Azospirillum brasilense accumulates approximately 80% of polyhydroxybutyrate (PHB) as dry cell weight. For this reason, this bacterium has been characterized as one of the main microorganisms that produce PHB. PHB is synthesized inside bacteria by the polymerization of 3-hydroxybutyrate monomers. In this review, we are focusing on the analysis of the PHB production by A. brasilense in order to understand the metabolism during PHB accumulation. First, the carbon and nitrogen sources used to improve PHB accumulation are discussed. A. brasilense accumulates more PHB when it is grown on a minimal medium containing a high C/N ratio, mainly from malate and ammonia chloride, respectively. The metabolic pathways to accumulate and mobilize PHB in A. brasilense are mentioned and compared with those of other microorganisms. Next, we summarize the available information to understand the role of the genes involved in the regulation of PHB metabolism as well as the role of PHB in the physiology of Azospirillum. Finally, we made a comparison between the properties of PHB and polypropylene, and we discussed some applications of PHB in biomedical and commercial areas.

13.
Plants (Basel) ; 12(11)2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37299089

RESUMEN

Heavy metal stress, including from chromium, has detrimental effects on crop growth and yields worldwide. Plant growth-promoting rhizobacteria (PGPR) have demonstrated great efficiency in mitigating these adverse effects. The present study investigated the potential of the PGPR strain Azospirillum brasilense EMCC1454 as a useful bio-inoculant for boosting the growth, performance and chromium stress tolerance of chickpea (Cicer arietinum L.) plants exposed to varying levels of chromium stress (0, 130 and 260 µM K2Cr2O7). The results revealed that A. brasilense EMCC1454 could tolerate chromium stress up to 260 µM and exhibited various plant growth-promoting (PGP) activities, including nitrogen fixation, phosphate solubilization, and generation of siderophore, trehalose, exopolysaccharide, ACC deaminase, indole acetic acid, and hydrolytic enzymes. Chromium stress doses induced the formation of PGP substances and antioxidants in A. brasilense EMCC1454. In addition, plant growth experiments showed that chromium stress significantly inhibited the growth, minerals acquisition, leaf relative water content, biosynthesis of photosynthetic pigments, gas exchange traits, and levels of phenolics and flavonoids of chickpea plants. Contrarily, it increased the concentrations of proline, glycine betaine, soluble sugars, proteins, oxidative stress markers, and enzymatic (CAT, APX, SOD, and POD) and non-enzymatic (ascorbic acid and glutathione) antioxidants in plants. On the other hand, A. brasilense EMCC1454 application alleviated oxidative stress markers and significantly boosted the growth traits, gas exchange characteristics, nutrient acquisition, osmolyte formation, and enzymatic and non-enzymatic antioxidants in chromium-stressed plants. Moreover, this bacterial inoculation upregulated the expression of genes related to stress tolerance (CAT, SOD, APX, CHS, DREB2A, CHI, and PAL). Overall, the current study demonstrated the effectiveness of A. brasilense EMCC1454 in enhancing plant growth and mitigating chromium toxicity impacts on chickpea plants grown under chromium stress circumstances by modulating the antioxidant machinery, photosynthesis, osmolyte production, and stress-related gene expression.

14.
Front Plant Sci ; 14: 1146808, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37223804

RESUMEN

Introduction and aims: The intensive cropping system and imbalance use of chemical fertilizers to pursue high grain production and feed the fast-growing global population has disturbed agricultural sustainability and nutritional security. Understanding micronutrient fertilizer management especially zinc (Zn) through foliar application is a crucial agronomic approach that could improve agronomic biofortification of staple grain crops. The use of plant growth-promoting bacteria (PGPBs) is considered as one of the sustainable and safe strategies that could improve nutrient acquisition and uptake in edible tissues of wheat to combat Zn malnutrition and hidden hunger in humans. Therefore, the objective of this study was to evaluate the best-performing PGPB inoculants in combination with nano-Zn foliar application on the growth, grain yield, and concentration of Zn in shoots and grains, Zn use efficiencies, and estimated Zn intake under wheat cultivation in the tropical savannah of Brazil. Methods: The treatments consisted of four PGPB inoculations (without inoculation, Azospirillum brasilense, Bacillus subtilis, and Pseudomonas fluorescens, applied by seeds) and five Zn doses (0, 0.75, 1.5, 3, and 6 kg ha-1, applied from nano ZnO in two splits by leaf). Results: Inoculation of B. subtilis and P. fluorescens in combination with 1.5 kg ha-1 foliar nano-Zn fertilization increased the concentration of Zn, nitrogen, and phosphorus in the shoot and grain of wheat in the 2019 and 2020 cropping seasons. Shoot dry matter was increased by 5.3% and 5.4% with the inoculation of P. fluorescens, which was statistically not different from the treatments with inoculation of B. subtilis as compared to control. The grain yield of wheat was increased with increasing nano-Zn foliar application up to 5 kg Zn ha-1 with the inoculation of A. brasilense in 2019, and foliar nano-Zn up to a dose of 1.5 kg ha-1 along with the inoculation of P. fluorescens in the 2020 cropping season. The zinc partitioning index was increased with increasing nano Zn application up to 3 kg ha-1 along with the inoculation of P. fluorescens. Zinc use efficiency and applied Zn recovery were improved at low doses of nano-Zn application in combination with the inoculation of A. brasilense, B. subtilis, and P. fluorescens, respectively, as compared to control. Discussion: Therefore, inoculation with B. subtilis and P. fluorescens along with foliar nano-Zn application is considered a sustainable and environmentally safe strategy to increase nutrition, growth, productivity, and Zn biofortification of wheat in tropical savannah.

15.
Semina ciênc. agrar ; 44(1): 273-284, jan.-fev. 2023. tab, ilus
Artículo en Inglés | VETINDEX | ID: biblio-1418822

RESUMEN

Inoculation and co-inoculation of upland rice with multifunctional rhizobacteria can promote plant growth, especially the root system. Thus, this study aimed to evaluate the effect of inoculation and co-inoculation with Azospirillum sp. and Bacillus sp. in the early development of upland rice. The experiment was conducted using a completely randomized design with 4 treatments and 10 replications, totaling 40 plots. The treatments were: 1) Ab-V5 (Azospirillum brasilense), 2) BRM 63573 (Bacillus sp.), 3) co-inoculation of Ab-V5 + BRM 63573, and 4) control (without rhizobacteria). Inoculation and co-inoculation with the multifunctional rhizobacteria Ab-V5 and BRM 63573 provided positive effects on the initial development of upland rice. Inoculation with isolate BRM 63573 had significant effects on root length, shoot, and total biomass, while inoculation with isolate Ab-V5 had significant effects on root length and production of root and total biomass. Co-inoculation treatment had significant effects on variables such as diameter, volume, total surface, root biomass, and total biomass. The control treatment (without multifunctional rhizobacteria) had the worst results for most of the analyzed variables.


A inoculação e coinoculação do arroz de terras altas com rizobactérias multifuncionais pode promover o crescimento das plantas, especialmente do sistema radicular. Assim, este estudo teve como objetivo avaliar o efeito da inoculação e coinoculação com Azospirillum sp. e Bacillus sp. no desenvolvimento inicial do arroz de terras altas. O experimento foi conduzido em delineamento inteiramente casualizado com 4 tratamentos e 10 repetições, totalizando 40 parcelas. Os tratamentos foram: 1) Ab-V5 (Azospirillum brasilense), 2) BRM 63573 (Bacillus sp.), 3) coinoculação de Ab-V5 + BRM 63573 e 4) controle (sem rizobactérias). A inoculação e coinoculação com as rizobactérias multifuncionais Ab-V5 e BRM 63573 proporcionaram efeitos positivos no desenvolvimento inicial do arroz de terras altas. A inoculação com o isolado BRM 63573 teve efeitos significativos no comprimento da raiz, parte aérea e biomassa total, enquanto a inoculação com o isolado Ab-V5 teve efeitos significativos no comprimento da raiz e produção de raiz e biomassa total. O tratamento com coinoculação teve efeitos significativos em variáveis como diâmetro, volume e superfície total de raiz e biomassa de raiz e total. O tratamento controle (sem rizobactérias multifuncionais) apresentou os piores resultados para a maioria das variáveis analisadas.


Asunto(s)
Oryza/crecimiento & desarrollo , Bacillus , Azospirillum brasilense
16.
J Hazard Mater ; 444(Pt B): 130425, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36435046

RESUMEN

Inoculation with growth-promoting rhizobacteria inoculation and the addition of exogenous signaling molecules are two distinct strategies for improving heavy metal resistance and promoting growth in crops through several mechanisms. However, whether rhizobacteria and phyllosphere signaling molecules can act synergistically alleviate heavy metal stress and promote growth and the mechanisms underlying these effects remain unclear. Here, a novel strategy involving the co-application of growth-promoting rhizobacteria and an exogenous signaling molecule was developed to reduce cadmium (Cd) phytotoxicity and promote pak choi growth in Cd-contaminated soil. We found that the co-application of Azospirillum brasilense and hydrogen sulfide (H2S) resulted in significant improvements in shoot biomass and antioxidant enzyme content and a decline in the levels of Cd translocation factors. In addition, this co-application significantly improved pak choi Cd resistance. Furthermore, we observed a significant negative correlation between abscisic acid concentration and Cd content of pak choi and a positive correlation between H2S concentration and biomass. These findings revealed that the co-application of rhizobacteria and exogenous signaling molecules synergistically promoted the growth of vegetable crops subjected to heavy metal stress. Our results may serve as a guide for improving the food safety of crops grown in soil contaminated with heavy metals.


Asunto(s)
Azospirillum brasilense , Brassica , Cadmio/toxicidad , Ácido Abscísico , Productos Agrícolas , Suelo
17.
Ciênc. rural (Online) ; 53(3): e20210863, 2023. tab, graf
Artículo en Inglés | LILACS-Express | VETINDEX | ID: biblio-1384574

RESUMEN

ABSTRACT: There is little information about the production of agave plants in the nursery, so this research assessed the growth in the nursery of Agave angustifolia plants originating from inflorescence bulbils, subjected to different substrates, fertigation doses, and inoculation with Azospirillum brasilense. The bulbils were established for two months in a 50% peat-50% perlite substrate. One hundred and eighty plants were individually transferred to 3.8 dm3 pots for evaluation in an experiment with three factors: 1) type of irrigation: 1.1) water, or 1.2) fertigation with Steiner's nutrient solution (NS), NS-50%, or 1.3) NS-100%; 2) inoculation with Azospirillum brasilense, 2.1) inoculated plants, 2.2) non-inoculated plants; 3) substrate, mixtures of bovine manure (BM) + sand (S) in different proportions, Mix1: 75% BM + 25% S; Mix2: 25% BM + 75% S; Mix3: 50% BM + 50% S. Morphological characteristics were quantified for one year. The largest plants were those that were in substrates with 50% BM, and were fertirrigated with NS-100% and inoculated with Azospirillum brasiliense. The smallest plants were those established a in a substrate with the lowest manure content, irrigated with only water and without inoculation, which was respectively 71.6 and 54.10 cm high, 21 and 15.6 leaves, 76.6 and 62.2 mm in stem diameter, 84.4 and 59.8 cm in rosette diameter.


RESUMO: Existem poucas informações sobre a produção de agave em viveiro, portanto o objetivo deste trabalho foi avaliar o crescimento em viveiro de Agave angustifolia provenientes de bulbilhos de inflorescência, submetidos a diferentes substratos, doses de fertirrigação e inoculação com Azospirillum brasilense. Os bulbilhos foram estabelecidos por dois meses em substrato 50% turfa-50% perlita. Cento e oitenta plantas foram transferidas individualmente para vasos de 3,8 dm3 para avaliação em um experimento com três fatores: 1) tipo de irrigação: 1.1) água ou 1.2) fertirrigação com solução nutritiva de Steiner (NS), NS-50% ou 1.3 ) NS-100%; 2) inoculação com Azospirillum brasilense, 2.1) plantas inoculadas, 2.2) plantas não inoculadas; 3) substrato, misturas de esterco bovino (BM) + areia (S) em diferentes proporções, Mix1: 75% BM + 25% S; Mix2: 25% BM + 75% S; Mix3: 50% BM + 50% S. As características morfológicas foram quantificadas por um ano. As maiores plantas foram aquelas que estavam em substrato com 50% de BM, foram fertirrigadas com NS-100% e inoculadas com Azospirillum brasiliense, enquanto as menores foram aquelas estabelecidas em substrato com menor quantidade de esterco, irrigado apenas com água e sem inoculação, que tinham respectivamente, 71,6 e 54,10 cm de altura, 21 e 15,6 folhas, 76,6 e 62,2 mm de diâmetro do caule, 84,4 e 59,8 cm de diâmetro de roseta.

18.
Ciênc. rural (Online) ; 53(3): e20210863, 2023. tab, ilus
Artículo en Inglés | VETINDEX | ID: biblio-1412104

RESUMEN

There is little information about the production of agave plants in the nursery, so this research assessed the growth in the nursery of Agave angustifolia plants originating from inflorescence bulbils, subjected to different substrates, fertigation doses, and inoculation with Azospirillum brasilense. The bulbils were established for two months in a 50% peat-50% perlite substrate. One hundred and eighty plants were individually transferred to 3.8 dm3 pots for evaluation in an experiment with three factors: 1) type of irrigation: 1.1) water, or 1.2) fertigation with Steiner's nutrient solution (NS), NS-50%, or 1.3) NS-100%; 2) inoculation with Azospirillum brasilense, 2.1) inoculated plants, 2.2) non-inoculated plants; 3) substrate, mixtures of bovine manure (BM) + sand (S) in different proportions, Mix1: 75% BM + 25% S; Mix2: 25% BM + 75% S; Mix3: 50% BM + 50% S. Morphological characteristics were quantified for one year. The largest plants were those that were in substrates with 50% BM, and were fertirrigated with NS-100% and inoculated with Azospirillum brasiliense. The smallest plants were those established a in a substrate with the lowest manure content, irrigated with only water and without inoculation, which was respectively 71.6 and 54.10 cm high, 21 and 15.6 leaves, 76.6 and 62.2 mm in stem diameter, 84.4 and 59.8 cm in rosette diameter.


Existem poucas informações sobre a produção de agave em viveiro, portanto o objetivo deste trabalho foi avaliar o crescimento em viveiro de Agave angustifolia provenientes de bulbilhos de inflorescência, submetidos a diferentes substratos, doses de fertirrigação e inoculação com Azospirillum brasilense. Os bulbilhos foram estabelecidos por dois meses em substrato 50% turfa-50% perlita. Cento e oitenta plantas foram transferidas individualmente para vasos de 3,8 dm3 para avaliação em um experimento com três fatores: 1) tipo de irrigação: 1.1) água ou 1.2) fertirrigação com solução nutritiva de Steiner (NS), NS-50% ou 1.3 ) NS-100%; 2) inoculação com Azospirillum brasilense, 2.1) plantas inoculadas, 2.2) plantas não inoculadas; 3) substrato, misturas de esterco bovino (BM) + areia (S) em diferentes proporções, Mix1: 75% BM + 25% S; Mix2: 25% BM + 75% S; Mix3: 50% BM + 50% S. As características morfológicas foram quantificadas por um ano. As maiores plantas foram aquelas que estavam em substrato com 50% de BM, foram fertirrigadas com NS-100% e inoculadas com Azospirillum brasiliense, enquanto as menores foram aquelas estabelecidas em substrato com menor quantidade de esterco, irrigado apenas com água e sem inoculação, que tinham respectivamente, 71,6 e 54,10 cm de altura, 21 e 15,6 folhas, 76,6 e 62,2 mm de diâmetro do caule, 84,4 e 59,8 cm de diâmetro de roseta.


Asunto(s)
Azospirillum brasilense , Sustratos para Tratamiento Biológico , Agave/crecimiento & desarrollo
19.
Front Agron ; 52023.
Artículo en Inglés | MEDLINE | ID: mdl-38223701

RESUMEN

Major food crops, such as rice and maize, display severe yield losses (30-50%) under salt stress. Furthermore, problems associated with soil salinity are anticipated to worsen due to climate change. Therefore, it is necessary to implement sustainable agricultural strategies, such as exploiting beneficial plant-microbe associations, for increased crop yields. Plants can develop associations with beneficial microbes, including arbuscular mycorrhiza and plant growth-promoting bacteria (PGPB). PGPB improve plant growth via multiple mechanisms, including protection against biotic and abiotic stresses. Azospirillum brasilense, one of the most studied PGPB, can mitigate salt stress in different crops. However, little is known about the molecular mechanisms by which A. brasilense mitigates salt stress. This study shows that total and root plant mass is improved in A. brasilense-inoculated rice plants compared to the uninoculated plants grown under high salt concentrations (100 mM and 200 mM NaCl). We observed this growth improvement at seven- and fourteen days post-treatment (dpt). Next, we used transcriptomic approaches and identified differentially expressed genes (DEGs) in rice roots when exposed to three treatments: 1) A. brasilense, 2) salt (200 mM NaCl), and 3) A. brasilense and salt (200 mM NaCl), at seven dpt. We identified 786 DEGs in the A. brasilense-treated plants, 4061 DEGs in the salt-stressed plants, and 1387 DEGs in the salt-stressed A. brasilense-treated plants. In the A. brasilense-treated plants, we identified DEGs involved in defense, hormone, and nutrient transport, among others. In the salt-stressed plants, we identified DEGs involved in abscisic acid and jasmonic acid signaling, antioxidant enzymes, sodium and potassium transport, and calcium signaling, among others. In the salt-stressed A. brasilense-treated plants, we identified some genes involved in salt stress response and tolerance (e.g., abscisic acid and jasmonic acid signaling, antioxidant enzymes, calcium signaling), and sodium and potassium transport differentially expressed, among others. We also identified some A. brasilense-specific plant DEGs, such as nitrate transporters and defense genes. Furthermore, our results suggest genes involved in auxin and ethylene signaling are likely to play an important role during these interactions. Overall, our transcriptomic data indicate that A. brasilense improves rice growth under salt stress by regulating the expression of key genes involved in defense and stress response, abscisic acid and jasmonic acid signaling, and ion and nutrient transport, among others. Our findings will provide essential insights into salt stress mitigation in rice by A. brasilense.

20.
Biosci. j. (Online) ; 39: e39092, 2023.
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1567426

RESUMEN

The demand for sustainable agricultural production systems is increasing, and using growth-promoting microorganisms in plants has stood out because it decreases or even replaces chemical fertilizer use, reducing production costs. This study aimed to evaluate the response of some microorganisms applied to the seedlings of primary orchids cultivated in Brazil (Phalaenopsis sp. 'Taisuco Swan', Cymbidium atropurpureum, and Dendrobium secundum). The experimental design was completely randomized. There were seven treatments (absence of microorganisms ­ control, Trichoderma sp. in sodium alginate, Trichoderma sp. in clay, Trichoderma sp. in sodium alginate and clay, Trichoderma sp. in a liquid medium, Azospirillum brasilense + Bacillus subtilis in a liquid medium, and Bacillus pumilus in a liquid medium), four replications, and three plants per plot. The seedlings were grown in a greenhouse and evaluated 190 days after microorganism inoculation. The evaluation of morpho-physiological characteristics differed according to the particularities of each genus. The Bacillus pumilus and Azospirillum brasilense + Bacillus subtilis rhizobacteria in a liquid medium for Phalaenopsis sp. 'Taisuco Swan' and the Trichoderma sp. fungus in a liquid medium for Cymbidium atropurpureum increased seedling growth and development. Azospirillum brasilense + Bacillus subtilis in a liquid medium for the Dendrobium secundum orchid promoted more root biomass. Using beneficial microorganisms in orchid cultivation is promising, and seedling growth and development depend on their inoculation and the morpho-physiological characteristics of each plant.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA