Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 229
Filtrar
1.
J Cell Sci ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39257379

RESUMEN

Association of tau with microtubules causes them to be labile while association of MAP6 with microtubules causes them to be stable. As axons differentiate and grow, tau and MAP6 segregate from one another on individual microtubules, resulting in the formation of stable and labile domains. The functional significance of the yin/yang relationship between tau and MAP6 remains speculative, with one idea being that such a relationship assists in balancing morphological stability with plasticity. Here, using primary rodent neuronal cultures, we show that tau depletion has opposite effects compared to MAP6 depletion on the rate of neuronal development, the efficiency of growth cone turning, and the number of neuronal processes and axonal branches. Opposite effects to those of tau depletion were also observed on the rate of neuronal migration, in an in vivo assay, when MAP6 was depleted. When tau and MAP6 were together depleted from neuronal cultures, the morphological phenotypes negated one another. Although tau and MAP6 are multifunctional proteins, our results suggest that the observed effects on neuronal development are likely due to their opposite roles in regulating microtubule stability.

2.
Front Mol Neurosci ; 17: 1393779, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39246602

RESUMEN

Spinal muscular atrophy (SMA) is a neuromuscular disorder caused by mutations or deletions in the survival motoneuron 1 (SMN1) gene, resulting in deficiency of the SMN protein that is essential for motoneuron function. Smn depletion in mice disturbs axonal RNA transport and translation, thereby contributing to axon growth impairment, muscle denervation, and motoneuron degeneration. However, the mechanisms whereby Smn loss causes axonal defects remain unclear. RNA localization and translation in axons are controlled by RNA-binding proteins (RBP) and we recently observed that the neuronal RBP Ptbp2 modulates axon growth in motoneurons. Here, we identify Smn as an interactor of Ptbp2 in the cytosolic compartments of motoneurons. We show that the expression level of Ptbp2 is reduced in axons but not in the somata of Smn-depleted motoneurons. This is accompanied by reduced synthesis of the RBP hnRNP R in axons. Re-expression of Ptbp2 in axons compensates for the deficiency of Smn and rescues the defects in axon elongation and growth cone maturation observed in Smn-deficient motoneurons. Our data suggest that Ptbp2 and Smn are components of cytosolic mRNP particles, contributing to the precise spatial and temporal control of protein synthesis within axons and axon terminals.

3.
Curr Biol ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39265571

RESUMEN

Neurons have a unique polarized nature that must adapt to environmental changes throughout their lifespan. During embryonic development, axon elongation is led by the growth cone,1 culminating in the formation of a presynaptic terminal. After synapses are formed, axons elongate in a growth cone-independent manner to accompany body growth while maintaining their ultrastructure and function.2,3,4,5,6 To further understand mechanical strains on the axon shaft, we developed a computer-controlled stretchable microfluidic platform compatible with multi-omics and live imaging. Our data show that sensory embryonic dorsal root ganglia (DRGs) neurons have high plasticity, with axon shaft microtubules decreasing polymerization rates, aligning with the direction of tension, and undergoing stabilization. Moreover, in embryonic DRGs, stretch triggers yes-associated protein (YAP) nuclear translocation, supporting its participation in the regulatory network that enables tension-driven axon growth. Other than cytoskeleton remodeling, stretch prompted MARCKS-dependent formation of plasmalemmal precursor vesicles (PPVs), resulting in new membrane incorporation throughout the axon shaft. In contrast, adolescent DRGs showed a less robust adaptation, with axonal microtubules being less responsive to stretch. Also, while adolescent DRGs were still amenable to strain-induced PPV formation at higher stretch rates, new membrane incorporation in the axon shaft failed to occur. In summary, we developed a new resource to study the biology of axon stretch growth. By unraveling cytoskeleton adaptation and membrane remodeling in the axon shaft of stretched neurons, we are moving forward in understanding axon growth.

4.
Development ; 151(17)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39268828

RESUMEN

Spatially and temporally accurate termination of axon outgrowth, a process called axon termination, is required for efficient, precise nervous system construction and wiring. The mechanosensory neurons that sense low-threshold mechanical stimulation or gentle touch have proven exceptionally valuable for studying axon termination over the past 40 years. In this Review, we discuss progress made in deciphering the molecular and genetic mechanisms that govern axon termination in touch receptor neurons. Findings across model organisms, including Caenorhabditis elegans, Drosophila, zebrafish and mice, have revealed that complex signaling is required for termination with conserved principles and players beginning to surface. A key emerging theme is that axon termination is mediated by complex signaling networks that include ubiquitin ligase signaling hubs, kinase cascades, transcription factors, guidance/adhesion receptors and growth factors. Here, we begin a discussion about how these signaling networks could represent termination codes that trigger cessation of axon outgrowth in different species and types of mechanosensory neurons.


Asunto(s)
Axones , Transducción de Señal , Animales , Axones/metabolismo , Axones/fisiología , Mecanorreceptores/metabolismo , Caenorhabditis elegans/metabolismo , Drosophila/metabolismo
5.
Cell Rep ; 43(9): 114666, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39182224

RESUMEN

The exon junction complex (EJC), nucleated by EIF4A3, is indispensable for mRNA fate and function throughout eukaryotes. We discover that EIF4A3 directly controls microtubules, independent of RNA, which is critical for neural wiring. While neuronal survival in the developing mouse cerebral cortex depends upon an intact EJC, axonal tract development requires only Eif4a3. Using human cortical organoids, we show that EIF4A3 disease mutations also impair neuronal growth, highlighting conserved functions relevant for neurodevelopmental pathology. Live imaging of growing neurons shows that EIF4A3 is essential for microtubule dynamics. Employing biochemistry and competition experiments, we demonstrate that EIF4A3 directly binds to microtubules, mutually exclusive of the EJC. Finally, in vitro reconstitution assays and rescue experiments demonstrate that EIF4A3 is sufficient to promote microtubule polymerization and that EIF4A3-microtubule association is a major contributor to axon growth. This reveals a fundamental mechanism by which neurons re-utilize core gene expression machinery to directly control the cytoskeleton.

6.
J Mol Neurosci ; 74(3): 60, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38904846

RESUMEN

Our former studies have identified the alleviating effect of Calycosin (CA) on spinal cord injury (SCI). In this study, our purpose is to explore the influence of CA on SCI from the perspective of promoting axon growth. The SCI animal model was constructed by spinal cord compression, wherein rat primary cortex neuronal isolation was performed, and the axonal growth restriction cell model was established via chondroitin sulfate proteoglycan (CSPG) treatment. The expressions of axon regeneration markers were measured via immunofluorescent staining and western blot, and the direct target of CA was examined using silver staining. Finally, the expression of the protein tyrosine phosphatase receptor type S (PTPRS) was assessed using western blot. CA treatment increased neuronal process outgrowth and the expressions of axon regeneration markers, such as neurofilament H (NF-H), vesicular glutamate transporter 1 (vGlut1), and synaptophysin (Syn) in both SCI model rats and CSPG-treated primary cortical neurons, and PTPRS levels were elevated after SCI induction. In addition, PTPRS was the direct target of CA, and according to in vivo findings, exposure to CA reduced the PTPRS content. Furthermore, PTPRS overexpression inhibited CA's enhancement of axon regeneration marker content and neuronal axon lengths. CA improves SCI by increasing axon development through regulating PTPRS expression.


Asunto(s)
Axones , Isoflavonas , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal , Sinaptofisina , Animales , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/tratamiento farmacológico , Ratas , Isoflavonas/farmacología , Isoflavonas/uso terapéutico , Axones/efectos de los fármacos , Axones/metabolismo , Células Cultivadas , Sinaptofisina/metabolismo , Sinaptofisina/genética , Proteínas de Neurofilamentos/metabolismo , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo , Proteína 1 de Transporte Vesicular de Glutamato/genética , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Corteza Cerebral/metabolismo , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/citología , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/metabolismo , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/genética , Masculino , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Proyección Neuronal/efectos de los fármacos , Femenino , Proteína 2 de Transporte Vesicular de Glutamato
7.
Mol Neurobiol ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38904854

RESUMEN

The role of local of growth cone (GC) manipulation in adult regenerative systems is largely unexplored despite substantial translational importance. Here we investigated collaboration among Rac1 GTPase, its partnering ERM proteins and PTEN in adult sensory neurons and adult nerve regeneration. We confirmed expression of both Rac1 and ERM in adults and noted substantial impacts on neurite outgrowth in naïve and pre-injured adult sensory neurons. PTEN inhibition added to this outgrowth. Rac1 activation acted directly on adult GCs facilitating both attractive turning and advancement. In vivo regeneration indices including electrophysiological recovery, return of sensation, walking, repopulation of myelinated axons and reinnervation of the target epidermis indicated benefits of local Rac1 activation. These indices suggested maximal GC activation whereas local PTEN inhibition offered only limited added improvement. Our findings provide support for the concept of manipulating adult GCs, by emphasizing local Rac1 activation in directing therapy for nerve repair.

8.
PNAS Nexus ; 3(5): pgae174, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38711810

RESUMEN

Although evidence indicates that the adult brain retains a considerable capacity for circuit formation, adult wiring has not been broadly considered and remains poorly understood. In this study, we investigate wiring activation in adult neurons. We show that the basic-helix-loop-helix transcription factor Ascl4 can induce wiring in different types of hippocampal neurons of adult mice. The new axons are mainly feedforward and reconfigure synaptic weights in the circuit. Mice with the Ascl4-induced circuits do not display signs of pathology and solve spatial problems equally well as controls. Our results demonstrate reprogrammed connectivity by a single transcriptional factor and provide insights into the regulation of brain wiring in adults.

9.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38612590

RESUMEN

Spinal cord injury (SCI) presents a complex challenge in neurorehabilitation, demanding innovative therapeutic strategies to facilitate functional recovery. This study investigates the effects of treadmill training on SCI recovery, emphasizing motor function enhancement, neural tissue preservation, and axonal growth. Our research, conducted on a rat model, demonstrates that controlled treadmill exercises significantly improve motor functions post-SCI, as evidenced by improved scores on the Basso, Beattie, and Bresnahan (BBB) locomotor rating scale and enhanced electromyography readings. Notably, the training facilitates the preservation of spinal cord tissue, effectively reducing secondary damage and promoting the maintenance of neural fibers in the injured area. A key finding is the significant stimulation of axonal growth around the injury epicenter in trained rats, marked by increased growth-associated protein 43 (GAP43) expression. Despite these advancements, the study notes a limited impact of treadmill training on motoneuron adaptation and highlights minimal changes in the astrocyte and neuron-glial antigen 2 (NG2) response. This suggests that, while treadmill training is instrumental in functional improvements post-SCI, its influence on certain neural cell types and glial populations is constrained.


Asunto(s)
Astrocitos , Traumatismos de la Médula Espinal , Animales , Ratas , Humanos , Neuroglía , Electromiografía , Neuronas Motoras , Traumatismos de la Médula Espinal/terapia , Axones
10.
Dev Growth Differ ; 66(3): 205-218, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38403285

RESUMEN

Vision is formed by the transmission of light stimuli to the brain through axons extending from photoreceptor cells. Damage to these axons leads to loss of vision. Despite research on neural circuit regeneration through transplantation, achieving precise axon projection remains challenging. To achieve optic nerve regeneration by transplantation, we employed the Drosophila visual system. We previously established a transplantation method for Drosophila utilizing photoreceptor precursor cells extracted from the eye disc. However, little axonal elongation of transplanted cells into the brain, the lamina, was observed. We verified axonal elongation to the lamina by modifying the selection process for transplanted cells. Moreover, we focused on N-cadherin (Ncad), a cell adhesion factor, and Twinstar (Tsr), which has been shown to promote actin reorganization and induce axon elongation in damaged nerves. Overexpression of Ncad and tsr promoted axon elongation to the lamina, along with presynaptic structure formation in the elongating axons. Furthermore, overexpression of Neurexin-1 (Nrx-1), encoding a protein identified as a synaptic organizer, was found to not only promote presynapse formation but also enhance axon elongation. By introducing Ncad, tsr, and Nrx-1, we not only successfully achieved axonal projection of transplanted cells to the brain beyond the retina, but also confirmed the projection of transplanted cells into a deeper ganglion, the medulla. The present study offers valuable insights to realize regeneration through transplantation in a more complex nervous system.


Asunto(s)
Actinas , Adhesión Celular , Drosophila , Células Fotorreceptoras , Animales , Actinas/metabolismo , Axones/metabolismo , Drosophila/genética , Drosophila/metabolismo , Células Fotorreceptoras/metabolismo , Sinapsis/metabolismo
11.
Brain Pathol ; 34(5): e13232, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38198833

RESUMEN

The developmental origins of the brain's response to injury can play an important role in recovery after a brain lesion. In this study, we investigated whether the ischemic young adult brain can re-express brain plasticity genes that were active during early postnatal development. Differentially expressed genes in the cortex of juvenile post-natal day 3 and the peri-infarcted cortical areas of young, 3-month-old post-stroke rats were identified using fixed-effects modeling within an empirical Bayes framework through condition-specific comparison. To further analyze potential biological processes, upregulated and downregulated genes were assessed for enrichment using GSEA software. The genes showing the highest expression changes were subsequently verified through RT-PCR. Our findings indicate that the adult brain partially recapitulates the gene expression profile observed in the juvenile brain but fails to upregulate many genes and pathways necessary for brain plasticity. Of the upregulated genes in post-stroke brains, specific roles have not been assigned to Apobec1, Cenpf, Ect2, Folr2, Glipr1, Myo1f, and Pttg1. New genes that failed to upregulate in the adult post-stroke brain include Bex4, Cd24, Klhl1/Mrp2, Trim67, and St8sia2. Among the upregulated pathways, the largest change was observed in the KEGG pathway "One carbon pool of folate," which is necessary for cellular proliferation, followed by the KEGG pathway "Antifolate resistance," whose genes mainly encode the family of ABC transporters responsible for the efflux of drugs that have entered the brain. We also noted three less-described downregulated KEGG pathways in experimental models: glycolipid biosynthesis, oxytocin, and cortisol pathways, which could be relevant as therapeutic targets. The limited brain plasticity of the adult brain is illustrated through molecular and histological analysis of the axonal growth factor, KIF4. Collectively, these results strongly suggest that further research is needed to decipher the complex genetic mechanisms that prevent the re-expression of brain plasticity-associated genes in the adult brain.


Asunto(s)
Encéfalo , Accidente Cerebrovascular , Animales , Encéfalo/metabolismo , Encéfalo/crecimiento & desarrollo , Encéfalo/patología , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/patología , Ratas , Masculino , Plasticidad Neuronal/fisiología , Ratas Sprague-Dawley , Transcriptoma
12.
Mol Neurobiol ; 61(3): 1753-1768, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37775721

RESUMEN

Signal transducer and activator of transcription 3 (STAT3) is essential for neural development and regeneration as a key transcription factor and mitochondrial activator. However, the mechanism of Stat3 in axon development and regeneration has not been fully understood. In this study, using zebrafish posterior lateral line (PLL) axons, we demonstrate that Stat3 plays distinct roles in PLL axon embryonic growth and regeneration. Our experiments indicate that stat3 is required for PLL axon extension. In stat3 mutant zebrafish, the PLL axon ends were stalled at the level of the cloaca, and expression of stat3 rescues the PLL axon growth in a cell-autonomous manner. Jak/Stat signaling inhibition did not affect PLL axon growth indicating Jak/Stat was dispensable for PLL axon growth. In addition, we found that Stat3 was co-localized with mitochondria in PLL axons and important for the mitochondrial membrane potential and ATPase activity. The PLL axon growth defect of stat3 mutants was mimicked and rescued by rotenone and DCHC treatment, respectively, which suggests that Stat3 regulates PLL axon growth through mitochondrial Stat3. By contrast, mutation of stat3 or Jak/Stat signaling inhibition retarded PLL axon regeneration. Meanwhile, we also found Schwann cell migration was also inhibited in stat3 mutants. Taken together, Stat3 is required for embryonic PLL axon growth by regulating the ATP synthesis efficiency of mitochondria, whereas Stat3 stimulates PLL axon regeneration by regulating Schwann cell migration via Jak/Stat signaling. Our findings show a new mechanism of Stat3 in axon growth and regeneration.


Asunto(s)
Axones , Pez Cebra , Animales , Axones/metabolismo , Regeneración Nerviosa/fisiología , Transducción de Señal/fisiología , Factor de Transcripción STAT3/metabolismo , Pez Cebra/metabolismo
13.
Biol Chem ; 405(1): 67-77, 2024 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-37674311

RESUMEN

Microtubules are highly polar structures and are characterized by high anisotropy and stiffness. In neurons, they play a key role in the directional transport of vesicles and organelles. In the neuronal projections called axons, they form parallel bundles, mostly oriented with the plus-end towards the axonal termination. Their physico-chemical properties have recently attracted attention as a potential candidate in sensing, processing and transducing physical signals generated by mechanical forces. Here, we discuss the main evidence supporting the role of microtubules as a signal hub for axon growth in response to a traction force. Applying a tension to the axon appears to stabilize the microtubules, which, in turn, coordinate a modulation of axonal transport, local translation and their cross-talk. We speculate on the possible mechanisms modulating microtubule dynamics under tension, based on evidence collected in neuronal and non-neuronal cell types. However, the fundamental question of the causal relationship between these mechanisms is still elusive because the mechano-sensitive element in this chain has not yet been identified.


Asunto(s)
Axones , Microtúbulos , Microtúbulos/metabolismo , Axones/metabolismo , Neuronas/metabolismo
14.
Viruses ; 15(12)2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-38140578

RESUMEN

Congenital Zika syndrome (CZS) is a set of birth defects caused by Zika virus (ZIKV) infection during pregnancy. Microcephaly is its main feature, but other brain abnormalities are found in CZS patients, such as ventriculomegaly, brain calcifications, and dysgenesis of the corpus callosum. Many studies have focused on microcephaly, but it remains unknown how ZIKV infection leads to callosal malformation. To tackle this issue, we infected mouse embryos in utero with a Brazilian ZIKV isolate and found that they were born with a reduction in callosal area and density of callosal neurons. ZIKV infection also causes a density reduction in PH3+ cells, intermediate progenitor cells, and SATB2+ neurons. Moreover, axonal tracing revealed that callosal axons are reduced and misrouted. Also, ZIKV-infected cultures show a reduction in callosal axon length. GFAP labeling showed that an in utero infection compromises glial cells responsible for midline axon guidance. In sum, we showed that ZIKV infection impairs critical steps of corpus callosum formation by disrupting not only neurogenesis, but also axon guidance and growth across the midline.


Asunto(s)
Microcefalia , Malformaciones del Sistema Nervioso , Complicaciones Infecciosas del Embarazo , Infección por el Virus Zika , Virus Zika , Embarazo , Femenino , Humanos , Animales , Ratones , Cuerpo Calloso , Malformaciones del Sistema Nervioso/etiología , Neurogénesis
15.
J Neural Eng ; 20(6)2023 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-37931311

RESUMEN

Objective.Schwann cells (SCs) transplanted in damaged nervous tissue promote axon growth, which may support the recovery of function lost after injury. However, SC transplant-mediated axon growth is often limited and lacks direction.Approach.We have developed a zinc oxide (ZnO) containing fibrous scaffold consisting of aligned fibers of polycaprolactone (PCL) with embedded ZnO nanoparticles as a biodegradable, bifunctional scaffold for promoting and guiding axon growth. This scaffold has bifunctional properties wherein zinc is released providing bioactivity and ZnO has well-known piezoelectric properties where piezoelectric materials generate electrical activity in response to minute deformations. In this study, SC growth, SC-mediated axon extension, and the presence of myelin basic protein (MBP), as an indicator of myelination, were evaluated on the scaffolds containing varying concentrations of ZnOin vitro. SCs and dorsal root ganglion (DRG) neurons were cultured, either alone or in co-culture, on the scaffolds.Main results.Findings demonstrated that scaffolds with 1 wt.% ZnO promoted the greatest SC growth and SC-mediated axon extension. The presence of brain-derived neurotrophic factor (BDNF) was also determined. BDNF increased in co-cultures for all scaffolds as compared to SCs or DRGs cultured alone on all scaffolds. For co-cultures, cells on scaffolds with low levels of ZnO (0.5 wt.% ZnO) had the highest amount of BDNF as compared to cells on higher ZnO-containing scaffolds (1 and 2 wt.%). MBP immunostaining was only detected in co-cultures on PCL control scaffolds (without ZnO).Significance.The results of this study demonstrate the potential of the ZnO-containing scaffolds for SC-mediated axon growth and its potential for use in nervous tissue repair.


Asunto(s)
Óxido de Zinc , Óxido de Zinc/metabolismo , Factor Neurotrófico Derivado del Encéfalo , Andamios del Tejido , Células de Schwann/fisiología , Axones/fisiología , Células Cultivadas , Ganglios Espinales
16.
ACS Nano ; 17(20): 19887-19902, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37793046

RESUMEN

Neurotrophic factors are essential not only for guiding the organization of the developing nervous system but also for supporting the survival and growth of neurons after traumatic injury. In the central nervous system (CNS), inhibitory factors and the formation of a glial scar after injury hinder the functional recovery of neurons, requiring exogenous therapies to promote regeneration. Netrin-1, a neurotrophic factor, can initiate axon guidance, outgrowth, and branching, as well as synaptogenesis, through activation of deleted in colorectal cancer (DCC) receptors. We report here the development of a nanofiber-shaped supramolecular mimetic of netrin-1 with monomers that incorporate a cyclic peptide sequence as the bioactive component. The mimetic structure was found to activate the DCC receptor in primary cortical neurons using low molar ratios of the bioactive comonomer. The supramolecular nanofibers enhanced neurite outgrowth and upregulated maturation as well as pre- and postsynaptic markers over time, resulting in differences in electrical activity similar to neurons treated with the recombinant netrin-1 protein. The results suggest the possibility of using the supramolecular structure as a therapeutic to promote regenerative bioactivity in CNS injuries.


Asunto(s)
Nanofibras , Netrina-1/metabolismo , Neuronas/metabolismo , Neurogénesis , Sistema Nervioso Central/metabolismo , Axones , Células Cultivadas
17.
Int J Biol Macromol ; 253(Pt 8): 127586, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37866564

RESUMEN

As a leading cause of vision impairment and blindness, corneal alkali burns lead to long-term visual deterioration or even permanent visual impairment while effective treatment strategies remain a challenge. Herein, a thermo-sensitive hydrogel with the combination of multi-functional protein progranulin (PGRN), a biological macromolecule consisting of several hundred amino acids and possessing a high molecular weight, is efficiently prepared through a convenient stirring and mixing at the low temperature. The hydrogel can be easily administrated to the ocular surface contacting with the cornea, which can be immediately transformed into gel-like state due to the thermo-responsive behavior, realizing a site-specific coating to isolate further external stimulation. The smart coating not only exhibits excellent transparency and biocompatibility, but also presents a constant delivery of PGRN, creating a nutritious and supportive micro-environment for the ocular surface. The results show that the prepared functional hydrogel can efficiently suppress inflammation, accelerate re-epithelization, and intriguingly enhance axonal regeneration via modulation of multiple signaling pathways, indicating the novel designed HydrogelPGRN is a promising therapy option for serious corneal injury.


Asunto(s)
Lesiones de la Cornea , Poloxámero , Humanos , Progranulinas , Córnea , Cicatrización de Heridas , Hidrogeles/farmacología , Hidrogeles/química , Lesiones de la Cornea/terapia
18.
Cell Mol Life Sci ; 80(10): 284, 2023 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-37688644

RESUMEN

Alpha-synuclein (aSyn) aggregation spreads between cells and underlies the progression of neuronal lesions in the brain of patients with synucleinopathies such as Parkinson's diseases. The mechanisms of cell-to-cell propagation of aggregates, which dictate how aggregation progresses at the network level, remain poorly understood. Notably, while prion and prion-like spreading is often simplistically envisioned as a "domino-like" spreading scenario where connected neurons sequentially propagate protein aggregation to each other, the reality is likely to be more nuanced. Here, we demonstrate that the spreading of preformed aSyn aggregates is a limited process that occurs through molecular sieving of large aSyn seeds. We further show that this process is not facilitated by synaptic connections. This was achieved through the development and characterization of a new microfluidic platform that allows reconstruction of binary fully oriented neuronal networks in vitro with no unwanted backward connections, and through the careful quantification of fluorescent aSyn aggregates spreading between neurons. While this allowed us for the first time to extract quantitative data of protein seeds dissemination along neural pathways, our data suggest that prion-like dissemination of proteinopathic seeding aggregates occurs very progressively and leads to highly compartmentalized pattern of protein seeding in neural networks.


Asunto(s)
Priones , Sinucleinopatías , Humanos , alfa-Sinucleína , Sinapsis , Redes Neurales de la Computación
19.
Elife ; 122023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37665325

RESUMEN

The telencephalon and eye in mammals are originated from adjacent fields at the anterior neural plate. Morphogenesis of these fields generates telencephalon, optic-stalk, optic-disc, and neuroretina along a spatial axis. How these telencephalic and ocular tissues are specified coordinately to ensure directional retinal ganglion cell (RGC) axon growth is unclear. Here, we report self-formation of human telencephalon-eye organoids comprising concentric zones of telencephalic, optic-stalk, optic-disc, and neuroretinal tissues along the center-periphery axis. Initially-differentiated RGCs grew axons towards and then along a path defined by adjacent PAX2+ VSX2+ optic-disc cells. Single-cell RNA sequencing of these organoids not only confirmed telencephalic and ocular identities but also identified expression signatures of early optic-disc, optic-stalk, and RGCs. These signatures were similar to those in human fetal retinas. Optic-disc cells in these organoids differentially expressed FGF8 and FGF9; FGFR inhibitions drastically decreased early RGC differentiation and directional axon growth. Through the RGC-specific cell-surface marker CNTN2 identified here, electrophysiologically excitable RGCs were isolated under a native condition. Our findings provide insight into the coordinated specification of early telencephalic and ocular tissues in humans and establish resources for studying RGC-related diseases such as glaucoma.


Asunto(s)
Glaucoma , Células Ganglionares de la Retina , Animales , Humanos , Retina , Axones , Telencéfalo , Mamíferos
20.
Stem Cells ; 41(11): 1022-1036, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37591511

RESUMEN

Retinal ganglion cells (RGCs) connect the retina with the higher centers in the brain for visual perception. Their degeneration leads to irreversible vision loss in patients with glaucoma. The mechanism underlying human RGCs (hRGCs) axon growth and guidance remains poorly understood because hRGCs are born during development and connections with the central targets are established before birth. Here, using RGCs directly generated from human embryonic stem cells, we demonstrate that hRGCs express a battery of guidance receptors. These receptors allow hRGCs to read the spatially arrayed chemotropic cues in the developing rat retina for the centripetal orientation of axons toward the optic disc, suggesting that the mechanism of intraretinal guidance is conserved in hRGCs. The centripetal orientation of hRGCs axons is not only in response to chemorepulsion but also involves chemoattraction, mediated by Netrin-1/DCC interaction. The spatially arrayed chemotropic cues differentially influence hRGCs physiological responses, suggesting that neural activity of hRGCs and axon growth may be coupled during inter-retinal guidance. In addition, we demonstrate that Netrin-1/DCC interaction, besides promoting axon growth, facilitates hRGCs axon regeneration by recruiting the mTOR signaling pathway. The diverse influence of Netrin-1/DCC interaction ranging from axon growth to regeneration may involve recruitment of multiple intracellular signaling pathways as revealed by transcriptome analysis of hRGCs. From the perspective of ex vivo stem cell approach to glaucomatous degeneration, our findings posit that ex vivo generated hRGCs can read the intraretinal cues for guidance toward the optic disc, the first step required for connecting with the central target to restore vision.


Asunto(s)
Axones , Células Ganglionares de la Retina , Humanos , Animales , Ratas , Células Ganglionares de la Retina/metabolismo , Axones/fisiología , Netrina-1/metabolismo , Señales (Psicología) , Factores de Crecimiento Nervioso/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Regeneración Nerviosa , Retina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA