Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.067
Filtrar
1.
Food Chem ; 462: 140955, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39232272

RESUMEN

Investigations indicated that sn-2 palmitate have positive effects on brain development, although its mechanism remains largely unexamined. This research delved into how a diet abundant in sn-2 palmitate influenced the cognitive behavior of mice and elucidated the associated mechanisms using metabolomics and lipidomics. The study demonstrated that dietary sn-2 palmitate led to improved working memory and cognition in mice, as well as an increase in brain BDNF concentration when compared to those fed blend vegetable oil (BVO). This was because sn-2 palmitate feeding promoted the synthesis of very long-chain fatty acids (VLCPUFAs) for the lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE) in the liver. This led to more efficient delivery of VLCPUFAs to the brain, as indicated by elevated concentration of LPC/LPE-VLCPUFAs in the liver and heightened expression of the major facilitator superfamily domain containing 2a (MFSD2A). In essence, this paper offered a potential mechanism by which sn-2 palmitate enhanced mouse neurodevelopment.


Asunto(s)
Encéfalo , Cognición , Hígado , Lisofosfatidilcolinas , Palmitatos , Animales , Lisofosfatidilcolinas/metabolismo , Ratones , Hígado/metabolismo , Encéfalo/metabolismo , Encéfalo/crecimiento & desarrollo , Encéfalo/efectos de los fármacos , Masculino , Palmitatos/metabolismo , Cognición/efectos de los fármacos , Ratones Endogámicos C57BL , Ácidos Grasos/metabolismo , Ácidos Grasos/química , Humanos
2.
Front Cell Infect Microbiol ; 14: 1425388, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39228892

RESUMEN

Background: The diagnosis and treatment of lung, colon, and gastric cancer through the histologic characteristics and genomic biomarkers have not had a strong impact on the mortality rates of the top three global causes of death by cancer. Methods: Twenty-five transcriptomic analyses (10 lung cancer, 10 gastric cancer, and 5 colon cancer datasets) followed our own bioinformatic pipeline based on the utilization of specialized libraries from the R language and DAVID´s gene enrichment analyses to identify a regulatory metafirm network of transcription factors and target genes common in every type of cancer, with experimental evidence that supports its relationship with the unlocking of cell phenotypic plasticity for the acquisition of the hallmarks of cancer during the tumoral process. The network's regulatory functional and signaling pathways might depend on the constant crosstalk with the microbiome network established in the oral-gut-lung axis. Results: The global transcriptomic network analysis highlighted the impact of transcription factors (SOX4, TCF3, TEAD4, ETV4, and FOXM1) that might be related to stem cell programming and cancer progression through the regulation of the expression of genes, such as cancer-cell membrane receptors, that interact with several microorganisms, including human T-cell leukemia virus 1 (HTLV-1), the human papilloma virus (HPV), the Epstein-Barr virus (EBV), and SARS-CoV-2. These interactions can trigger the MAPK, non-canonical WNT, and IFN signaling pathways, which regulate key transcription factor overexpression during the establishment and progression of lung, colon, and gastric cancer, respectively, along with the formation of the microbiome network. Conclusion: The global transcriptomic network analysis highlights the important interaction between key transcription factors in lung, colon, and gastric cancer, which regulates the expression of cancer-cell membrane receptors for the interaction with the microbiome network during the tumorigenic process.


Asunto(s)
Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Transcriptoma , Humanos , Neoplasias Pulmonares/microbiología , Neoplasias Pulmonares/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Biología Computacional , Pulmón/microbiología , Pulmón/patología , Boca/microbiología , Transducción de Señal , Microbioma Gastrointestinal/genética , Microbiota/genética , Neoplasias Gástricas/microbiología , Neoplasias Gástricas/genética , Regulación Neoplásica de la Expresión Génica
3.
Biol Futur ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39249652

RESUMEN

Kisspeptin is an endogenous peptide hormone that is the most potent stimulator of the hypothalamo-pituitary-gonadal (HPG) axis. The HPG axis can be suppressed by the activation of the hypothalamo-pituitary-adrenal (HPA) axis. The physiological role of kisspeptin in the interaction of the HPG axis and the HPA axis is not fully understood yet. The purpose of the current study was to investigate the possible effects of peripheral injection (intraperitoneally) of kisspeptin on HPG axis and HPA axis activity as well. Adult male Wistar rats were randomly divided into seven groups as sham (control), kisspeptin (10 nmol), p234 (10 nmol), kisspeptin + p234, kisspeptin + antalarmin (10 mg/kg), kisspeptin + astressin2b (100 µg/kg), and kisspeptin + atosiban (0.250 mg/kg) (n = 10 each group). At the end of the experiment, the hypothalamus, pituitary gland, and serum samples of the rats were collected. Serum follicle-stimulating hormone and luteinizing hormone levels of the kisspeptin, kisspeptin + antalarmin and kisspeptin + astressin2b groups were significantly higher than the control group. Serum testosterone levels were significantly higher in the kisspeptin, kisspeptin + antalarmin, kisspeptin + astressin2b, and kisspeptin + atosiban groups that compared to the control group. There was no a significant difference in corticotropic releasing hormone immunoreactivity in the paraventricular nucleus of the hypothalamus, serum adrenocorticotropic hormone and corticosterone concentrations among all groups. Moreover, no significant difference was found in the concentration of pituitary oxytocin. Our results suggest that peripheral kisspeptin injection induces an activation in the HPG axis, but not in the HPA axis in male rats.

4.
Physiol Genomics ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39250427

RESUMEN

The gut microbiome is essential for maintaining organismal health. Gut microbiota may be disrupted through external factors like dietary change, which can lead to gut inflammation resulting in obesity. Hibernating mammals develop low-grade gut inflammation when they accumulate fat deposits in preparation for hibernation, making them useful models for studying the relationship between the microbiome, inflammation, and weight gain. Nonsteroidal anti-inflammatory drugs and steroids are commonly used in humans to target gut inflammation, but how these drugs affect the gut microbiome and its stability is unclear. We investigated the effect of the glucocorticoid drug budesonide on the gut microbiome and cytokine levels of an obligate hibernator, the 13-lined ground squirrel, during the fattening season. We used 16S rRNA gene sequencing to characterize bacterial communities in the lumen and mucosa of the cecum and colon and measured pro-inflammatory (TNF-α/ IL-6) and anti-inflammatory (IL-10) cytokine levels. Budesonide affected the microbiome only in the cecum lumen, where bacterial diversity was higher in the control group and communities significantly differed between treatments. Across gut sections, Marvinbrianthia and Enterococcus were significantly higher in the budesonide group while Sarcina was higher in the control group. TNF-α and IL-6 levels were higher in control squirrels compared to the budesonide group, but there was no difference in IL-10 levels. Overall, budesonide treatment affected the microbial community and diversity of 13-lined ground squirrels in the cecum lumen. Our study presents another step toward developing ground squirrels as a model for studying the interaction between the microbiota and host inflammation.

5.
J Adv Res ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39243941

RESUMEN

INTRODUCTION: Taurine is a naturally occurring sulfonic acid involved in various physiological and pathological processes, such as the regulation of calcium signaling, immune function, inflammatory response, and cellular aging. It has the potential to predict tumor malignant transformation and formation. Our previous work discovered the elevated taurine in lung cancer patients. However, the precise impact and mechanism of elevated serum taurine levels on lung cancer progression and the suitability of taurine or taurine-containing drinks for lung cancer patients remain unclear. OBJECTIVES: Our study aimed to systematically investigate the role of taurine in lung cancer, with the ultimate goal of contributing novel strategies for lung cancer treatment. METHODS: Lung cancer C57 and nude mice models, RNA sequencing, and stable transfection were applied to explored the effects and mechanisms of taurine on lung cancer. Tissues of 129 non-small cell lung cancer (NSCLC) patients derived from 2014 to 2017 for immunohistochemistry were collected in Taihe Hospital. RESULTS: Low doses of taurine, as well as taurine-infused beverages at equivalent doses, significantly enhanced lung tumor growth. Equally intriguing is that the promoting effect of taurine on lung cancer progression wanes as the dosage increases. The Nuclear factor erythroid 2-like 1 (Nfe2l1 or Nrf1)-reactive oxygen species (ROS)-PD-1 axis may be a potential mechanism for dual role of taurine in lung cancer progression. However, taurine's impacts on lung cancer progression and the anti-tumor function of Nfe2l1 were mainly determined by the immune competence. Taurine inhitited lung tumor growth probably by inhibiting NF-κB-mediated inflammatory responses in nude mice rather than by affecting Nfe2l1 function. As patients age increased, Nfe2l1 gene and protein gradually returned to the levels observed in healthy individuals, but lost its anti-lung cancer effects. CONCLUSIONS: Taurine emerges as a potential biomarker for lung cancer progression, predicting poor prognosis and unsuitability for specific patients. Lung cancer patients, especially young patients, should be conscious of potential effects of taurine-containing drinks. Conversely, taurine or its drinks may be more suitable for older or immune-deficient patients.

6.
Brain Behav Immun Health ; 40: 100847, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39252984

RESUMEN

Background: Mood disorders (MD) are multifactorial disorders. Identifying new biomarkers for the early diagnosis of MD and predicting response to treatment is currently a significant research topic. Both eosinopenia and MD are associated with increased activity of the hypothalamic-pituitary-adrenal axis. The present study, therefore, used a clear definition of chronic idiopathic eosinopenia (CIE) to determine the rate of MD in a large cohort of individuals with CIE. Methods: This retrospective population-based, case-control study uses data of seven consecutive years from the database of Leumit Health Services (LHS) - a nationwide health maintenance organization in Israel. Results: Participants were 13928 LHS members with CIE and 27858 negative controls. The CIE group exhibited significantly higher rates of MD than the control group throughout the whole study period, except for atypical depressive disorder at baseline. Conclusions: CIE might be associated with a higher prevalence of MD. Further basic research should elucidate the pathophysiologic mechanisms linking CIE and MD.

7.
Heliyon ; 10(16): e36061, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39253232

RESUMEN

Patients with spinal cord injury (SCI) often suffer from varying degrees of neuropathic pain. Non-invasive repetitive transcranial magnetic stimulation (TMS) has been shown to improve neuropathic pain, while the appropriate intervention strategies of TMS treatment and how TMS affects brain function after SCI were not entirely clear. To investigate the effects and mechanisms of TMS on neuropathic pain after SCI, high-frequency TMS on primary motor cortex (M1) of mice was performed after SCI and pain response was evaluated through an electronic Von-Frey device and cold/hot plates. Functional magnetic resonance imaging (fMRI), bulk RNA sequencing, immunofluorescence and molecular experiments were used to evaluate brain and spinal cord function changes and mechanisms. TMS significantly improved SCI induced mechanical allodynia, cold and thermal hyperalgesia with a durative effect, and TMS intervention at 1 week after SCI had pain relief advantages than at 2 weeks. TMS intervention not only affected the functional connections between the primary motor cortex and the thalamus, but also increased the close connection of multiple brain regions. Importantly, TMS treatment activated the hypothalamic pituitary adrenal (HPA) axis and increased the transcript levels of genes encode hormone proteins, accompanied with the attenuation of inflammatory microenvironment in spinal cord associated with pain relief. Totally, these results elucidate that early intervention with TMS could improve neuropathic pain after SCI associated with enhancing brain functional connectivity and HPA axis activity which should be harnessed to modulate neuropathic pain after SCI.

8.
J Orthop Case Rep ; 14(9): 215-219, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39253660

RESUMEN

Introduction: Osteoarthritis (OA) is the most frequent joint disease with a prevalence of 5313 per 100,000 persons in India. OA of the knee is a major contributor to mobility impairment, particularly among women. In these patients, total knee replacement (TKR) is widely accepted as the gold standard treatment for pain relief and restoration of function. Now, patients have the option of undergoing either a simultaneous bilateral TKR or a staged TKR. The former has shown significant advantages such as shorter rehabilitation, cost efficacy and shorter hospital stay. This study aimed to assess the functional and radiological outcome of simultaneous bilateral TKR in a tertiary care centre. Materials and Methods: 30 adult patients above the age of 55 years with severe OA knee who underwent simultaneous bilateral TKR between 2022-2023 were included in this prospective study. Preoperatively, they were assessed with radiographs including full length scannograms. Mean Anatomical Axis, Mean Mechanical Axis and Mechanical Axis Deviation (Varus) were calculated based on the scannograms by a single observer. The same observer administered the oxford knee score (OKS) preoperatively to all patients. Regular clinical and radiological follow up was done. After 1 year follow up, the same observer administered the Oxford Knee Score (OKS) to the operated knee. Results: With a female preponderance among the study subjects (56.7%), the majority of the cases in our cohort were characterised as Grade IV Kellgren-Lawrence radiological grade of Osteoarthritis (76.66%) and were found to have tricompartmental involvement (70%). The mean anatomical axis for the right and left lower limb were 4.56±5.17 and 9.68±1.72 respectively. The mean mechanical axis deviation (Varus) for the right and left lower limb were 31.6±15.1 and 52.0±13.9 respectively. Preoperatively, mean mechanical axis for the right and left lower limb were 9.95±4.31 and 14.2 ±0.67 respectively. Postoperatively, mechanical axis was restored to near-normal values (3-5 degrees). Significant improvement in mean OKS from a preoperative value of 18.30 ± 3.46 to postoperative value of 33.50 ± 5.32 was noted at 1 year. Conclusion: Treatment of severe bilateral OA knee with simultaneous single staged bilateral TKR ensures good functional outcome , early mobility with minimal complications.

9.
J Infect Dis ; 230(Supplement_2): S141-S149, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39255394

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder with limited therapeutic options. Accordingly, new approaches for prevention and treatment are needed. One focus is the human microbiome, the consortium of microorganisms that live in and on us, which contributes to human immune, metabolic, and cognitive development and that may have mechanistic roles in neurodegeneration. AD and Alzheimer's disease-related dementias (ADRD) are recognized as spectrum disorders with complex pathobiology. AD/ADRD onset begins before overt clinical signs, but initiation triggers remain undefined. We posit that disruption of the normal gut microbiome in early life leads to a pathological cascade within septohippocampal and cortical brain circuits. We propose investigation to understand how early-life microbiota changes may lead to hallmark AD pathology in established AD/ADRD models. Specifically, we hypothesize that antibiotic exposure in early life leads to exacerbated AD-like disease endophenotypes that may be amenable to specific microbiological interventions. We propose suitable models for testing these hypotheses.


Asunto(s)
Enfermedad de Alzheimer , Microbioma Gastrointestinal , Enfermedad de Alzheimer/microbiología , Humanos , Microbioma Gastrointestinal/fisiología , Animales , Encéfalo/microbiología , Encéfalo/patología , Antibacterianos/uso terapéutico , Microbiota
10.
Food Chem ; 463(Pt 1): 141049, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39260178

RESUMEN

Patulin (PAT), a foodborne toxin, causes severe intestinal damage. To mitigate this health threat, mice were pretreated with apple polyphenols (AP) in their drinking water (0.01 % and 0.05 %) for eight weeks, followed by exposure to PAT during the last two weeks. Subsequently, histopathological and biochemical evaluations of intestinal tissues were conducted, alongside assessments of alterations in gut microbiota, colonic content metabolome, and hepatic metabolome. Consequently, AP alleviated PAT-induced villus and crypt injury, mucus depletion, GSH level decline, GSH-Px and SOD activity reduction, and MPO activity elevation. Notably, AP counteracted PAT-mediated microbiota disruptions and promoted the abundance of beneficial bacteria (Dubosiella, Akkermansia, Lachnospiraceae, and Lactobacillus). Furthermore, AP counteracted PAT-induced metabolic disorders in the colonic contents and liver. Ultimately, AP prevented intestinal injury by regulating the gut microbiota and amino acid, purine, butanoate, and glycerophospholipid metabolism in the gut-liver axis. These results underscore the potential of AP to prevent foodborne toxin-induced intestinal damage.

11.
Phytother Res ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261011

RESUMEN

The sedative and hypnotic properties of 5,7,3',4',5'-pentamethoxyflavone (PMF), a monomer extracted from the leaves of Murraya paniculata (L.) Jack, have been reported. However, the role of PMFs in the development of anxiety remains uncertain. An anxiety model was developed using chronic unpredictable mild stimulation (CUMS). Kunming mice were randomly allocated to the following groups: control, CUMS, PMF (50 mg/kg), PMF (100 mg/kg), and diazepam (3 mg/kg). The anxiolytic effects of PMFs were evaluated using elevated plus maze (EPM) test and open field test (OFT). Enzyme-linked immunosorbent assay (ELISA) kits were used to analyze the serum levels of corticosterone (CORT), 5-hydroxytryptamine (5-HT), gamma-aminobutyric acid (GABA), and cyclic adenosine monophosphate (cAMP) in the hippocampus. High-throughput-16S rRNA sequencing was performed to investigate its effect on the composition of the gut microbiota. Subsequently, western blotting was performed to assess the expression of GABAergic synaptic-associated proteins. PMF effectively mitigated CUMS-induced anxiety-like behavior. Further examination revealed that PMF treatment ameliorated dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis and increased 5-HT and GABA levels in the hippocampus. Notably, the ability of PMF to maintain the stability of GABAergic synapses by enhancing the species composition of the gut microbiota and acting on the adenosine a2a receptor (A2AR)/gephyrin/gamma-aminobutyric acid A receptor alpha 2 (GABRA2) pathway revealed a previously unrecognized mechanism for the anxiolytic effect of PMF. These findings suggest that PMF enhances the expression of A2AR, preserves GABAergic synaptic stability, and reduces anxiety by modulating the microbiota composition. Thus, it holds promise as an anxiolytic agent.

12.
Adv Exp Med Biol ; 1456: 67-83, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39261424

RESUMEN

In the human body, eukaryotic somatic cells and prokaryotic microorganisms live together. In this state, the body can be viewed as a "superorganism." Symbiotic life with commensal microorganisms can be observed in almost every part of the body. Intestinal microbiota plays an important role in health and disease, and in shaping and regulating neuronal functions from the intrauterine period to the end of life. Microbiota-based treatment opportunities are becoming more evident in both understanding the etiopathogenesis and treatment of neuropsychiatric disorders, especially depression. Antidepressant drugs, which are the first choice in the treatment of depression, also have antimicrobial and immunomodulatory mechanisms of action. From these perspectives, direct probiotics and fecal microbiota transplantation are treatment options to modulate microbiota composition. There are few preclinical and clinical studies on the effectiveness and safety of these applications in depression. The information obtained from these studies may still be at a doxa level. However, the probability that this information will become episteme in the future seems to be increasing.


Asunto(s)
Trastorno Depresivo Mayor , Trasplante de Microbiota Fecal , Microbioma Gastrointestinal , Probióticos , Trasplante de Microbiota Fecal/métodos , Humanos , Probióticos/uso terapéutico , Trastorno Depresivo Mayor/terapia , Trastorno Depresivo Mayor/microbiología , Antidepresivos/uso terapéutico , Animales
13.
Heliyon ; 10(17): e36412, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39263090

RESUMEN

The present work examines the performance of an offshore cross-axis wind turbine (CAWT) with a flow deflector by integrating numerical and analytical methods. The deflector's geometry redirects flow in all directions, causing it to exit vertically and collide with the wind turbine's horizontal blades. In contrast, the blades of a vertical axis wind turbine (VAWT) harness the power of horizontal wind flow. The total power absorbed by the horizontal and vertical turbine blades represents the power of CAWT. In this study, the speed of the outflow from the deflector was initially determined through numerical simulation. The numerical simulation output was then utilized as an input for analytical Double Multiple Stream Tube (DMST) and Blade Element Momentum (BEM) methods to evaluate the vertical and horizontal turbine blades, respectively. This approach reduces the overall simulation time and establishes an offline coupling between analytical and numerical approaches. The findings of this research have unveiled a promising future for offshore wind energy generation. Through the implementation of a modeled deflector on a Cross-Axis Wind Turbine (CAWT), the power output reached a remarkable 19 KW with a power coefficient of 0.35 at an 8.4 m/s wind speed. The results indicate that the CAWT with the deflector produced a power output 35 % higher and was 45 % more efficient than a single Vertical-Axis Wind Turbine (VAWT). These outcomes illustrate the potential for greater energy production and efficiency in offshore wind farms.

14.
Bioessays ; : e2400080, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39263744

RESUMEN

In this manuscript, we explore the potential therapeutic use of helminths. After analyzing helminths' role in connection with human health from the perspective of their symbiotic and evolutionary relationship, we critically examine some studies on their therapeutic applications. In doing so, we focus on some prominent mechanisms of action and potential benefits, but also on the exaggerations and theoretical and methodological difficulties of such proposals. We conclude that further studies are needed to fully explore the potential benefits of this perspective, and we encourage the scientific community in doing so.

15.
Trends Mol Med ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39256110

RESUMEN

Increasing evidence suggests that the gut microbiome plays a key role in a host of pathological conditions, including cancer. Indeed, the bidirectional communication that occurs between the gut and the brain, known as the 'gut-brain axis,' has recently been implicated in brain tumour pathology. Here, we focus on current research that supports a gut microbiome-brain tumour link with emphasis on high-grade gliomas, the most aggressive of all brain tumours, and the impact on the glioma tumour microenvironment. We discuss the potential use of gut-brain axis signals to improve responses to current and future therapeutic approaches. We highlight that the success of novel treatment strategies may rely on patient-specific microbiome profiles, and these should be considered for personalised treatment approaches.

16.
Pflugers Arch ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39256247

RESUMEN

It is often the case that serious, end-stage manifestations of disease result from secondary complications in organs distinct from the initial site of injury or infection. This is particularly true of diseases of the heart-lung axis, given the tight anatomical connections of the two organs within a common cavity in which they collectively orchestrate the two major, intertwined circulatory pathways. Immune cells and the soluble mediators they secrete serve as effective, and targetable, messengers of signals between different regions of the body but can also contribute to the spread of pathology. In this review, we discuss the immunological basis of interorgan communication between the heart and lung in various common diseases, and in the context of organ crosstalk more generally. Gaining a greater understanding of how the heart and lung communicate in health and disease, and viewing disease progression generally from a more holistic, whole-body viewpoint have the potential to inform new diagnostic approaches and strategies for better prevention and treatment of comorbidities.

17.
Inflammation ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39256304

RESUMEN

The gut-brain axis (GBA) is a crucial communication network linking the gastrointestinal (GI) tract and the central nervous system (CNS). The gut microbiota significantly influences metabolic, immune, and neural functions by generating a diverse array of bioactive compounds that modulate brain function and maintain homeostasis. A pivotal mechanism in this communication is the kynurenine pathway, which metabolises tryptophan into various derivatives, including neuroactive and neurotoxic compounds. Alterations in gut microbiota composition can increase gut permeability, triggering inflammation and neuroinflammation, and contributing to neuropsychiatric disorders. This review elucidates the mechanisms by which changes in gut permeability may lead to systemic inflammation and neuroinflammation, with a focus on the kynurenine pathway. We explore how probiotics can modulate the kynurenine pathway and reduce neuroinflammation, highlighting their potential as therapeutic interventions for neuropsychiatric disorders. The review integrates experimental data, discusses the balance between neurotoxic and neuroprotective kynurenine metabolites, and examines the role of probiotics in regulating inflammation, cognitive development, and gut-brain axis functions. The insights provided aim to guide future research and therapeutic strategies for mitigating GI complaints and their neurological consequences.

18.
Immunology ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39256808

RESUMEN

A disbalance between immune regulatory cells and inflammatory cells is known to drive atherosclerosis. However, the exact mechanism is not clear. Here, we investigated the homing of immune regulatory cells, mainly, regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) subsets in asymptomatic coronary artery disease (CAD) risk factor-exposed young individuals (dyslipidemia [DLP] group) and stable CAD patients (CAD group). Compared with healthy controls (HCs), Tregs frequency was reduced in both DLP and CAD groups but expressed high levels of CCR5 in both groups. The frequency of monocytic-myeloid-derived suppressor cells (M-MDSCs) was increased while polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) were decreased in CAD patients only. Interestingly, although unchanged in frequency, M-MDSCs of the DLP group expressed high levels of CCR5. Serum levels of chemokines (CCL5, CX3CL1, CCL26) and inflammatory cytokines (IL-6, IL-1ß, IFN-γ, TNF-α) were higher in the DLP group. Stimulation with inflammatory cytokines augmented CCR5 expression in Tregs and M-MDSCs isolated from HCs. Activated endothelial cells showed elevated levels of CX3CL1 and CCL5 in vitro. Blocking CCR5 with D-Ala-peptide T-amide (DAPTA) increased Treg and M-MDSC frequency in C57Bl6 mice fed a high-fat diet. In accelerated atherosclerosis model, DAPTA treatment led to the formation of smooth muscle-rich plaque with less macrophages. Thus, we show that CCR5-CCL5 axis is instrumental in recruiting Tregs and M-MDSCs to dysfunctional endothelium in the asymptomatic phase of atherosclerosis contributing to atherosclerosis progression. Drugs targeting CCR5 in asymptomatic and CAD risk-factor/s-exposed individuals might be a novel therapeutic regime to diminish atherogenesis.

19.
Cell Oncol (Dordr) ; 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39298082

RESUMEN

BACKGROUND: Liver is one of the most preferred destinations for distant metastasis of gastric cancer (GC) and liver metastasis usually predicts poor prognosis. The achievement of liver metastasis requires continued cross-talk of complex members in tumor microenvironment (TME) including tumor associated macrophages (TAMs). METHODS: Results from 35 cases of ex vivo cultured living tissues of GC liver metastasis have elucidated that circadian rhythm disorder (CRD) of key molecules involved in circadian timing system (CTS) facilitates niche outgrowth. We next analyzed 69 cases of liver metastasis from patients bearing GC and designed co-culture or 3D cell culture, discovering that TAMs expressing EFNB2 could interact with tumor cell expressing EPHB2 for forward downstream signaling and lead to CRD of tumor cells. Moreover, we performed intrasplenic injection models assessed by CT combined 3D organ reconstruction bioluminescence imaging to study liver metastasis and utilized the clodronate treatment, bone marrow transplantation or EPH inhibitor for in vivo study followed by exploring the clinical therapeutic value of which in patient derived xenograft (PDX) mouse model. RESULTS: Ex vivo studies demonstrated that CRD of key CTS molecules facilitates niche outgrowth in liver metastases. In vitro studies revealed that TAMs expressing EFNB2 interact with tumor cells expressing EPHB2, leading to CRD and downstream signaling activation. The underlying mechanism is the enhancement of the Warburg effect in metastatic niches. CONCLUSION: Overall, we aim to uncover the mechanism in TAMs induced CRD which promotes liver metastasis of GC and provide novel ideas for therapeutic strategies.

20.
Pharmacol Ther ; 263: 108723, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39284369

RESUMEN

The organic anion transporters, OAT1 and OAT3, regulate the movement of drugs, toxins, and endogenous metabolites. In 2007, we proposed that OATs and other SLC22 transporters are involved in "remote sensing" and organ crosstalk. This is now known as the Remote Sensing and Signaling Theory (RSST). In the proximal tubule of the kidney, OATs regulate signaling molecules such as fatty acids, bile acids, indoxyl sulfate, kynurenine, alpha-ketoglutarate, urate, flavonoids, and antioxidants. OAT1 and OAT3 function as key hubs in a large homeostatic network involving multi-, oligo- and monospecific transporters, enzymes, and nuclear receptors. The Remote Sensing and Signaling Theory emphasizes the functioning of OATs and other "drug" transporters in the network at multiple biological scales (inter-organismal, organism, organ, cell, organelle). This network plays an essential role in the homeostasis of urate, bile acids, prostaglandins, sex steroids, odorants, thyroxine, gut microbiome metabolites, and uremic toxins. The transported metabolites have targets in the kidney and other organs, including nuclear receptors (e.g., HNF4a, AHR), G protein-coupled receptors (GPCRs), and protein kinases. Feed-forward and feedback loops allow OAT1 and OAT3 to mediate organ crosstalk as well as modulate energy metabolism, redox state, and remote sensing. Furthermore, there is intimate inter-organismal communication between renal OATs and the gut microbiome. Extracellular vesicles containing microRNAs and proteins (exosomes) play a key role in the Remote Sensing and Signaling System as does the interplay with the neuroendocrine, hormonal, and immune systems. Perturbation of function with OAT-interacting drugs (e.g., probenecid, diuretics, antivirals, antibiotics, NSAIDs) can lead to drug-metabolite interactions. The RSST has general applicability to other multi-specific SLC and ABC "drug" transporters (e.g., OCT1, OCT2, SLCO1B1, SLCO1B3, ABCG2, P-gp, ABCC2, ABCC3, ABCC4). Recent high-resolution structures of SLC22 and other transporters, together with chemoinformatic and artificial intelligence methods, will aid drug development and also lead to a deeper mechanistic understanding of polymorphisms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA