Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Vet Microbiol ; 298: 110218, 2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39159504

RESUMEN

The E (XSR) element located in the 3'UTR of the ALV-J genome has the capability to transcribe and generate viral-derived E (XSR) miRNA. However, the biological function and transcriptional regulation mechanism of this process remain unclear. In this study, the impact of E (XSR) miRNA on ALV-J replication and the regulatory effect of N6-methyladenosine (m6A) methylation on its transcription were investigated. The results demonstrated that E (XSR) miRNA could stimulate ALV-J replication and suppress apoptosis in DF-1 cells in vitro. E (XSR) miRNA's promotion of ALV-J replication was not associated with the type I interferon pathway, but achieved by suppressing the expression of the host GPC5 gene. The transcription of E (XSR) miRNA could be promoted by m6A methylation modification, where m6A modification was found at the A6880 and A7016 sites of ALV-J gRNA. This study provides a new perspective on the transcription of ALV-J E (XSR) miRNA and its regulatory function in ALV-J replication.

2.
Front Vet Sci ; 11: 1374923, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38840641

RESUMEN

Introduction: Avian leukosis, a viral disease affecting birds such as chickens, presents significant challenges in poultry farming due to tumor formation, decreased egg production, and increased mortality. Despite the absence of a commercial vaccine, avian leukosis virus (ALV) infections have been extensively documented, resulting in substantial economic losses in the poultry industry. This study aimed to develop alginate-chitosan composite microspheres loaded with ALV-J Gp85 protein (referred to as aCHP-gp85) as a potential vaccine candidate. Methods: Sodium alginate and chitosan were utilized as encapsulating materials, with the ALV-J Gp85 protein serving as the active ingredient. The study involved 45 specific pathogen-free (SPF) chickens to evaluate the immunological effectiveness of aCHP-gp85 compared to a traditional Freund adjuvant-gp85 vaccine (Freund-gp85). Two rounds of vaccination were administered, and antibody levels, mRNA expression of immune markers, splenic lymphocyte proliferation, and immune response were assessed. An animal challenge experiment was conducted to evaluate the vaccine's efficacy in reducing ALV-J virus presence and improving clinical conditions. Results: The results demonstrated that aCHP-gp85 induced a significant and sustained increase in antibody levels compared to Freund-gp85, with the elevated response lasting for 84 days. Furthermore, aCHP-gp85 significantly upregulated mRNA expression levels of key immune markers, notably TNF-α and IFN-γ. The application of ALV-J Gp85 protein within the aCHP-gp85 group led to a significant increase in splenic lymphocyte proliferation and immune response. In the animal challenge experiment, aCHP-gp85 effectively reduced ALV-J virus presence and improved clinical conditions compared to other groups, with no significant pathological changes observed. Discussion: The findings suggest that aCHP-gp85 elicits a strong and prolonged immune response compared to Freund-gp85, indicating its potential as an innovative ALV-J vaccine candidate. These results provide valuable insights for addressing avian leukosis in the poultry industry, both academically and practically.

3.
Poult Sci ; 103(7): 103835, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38772092

RESUMEN

Avian leukemia virus subgroup J (ALV-J) and chicken infectious anemia virus (CIAV) can be vertically transmitted; however, the pathogenicity of vertically transmitted coinfection with these 2 pathogens has not been studied. In this study, we created a model of chick morbidity in which chicks carried either ALV-J, CIAV, or both viruses via embryo inoculation. Thereafter, we analyzed the effects of vertically transmitted coinfection with CIAV and ALV-J on the pathogenicity of ALV-J and performed a purification assay based on hatching, mortality viremia positivity, and detection of fecal ALV-p27 antigen rates, and body weight. The hatching rate of the ALV-J+CIAV group was 68.57%, lower than those of the single infection and control groups. The survival curve showed that the mortality rates of the CIAV and ALV-J coinfection groups were higher than those of the single infection and control groups. Body weight statistics showed that coinfection aggravated the 7-d growth inhibition effect. The results of ALV-p27 antigen detection in cell culture supernatants showed that the positivity rates of the ALV-J and ALV-J+CIAV groups were 100% at all ages and 0% in the control group. The results of ALV-p27 antigen detection by anal swabs showed that the positivity rates of the ALV-J group were 92.86, 90.90, 88.89, and 93.33% at all ages, and that the ALV-J p27 positivity detection rate of anal swabs was lower than that of plasma virus isolation. The immune organ index of the ALV-J+CIAV group was significantly or very significantly lower than those of the single infection and control groups. The immune organ viral load showed that coinfection with CIAV and ALV-J promoted the proliferation of ALV-J and CIAV in immune organs. Coinfection with ALV-J and CIAV reduced chicken embryo hatchability and increased chick mortality and growth inhibition relative to their respective single infections. Additionally, coinfection with ALV-J + CIAV was even more detrimental in inducing immune organ atrophy (e.g., the thymus, spleen, and bursa), and promoted individual virus replication during coinfection.


Asunto(s)
Virus de la Leucosis Aviar , Leucosis Aviar , Virus de la Anemia del Pollo , Pollos , Infecciones por Circoviridae , Coinfección , Transmisión Vertical de Enfermedad Infecciosa , Enfermedades de las Aves de Corral , Animales , Virus de la Leucosis Aviar/fisiología , Virus de la Leucosis Aviar/patogenicidad , Pollos/virología , Leucosis Aviar/virología , Coinfección/veterinaria , Coinfección/virología , Enfermedades de las Aves de Corral/virología , Virus de la Anemia del Pollo/fisiología , Virus de la Anemia del Pollo/patogenicidad , Infecciones por Circoviridae/veterinaria , Infecciones por Circoviridae/virología , Transmisión Vertical de Enfermedad Infecciosa/veterinaria , Virulencia , Embrión de Pollo
4.
Front Vet Sci ; 11: 1374430, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38681855

RESUMEN

N6-methyladenosine (m6A) methylation is an internal post-transcriptional modification that has been linked to viral multiplication and pathogenicity. To elucidate the conservation patterns of potential 5'-DRACH-3' motifs in avian leukosis virus subgroup J (ALV-J), 149 ALV-J strains (139 isolates from China; ALV-J prototype HPRS-103 from the UK; and 9 strains from the USA, Russia, India, and Pakistan) available in GenBank before December 2023 were retrieved. According to the prediction results of the SRAMP web-server, these ALV-J genomes contained potential DRACH motifs, with the total number ranging from 43 to 64, which were not determined based on the isolation region and time. Conservative analysis suggested that 37 motifs exhibited a conservation of >80%, including 17 motifs with a grading above "high confidence." Although these motifs were distributed in the U5 region of LTRs and major coding regions, they were enriched in the coding regions of p27, p68, p32, and gp85. The most common m6A-motif sequence of the DRACH motif in the ALV-J genome was GGACU. The RNA secondary structure of each conserved motif predicted by SRAMP and RNAstructure web-server was mainly of two types-A-U pair (21/37) and hairpin loop (16/37)-based on the core adenosine. Considering the systematic comparative analysis performed in this study, future thorough biochemical research is warranted to determine the role of m6A modification during the replication and infection of ALV-J. These conservation and distribution analysis of the DRACH motif for potential m6A sites in ALV-J would provide a foundation for the future intervention of ALV-J infection and m6A modification.

5.
Poult Sci ; 103(6): 103671, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38569240

RESUMEN

N6-methyladenosine (m6A) methylation in transcripts has been suggested to influence tumorigenesis in liver tumors caused by the avian leukosis virus subgroup J (ALV-J). However, m6A modifications during ALV-J infection in vitro remain unclear. Herein, we performed m6A and RNA sequencing in ALV-J-infected chicken fibroblasts (DF-1). A total of 51 differentially expressed genes containing differentially methylated peaks were identified, which were markedly enriched in microRNAs (miRNAs) in cancer cells as well as apoptosis, mitophagy and autophagy, RNA degradation, and Hippo and MAPK signaling pathways. Correlation analysis indicated that YTHDC1 (m6A-reader gene) plays a key role in m6A modulation during ALV-J infection. The env gene of ALV-J harbored the strongest peak, and untranslated regions and long terminal repeats also contained peaks of different degrees. To the best of our knowledge, this is the first thorough analysis of m6A patterns in ALV-J-infected DF-1 cells. Combined with miRNA profiles, this study provides a useful basis for future research into the key pathways of ALV-J infection associated with m6A alteration.


Asunto(s)
Adenosina , Virus de la Leucosis Aviar , Leucosis Aviar , Pollos , MicroARNs , Enfermedades de las Aves de Corral , Transcriptoma , Animales , Virus de la Leucosis Aviar/fisiología , MicroARNs/genética , MicroARNs/metabolismo , Leucosis Aviar/virología , Enfermedades de las Aves de Corral/virología , Enfermedades de las Aves de Corral/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , Fibroblastos/virología
6.
Poult Sci ; 103(6): 103693, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38598912

RESUMEN

Avian leukosis virus subgroup J (ALV-J) is a retrovirus that can cause immunosuppression and tumors in chicken. However, relative pathogenesis is still not clear. At present, metabolomics has shown great potential in the screening of tumor metabolic markers, prognostic evaluation, and drug target design. In this study, we utilize an untargeted metabolomics approach based on ultrahigh-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UHPLC-QTOF-MS) to analyze the metabolic changes in chicken embryo fibroblast (CEF) cells infected by ALV-J. We found that ALV-J infection significantly altered a wealth of metabolites compared with control group. Additionally, most of the differentially expressed metabolites belonged to lipid metabolism, purine nucleotide metabolism and amino acid metabolism. Among them, the proportion of lipid metabolites account for the highest proportion (around 31%). Results suggest that these changes may be conductive to the formation of virion, thereby promoting the replication of ALV-J. These data provided metabolic evidence and potential biomarkers for the cellular metabolic changes induced by ALV-J, and provided important insight for further understanding the replication needs and pathogenesis of ALV-J.


Asunto(s)
Virus de la Leucosis Aviar , Fibroblastos , Metabolómica , Enfermedades de las Aves de Corral , Animales , Virus de la Leucosis Aviar/fisiología , Metabolómica/métodos , Embrión de Pollo , Fibroblastos/virología , Cromatografía Líquida de Alta Presión/veterinaria , Enfermedades de las Aves de Corral/virología , Espectrometría de Masas en Tándem/veterinaria , Leucosis Aviar/virología , Pollos , Metaboloma
7.
J Virol ; 97(11): e0093723, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37909729

RESUMEN

IMPORTANCE: The synergy of two oncogenic retroviruses is an essential phenomenon in nature. The synergistic replication of ALV-J and REV in poultry flocks increases immunosuppression and pathogenicity, extends the tumor spectrum, and accelerates viral evolution, causing substantial economic losses to the poultry industry. However, the mechanism of synergistic replication between ALV-J and REV is still incompletely elusive. We observed that microRNA-155 targets a dual pathway, PRKCI-MAPK8 and TIMP3-MMP2, interacting with the U3 region of ALV-J and REV, enabling synergistic replication. This work gives us new targets to modulate ALV-J and REV's synergistic replication, guiding future research on the mechanism.


Asunto(s)
Virus de la Leucosis Aviar , Leucosis Aviar , MicroARNs , Enfermedades de las Aves de Corral , Virus de la Reticuloendoteliosis , Animales , Virus de la Reticuloendoteliosis/genética , Virus de la Leucosis Aviar/genética , Pollos , MicroARNs/genética , Replicación Viral
8.
3 Biotech ; 13(12): 417, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38031589

RESUMEN

Avian leukosis virus subgroup J (ALV-J) is an oncogenic virus that causes serious economic loss in the poultry industry. Currently, no effective vaccine or drug is available against this virus. Therefore, it is imperative to explore and understand the molecular regulatory mechanisms underlying ALV-J infection. In this study, blood samples from 21 ALV-J-infected and 22 ALV-J-uninfected (DZ) chickens (JZ) were analyzed by whole-genome resequencing (WGR). By combining the fixation index (FST) with the nucleotide diversity (π) ratio based on WGR data, 425 candidate genes were identified. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed the top 20 enriched pathways, among which 9 pathways were significantly associated with diseases, including endometrial cancer, Chagas disease, PD-L1 expression and PD-1 checkpoint pathway in cancer, colorectal cancer, endocrine resistance, fluid shear stress, atherosclerosis, basal cell carcinoma, non-small cell lung cancer, and melanoma. Fourteen single nucleotide polymorphisms related to twelve genes showed a notable difference between DZ and JZ group chickens. The genes included COMMD3, PPP1CB, VEGFA, GTF2H1, NOTCH2, ITPR1, FGFR4, GNAS, NECTIN1, WNT2B, PPP1CC, and MRC2. These findings may provide a valuable foundation for further exploration of the pathogenesis of ALV-J in chickens.

9.
Vet Microbiol ; 284: 109821, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37536160

RESUMEN

While the presence of host cell proteins in virions and their role in viral life cycles have been demonstrated in various viruses, such characteristics have remained largely unknown in avian leukosis virus (ALV). To investigate whether this is the case in ALV, we purified high-integrity and high-purity virions from the avian leukosis virus subgroup J (ALV-J) and subjected them to proteome analysis using nano LC-MS/MS. This analysis identified 53 cellular proteins that are incorporated into mature ALV-J virions, and we verified the reliability of the packaged cellular proteins through subtilisin digestion and immunoblot analysis. Functional annotation revealed the potential functions of these proteins in the viral life cycle and tumorigenesis. Overall, our findings have important implications for understanding the interaction between ALV-J and its host, and provide new insights into the cellular requirements that define ALV-J infection.


Asunto(s)
Virus de la Leucosis Aviar , Leucosis Aviar , Animales , Pollos , Virus de la Leucosis Aviar/genética , Espectrometría de Masas en Tándem/veterinaria , Proteómica , Reproducibilidad de los Resultados
10.
Microbiol Spectr ; 11(3): e0523522, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-36995259

RESUMEN

Glycogen synthase kinase 3ß (GSK3ß) is a widely distributed multifunctional serine/threonine kinase. In mammals, GSK3ß regulates important life activities such as proinflammatory response, anti-inflammatory response, immunity, and cancer development. However, the biological functions of chicken GSK3ß (chGSK3ß) are still unknown. In the present study, the full-length cDNA of chGSK3ß was first cloned and analyzed. Absolute quantification of chicken chGSK3ß in 1-day-old specific-pathogen-free birds has shown that it is widely expressed in all tissues, with the highest level in brain and the lowest level in pancreas. Overexpression of chGSK3ß in DF-1 cells significantly decreased the gene expression levels of interferon beta (IFN-ß), IFN regulatory factor 7 (IRF7), Toll-like receptor 3 (TLR3), melanoma differentiation-associated protein 5 (MDA5), MX-1, protein kinase R (PKR), and oligoadenylate synthase-like (OASL), while promoting the replication of avian leukosis virus subgroup J (ALV-J). Conversely, levels of most of the genes detected in this study were increased when chGSK3ß expression was knocked down using small interfering RNA (siRNA), which also inhibited the replication of ALV-J. These results suggest that chGSK3ß plays an important role in the antiviral innate immune response in DF-1 cells, and it will be valuable to carry out further studies on the biological functions of chGSK3ß. IMPORTANCE GSK3ß regulates many life activities in mammals. Recent studies revealed that chGSK3ß was involved in regulating antiviral innate immunity in DF-1 cells and also could positively regulate ALV-J replication. These results provide new insights into the biofunction of chGSK3ß and the virus-host interactions of ALV-J. In addition, this study provides a basis for further research on the function of GSK3 in poultry.


Asunto(s)
Virus de la Leucosis Aviar , Enfermedades de las Aves de Corral , Animales , Pollos , Virus de la Leucosis Aviar/genética , Glucógeno Sintasa Quinasa 3 beta/genética , Glucógeno Sintasa Quinasa 3/genética , Inmunidad Innata , Antivirales , Mamíferos
11.
Infect Genet Evol ; 109: 105415, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36775048

RESUMEN

Tibetan chicken is found in China Tibet (average altitude; ˃4500 m). However, little is known about avian leukosis virus subgroup J (ALV-J) found in Tibetan chickens. ALV-J is a typical alpharetrovirus that causes immunosuppression and myelocytomatosis and thus seriously affects the development of the poultry industry. In this study, Tibet-origin mutant ALV-J was isolated from Tibetan chickens and named RKZ-1-RKZ-5. A Myelocytomatosis outbreak occurred in a commercial Tibetan chicken farm in Shigatse of Rikaze, Tibet, China, in March 2022. About 20% of Tibetan chickens in the farm showed severe immunosuppression, and mortality increased to 5.6%. Histopathological examination showed typical myelocytomas in various tissues. Virus isolation and phylogenetic analysis demonstrated that ALV-J caused the disease. Gene-wide phylogenetic analysis showed the RKZ isolates were the original strains of the previously reported Tibetan isolates (TBC-J4 and TBC-J6) (identity; 94.5% to 94.9%). Furthermore, significant nucleotide mutations and deletions occurred in the hr1 and hr2 hypervariable regions of gp85 gene, 3'UTR, Y Box, and TATA Box of 3'LTR. Pathogenicity experiments demonstrated that the viral load, viremia, and viral shedding level were significantly higher in RKZ-1-infected chickens than in NX0101-infected chickens. Notably, RKZ-1 caused more severe cardiopulmonary damage in SPF chickens. These findings prove the origin of Tibet ALV-J and provide insights into the molecular characteristics and pathogenic ability of ALV-J in the plateau area. Therefore, this study may provide a basis for ALV-J prevention and eradication in Tibet.


Asunto(s)
Virus de la Leucosis Aviar , Leucosis Aviar , Enfermedades de las Aves de Corral , Animales , Pollos , Tibet/epidemiología , Filogenia , Virulencia/genética , China/epidemiología , Leucosis Aviar/patología
12.
Vet Res ; 53(1): 100, 2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36461084

RESUMEN

This research aimed to analyze the regulatory effect of chicken telomerase reverse transcriptase (chTERT) on the Wnt/ß-catenin signaling pathway and its effect on the tumorigenicity of avian leukosis virus subgroup J (ALV-J) through in vivo experiments. The chTERT eukaryotic expression plasmid and its recombinant lentivirus particles were constructed for in vivo transfection of chTERT to analyze the effect of chTERT continuously overexpressed in chickens on the tumorigenicity of ALV-J. During 156 days of the artificial ALV-J tumor-inducing process, 7 solid tumors developed in 3 chickens in the chTERT-overexpression group (n = 26*2) and no tumors developed in the control group (n = 26*2). Another 18 tumors induced by ALV-J were confirmed and collected from breeding poultry farms. And we confirmed that chTERT was significantly highly expressed in ALV-J tumors. The ELISA data suggested that the protein levels of ß-catenin and c-Myc in the chicken plasma of the chTERT-overexpressing group with ALV-J infected were consistently and significantly higher than those of the control group. Compared with that of the tumor-adjacent tissues, the activity of the Wnt/ß-catenin signaling pathway and expression of the c-Myc was significantly increased in ALV-J tumors. And the percentage of apoptosis in ALV-J tumors significantly lower than that in tumor-adjacent tissues. Immunohistochemistry, Western blot and RT-qPCR suggested that the replication level of ALV-J in tumors was significantly higher than that in tumor-adjacent tissues. This study suggests that chTERT plays a critical role in the tumorigenicity of ALV-J by enhancing the Wnt/ß-catenin signaling pathway, which will contribute to further elucidating the tumor-inducing mechanism of ALV-J.


Asunto(s)
Virus de la Leucosis Aviar , Telomerasa , Animales , Telomerasa/genética , Pollos , Vía de Señalización Wnt , Western Blotting/veterinaria
13.
Viruses ; 14(10)2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36298866

RESUMEN

In recent years, superinfections of avian leukosis virus subgroup J (ALV-J) and infectious bursal disease virus (IBDV) have been frequently observed in nature, which has led to the increasing virulence in infected chickens. However, the reason for the enhanced pathogenicity has remained unclear. In this study, we demonstrated an effective candidate model for studying the outcome of superinfections with ALV-J and IBDV in cells and specific-pathogen-free (SPF) chicks. Through in vitro experiments, we found that ALV-J and IBDV can establish the superinfection models and synergistically promote the expression of IL-6, IL-10, IFN-α, and IFN-γ in DF-1 and CEF cells. In vivo, the weight loss, survival rate, and histopathological observations showed that more severe pathogenicity was present in the superinfected chickens. In addition, we found that superinfections of ALV-J and IBDV synergistically increased the viral replication of the two viruses and inflammatory mediator secretions in vitro and in vivo. Moreover, by measuring the immune organ indexes and blood proportions of CD3+, CD4+, and CD8α+ cells, our results showed that the more severe instances of immunosuppression were observed in the superinfected chickens. In the present study, we concluded that the more severe immunosuppression induced by the synergistic viral replication of ALV-J and IBDV is responsible for the enhanced pathogenicity.


Asunto(s)
Virus de la Leucosis Aviar , Leucosis Aviar , Virus de la Enfermedad Infecciosa de la Bolsa , Enfermedades de las Aves de Corral , Sobreinfección , Animales , Virulencia , Interleucina-10 , Pollos , Interleucina-6 , Terapia de Inmunosupresión , Mediadores de Inflamación
14.
Front Vet Sci ; 9: 970818, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36246325

RESUMEN

A strain of avian leukosis virus (ALV) belonging to a new envelope subgroup J (ALV-J) emerged in 1988 as a new subgroup of ALV and spread rapidly throughout the world. Due to the infection and spread of ALV-J, the global poultry industry experienced a significant loss. Although the disease had been prevented and controlled effectively by culling domestic chickens in the infected zone, a few field cases of ALV-J infection were reported in China in recent years. This study was conducted to characterize the genome and analyze the lesions and histopathology of the ALV-J strain named HB2020, which was isolated from layer chickens in Hubei Province, China. The full-length proviral genome sequence analysis of ALV-J HB2020 revealed that it was a recombinant strain of ev-1 and HPRS-103 in the gag gene in comparison to ALV-J prototype HPRS-103. In the 3'-untranslated region (3'UTR) of the nucleotide sequence, there were found 205-base pairs (bp) deletion, of which 175 were detected in the redundant transmembrane (rTM) region. Besides, the surface glycoprotein gene gp85 had five mutations in a conservative site, whereas the transmembrane protein gene gp37 was relatively conserved. The animal experiments conducted later on this strain have shown that HB2020 can cause various neoplastic lesions in chickens, including enlarged livers with hemangiomas and spleens with white nodules. Additionally, as the exposure time increased, the number of tumor cells that resembled myelocytes in the blood smears of infected chickens gradually increased. These results indicated that HB2020 on recombination with ALV subgroup E (ALV-E) and ALV-J could induce severe hemangiomas and myelocytomas. This inference might provide a molecular basis for further research about the pathogenicity of ALV and emphasize the need for control and prevention of avian leukosis.

15.
J Virol ; 96(17): e0071722, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-35950858

RESUMEN

The geographical spread and inter-host transmission of the subgroup J avian leukosis virus (ALV-J) may be the most important issues for epidemiology. An integrated analysis, including phylogenetic trees, homology modeling, evolutionary dynamics, selection analysis and viral transmission, based on the gp85 gene sequences of the 665 worldwide ALV-J isolates during 1988-2020, was performed. A new Clade 3 has been emerging and was evolved from the dominating Clade 1.3 of the Chinese Yellow-chicken, and the loss of a α-helix or ß-sheet of the gp85 protein monomer was found by the homology modeling. The rapid evolution found in Clades 1.3 and 3 may be closely associated with the adaption and endemicity of viruses to the Yellow-chickens. The early U.S. strains from Clade 1.1 acted as an important source for the global spread of ALV-J and the earliest introduction into China was closely associated with the imported chicken breeders in the 1990s. The dominant outward migrations of Clades 1.1 and 1.2, respectively, from the Chinese northern White-chickens and layers to the Chinese southern Yellow-chickens, and the dominating migration of Clade 1.3 from the Chinese southern Yellow-chickens to other regions and hosts, indicated that the long-distance movement of these viruses between regions in China was associated with the live chicken trade. Furthermore, Yellow-chickens have been facing the risk of infections of the emerging Clades 2 and 3. Our findings provide new insights for the epidemiology and help to understand the critical factors involved in ALV-J dissemination. IMPORTANCE Although the general epidemiology of ALV-J is well studied, the ongoing evolutionary and transmission dynamics of the virus remain poorly investigated. The phylogenetic differences and relationship of the clades and subclades were characterized, and the epidemics and factors driving the geographical spread and inter-host transmission of different ALV-J clades were explored for the first time. The results indicated that the earliest ALV-J (Clade 1.1) from the United States, acted as the source for global spreads, and Clades 1.2, 1.3 and 3 were all subsequently evolved. Also the epidemiological investigation showed that the early imported breeders and the inter-region movements of live chickens facilitated the ALV-J dispersal throughout China and highlighted the needs to implement more effective containment measures.


Asunto(s)
Virus de la Leucosis Aviar , Leucosis Aviar , Pollos , Filogenia , Enfermedades de las Aves de Corral , Animales , Leucosis Aviar/epidemiología , Leucosis Aviar/transmisión , Virus de la Leucosis Aviar/genética , Pollos/virología , China , Enfermedades de las Aves de Corral/epidemiología , Enfermedades de las Aves de Corral/transmisión , Enfermedades de las Aves de Corral/virología , Estados Unidos
16.
Front Vet Sci ; 9: 847194, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35873679

RESUMEN

Avian leukosis caused by avian leukosis virus (ALV), belonging to the genus Alpharetrovirus of the family Retroviridae, is associated with benign and malignant tumors in hemopoietic cells in poultry. Although several methods have been developed for ALV detection, most of them are not suitable for rapid on-site testing due to instrument limitations, professional operators, or the low sensitivity of the method. Herein, we described the real-time recombinase polymerase amplification (RPA) assay for rapid detection of ALV subgroup J (ALV-J). The major viral structural glycoprotein gp85, highly specific for the subgroup, was used as the molecular target for the real-time RPA assay. The results were obtained at 38°C within 20 min, with the detection sensitivity of 10 copies/µl of standard plasmid pMD18-T-gp85 as the template per reaction. Real-time RPA was capable of ALV-J-specific detection without cross-reaction with other non-targeted avian pathogens. Of the 62 clinical samples tested, the ALV-positive rates of real-time RPA, PCR, and real-time PCR were 66.13% (41/62), 59.68% (37/62), and 67.74% (42/62), respectively. The diagnostic agreement between real-time RPA and real-time PCR was 98.39% (61/62), and the kappa value was 0.9636. The developed real-time ALV-J assay seems promising for rapid and sensitive detection of ALV-J in diagnostic laboratories. It is suitable for on-site detection, especially in a poor resource environment, thus facilitating the prevention and control of ALV-J.

17.
Vet Res ; 53(1): 49, 2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35739589

RESUMEN

Avian leukosis virus subgroup J (ALV-J) can cause neoplastic diseases in poultry and is still widely prevalent in China. Chicken telomerase reverse transcriptase (chTERT) is the core component of telomerase, which is closely related to the occurrence and development of tumors. Our previous studies showed that chTERT is overexpressed in ALV-J tumors, but the mechanism is still not completely clear. Therefore, this study aims to analyze the possible molecular mechanism of chTERT overexpression in ALV-J tumors from the perspective of DNA methylation and promoter mutation. Methylation sequencing of the chTERT amplicon showed that ALV-J replication promoted the methylation level of the chTERT promoter. And the methylation level of the chTERT promoter in ALV-J tumors was significantly higher than that in tumor-adjacent and normal tissues. Compared with the tumor-adjacent and normal tissues, the chTERT promoter in each ALV-J tumors tested had a mutation of -183 bp C > T, and 36.0% (9/25) of the tumors also had mutations of -184 bp T > C, -73 bp::GGCCC and -56 bp A > T in the chTERT promoter, which formed the binding sites for the transcription factors NFAT5, TFAP2A and ZEB1, respectively. The results of RT-qPCR and Western blotting showed that the occurrence of these mutations significantly increased the expression level of chTERT. In conclusion, this study demonstrated that the high expression of chTERT in ALV-J tumors is positively correlated with the level of hypermethylation and mutation in its promoter, which provides a new perspective for further research on the molecular mechanism of chTERT in ALV-J tumorigenesis.


Asunto(s)
Virus de la Leucosis Aviar , Leucosis Aviar , Enfermedades de las Aves de Corral , Telomerasa , Animales , Leucosis Aviar/genética , Virus de la Leucosis Aviar/genética , Pollos/genética , Metilación , Mutación , Enfermedades de las Aves de Corral/genética , Regiones Promotoras Genéticas , Telomerasa/genética
18.
BMC Vet Res ; 18(1): 131, 2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35379256

RESUMEN

BACKGROUND: Co-infection with the avian leukosis virus subgroup J (ALV-J) and the reticuloendotheliosis virus (REV) increases mutual viral replication, causing a more serious pathogenic effect by accelerating the progression of neoplasia and extending the tumor spectrum. However, the molecular mechanism underlying the synergistic replication of ALV-J and REV remains unclear. RESULTS: Here, we performed this study to compare the differentially expressed proteins among CEF cells infected with ALV-J, REV or both at the optimal synergistic infection time using TMT-based quantitative proteomics. We identified a total of 719 (292 upregulated and 427 downregulated) and 64 (35 upregulated and 29 downregulated) proteins by comparing co-infecting both viruses with monoinfecting ALV-J and REV, respectively. GO annotation and KEGG pathway analysis showed the differentially expressed proteins participated in virus-vector interaction, biological adhesion and immune response pathways in the synergistic actions of ALV-J and REV at the protein levels. Among the differentially expressed proteins, a large number of integrins were inhibited or increased in the co-infection group. Further, eight integrins, including ITGα1, ITGα3, ITGα5, ITGα6, ITGα8, ITGα9, ITGα11 and ITGß3, were validated in CEF cells by qRT-PCR or western blot. CONCLUSIONS: These findings proved that integrins may be key regulators in the mechanism of synergistic infection of REV and ALV-J, which will provide more insight into the pathogenesis of synergism of REV and ALV-J at protein level.


Asunto(s)
Virus de la Leucosis Aviar , Virus de la Reticuloendoteliosis , Animales , Virus de la Leucosis Aviar/fisiología , Pollos , Integrinas/genética , Proteómica , Virus de la Reticuloendoteliosis/genética
19.
Vet Microbiol ; 267: 109389, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35259599

RESUMEN

Avian leukosis virus subgroup J (ALV-J), an oncogenic retrovirus, induces myelocytoma and various other tumors in broilers and layers. Many recent studies have shown that ALV-J can hijack host molecules to facilitate infection. However, the molecular mechanisms of this process are not clear. Here, we aimed to elucidate the molecular mechanisms contributing to ALV-J infection. ALV-J hijacked MIF via p10 and p27 to facilitate ALV-J infection. ALV-J persistently activated MIF expression in DF-1 cells, and MIF significantly facilitated ALV-J internalization and replication, which demonstrated by MIF overexpression and knockdown experiments and treatment with the MIF antagonist ISO-1. Furthermore, we found that the two subunit proteins of Gag, p10 and p27, interacted with MIF in the cytoplasm, respectively. These results suggested that the p10 and p27 subunit in Gag protein recruited MIF to promote ALV-J infection, providing insights into the roles of the p10/p27 and the host factor MIF in ALV-J infection. The finding may facilitate the development of new strategies for controlling ALV-J or retrovirus infections.


Asunto(s)
Virus de la Leucosis Aviar , Leucosis Aviar , Factores Inhibidores de la Migración de Macrófagos , Enfermedades de las Aves de Corral , Animales , Virus de la Leucosis Aviar/genética , Carcinogénesis , Pollos , Factores Inhibidores de la Migración de Macrófagos/genética
20.
J Virol ; 96(6): e0165721, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35080427

RESUMEN

Avian leukosis virus subgroup J (ALV-J) induces myelocytomas, which can metastasize to multiple organs in diseased chickens. Although metastasis is the primary cause of death in such cases, the mechanism for it remains unclear. Here, we found that interaction between ALV-J surface protein (SU) and doublecortin-like kinase 1 (DCLK1) promotes epithelial-mesenchymal transition (EMT) and cell proliferation. We found that ALV-J can activate EMT in infected cells. Subsequently, proteomics analysis revealed that DCLK1, a well-established putative tumor stem cell marker, which is highly expressed in ALV-J-infected DF-1 cells and chickens, might be a potential factor mediating EMT. Furthermore, using immunofluorescence and immunoprecipitation, we verified that SU interacts with DCLK1. Functional studies suggested that overexpression of DCLK1 increased viral replication and promoted cell proliferation by accelerating the progression of cells from the G0/G1 phase to the S phase of cell cycle, whereas RNA interference of DCLK1 reduced viral replication and arrested cell proliferation by retarding cell cycle progression from the late G1 phase into the S phase in ALV-J-infected cells. Moreover, we demonstrate that the increased accumulation of DCLK1 promotes EMT by increasing the expression of N-cadherin, vimentin, MMP2, and transcription factor Snail1 and decreasing the expression of epithelial marker E-cadherin. These results suggest that ALV-J SU interacts with DCLK1, and accelerates cell proliferation, leading to increased viral replication and ultimately activating EMT, which paves the way for tumor metastasis. IMPORTANCE Tumor metastasis is a major challenge in cancer research, because of its systemic nature and the resistance of disseminated tumor cells to existing therapeutic agents. It is estimated that >90% of mortality from cancer is attributable to metastases. We found that ALV-J can activate EMT, which plays a critical role in cancer metastasis. Subsequently, we identified a tumor stem cell marker, DCLK1, in ALV-J infected cells, which interacts with surface protein (SU) of ALV-J to promote virus replication, activate EMT, and accelerate cell proliferation enabling ALV-J to obtain metastatic ability. Understanding the process of participation of ALV-J in EMT and the route of metastasis will help elucidate the mechanism of virus-induced tumor metastasis and help identify promising molecular targets and key obstacles for ALV-J control and clinical technology development.


Asunto(s)
Virus de la Leucosis Aviar , Leucosis Aviar , Quinasas Similares a Doblecortina , Transición Epitelial-Mesenquimal , Proteínas de la Membrana , Animales , Leucosis Aviar/fisiopatología , Virus de la Leucosis Aviar/genética , Proliferación Celular , Pollos , Quinasas Similares a Doblecortina/metabolismo , Proteínas de la Membrana/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA