Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Methods ; 20(1): 84, 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38825682

RESUMEN

PIN proteins establish the auxin concentration gradient, which coordinates plant growth. PIN1-4 and 7 localized at the plasma membrane (PM) and facilitate polar auxin transport while the endoplasmic reticulum (ER) localized PIN5 and PIN8 maintain the intracellular auxin homeostasis. Although an antagonistic activity of PIN5 and PIN8 proteins in regulating the intracellular auxin homeostasis and other developmental events have been reported, the membrane topology of these proteins, which might be a basis for their antagonistic function, is poorly understood. In this study we optimized digitonin based PM-permeabilizing protocols coupled with immunocytochemistry labeling to map the membrane topology of PIN5 and PIN8 in Arabidopsis thaliana root cells. Our results indicate that, except for the similarities in the orientation of the N-terminus, PIN5 and PIN8 have an opposite orientation of the central hydrophilic loop and the C-terminus, as well as an unequal number of transmembrane domains (TMDs). PIN8 has ten TMDs with groups of five alpha-helices separated by the central hydrophilic loop (HL) residing in the ER lumen, and its N- and C-terminals are positioned in the cytoplasm. However, the topology of PIN5 comprises nine TMDs. Its N-terminal end and the central HL face the cytoplasm while its C-terminus resides in the ER lumen. Overall, this study shows that PIN5 and PIN8 proteins have a divergent membrane topology while introducing a toolkit of methods for studying membrane topology of integral proteins including those localized at the ER membrane.

2.
New Phytol ; 244(1): 104-115, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38666346

RESUMEN

Barley (Hordeum vulgare) is an important global cereal crop and a model in genetic studies. Despite advances in characterising barley genomic resources, few mutant studies have identified genes controlling root architecture and anatomy, which plays a critical role in capturing soil resources. Our phenotypic screening of a TILLING mutant collection identified line TM5992 exhibiting a short-root phenotype compared with wild-type (WT) Morex background. Outcrossing TM5992 with barley variety Proctor and subsequent SNP array-based bulk segregant analysis, fine mapped the mutation to a cM scale. Exome sequencing pinpointed a mutation in the candidate gene HvPIN1a, further confirming this by analysing independent mutant alleles. Detailed analysis of root growth and anatomy in Hvpin1a mutant alleles exhibited a slower growth rate, shorter apical meristem and striking vascular patterning defects compared to WT. Expression and mutant analyses of PIN1 members in the closely related cereal brachypodium (Brachypodium distachyon) revealed that BdPIN1a and BdPIN1b were redundantly expressed in root vascular tissues but only Bdpin1a mutant allele displayed root vascular defects similar to Hvpin1a. We conclude that barley PIN1 genes have sub-functionalised in cereals, compared to Arabidopsis (Arabidopsis thaliana), where PIN1a sequences control root vascular patterning.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Hordeum , Ácidos Indolacéticos , Mutación , Proteínas de Plantas , Raíces de Plantas , Hordeum/genética , Hordeum/crecimiento & desarrollo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/anatomía & histología , Mutación/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Fenotipo , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Alelos , Brachypodium/genética , Brachypodium/crecimiento & desarrollo , Haz Vascular de Plantas/genética , Haz Vascular de Plantas/crecimiento & desarrollo , Genes de Plantas , Meristema/genética , Meristema/crecimiento & desarrollo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Tipificación del Cuerpo/genética
3.
Ann Bot ; 133(3): 473-482, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38190350

RESUMEN

BACKGROUND AND AIMS: Style dimorphism is one of the polymorphic characteristics of flowers in heterostylous plants, which have two types of flowers: the pin morph, with long styles and shorter anthers, and the thrum morph, with short styles and longer anthers. The formation of dimorphic styles has received attention in the plant world. Previous studies showed that CYP734A50 in Primula determined style length and limited style elongation and that the brassinosteroid metabolic pathway was involved in regulation of style length. However, it is unknown whether there are other factors affecting the style length of Primula. METHODS: Differentially expressed genes highly expressed in pin morph styles were screened based on Primula forbesii transcriptome data. Virus-induced gene silencing was used to silence these genes, and the style length and anatomical changes were observed 20 days after injection. KEY RESULTS: PfPIN5 was highly expressed in pin morph styles. When PfPIN5 was silenced, the style length was shortened in pin and long-homostyle plants by shortening the length of style cells. Moreover, silencing CYP734A50 in thrum morph plants increased the expression level of PfPIN5 significantly, and the style length increased. The results indicated that PfPIN5, an auxin efflux transporter gene, contributed to regulation of style elongation in P. forbesii. CONCLUSIONS: The results implied that the auxin pathway might also be involved in the formation of styles of P. forbesii, providing a new pathway for elucidating the molecular mechanism of style elongation in P. forbesii.


Asunto(s)
Primula , Primula/genética , Flores/genética , Transcriptoma , Plantas/genética , Ácidos Indolacéticos
4.
AoB Plants ; 15(4): plad040, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37448862

RESUMEN

Plant architecture modification (e.g. short-stature crops) is one of the key outcomes of modern crop breeding for high-yielding crop varieties. In cereals, delayed senescence, or stay-green, is an important trait that enables post-anthesis drought stress adaptation. Stay-green crops can prolong photosynthetic capacity during grain-filling period under post-anthesis drought stress, which is essential to ensure grain yield is not impacted under drought stress conditions. Although various stay-green quantitative trait loci have been identified in cereals, the underlying molecular mechanisms regulating stay-green remain elusive. Recent advances in various gene-editing technologies have provided avenues to fast-track crop improvement, such as the breeding of climate-resilient crops in the face of climate change. We present in this viewpoint the focus on using sorghum as the model cereal crop, to study PIN-FORMED (PIN) auxin efflux carriers as means to modulate plant architecture, and the potential to employ it as an adaptive strategy to address the environmental challenges posed by climate uncertainties.

5.
BMC Plant Biol ; 23(1): 74, 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36737696

RESUMEN

BACKGROUND: Auxin plays a crucial role in nitrate (NO3-)-mediated root architecture, and it is still unclear that if NO3- supply modulates auxin reallocation for regulating root formation in maize (Zea mays L.). This study was conducted to investigate the role of auxin efflux carrier ZmPIN1a in the root formation in response to NO3- supply. RESULTS: Low NO3- (LN) promoted primary root (PR) elongation, while repressed the development of lateral root primordia (LRP) and total root length. LN modulated auxin levels and polar transport and regulated the expression of auxin-responsive and -signaling genes in roots. Moreover, LN up-regulated the expression level of ZmPIN1a, and overexpression of ZmPIN1a enhanced IAA efflux and accumulation in PR tip, while repressed IAA accumulation in LRP initiation zone, which consequently induced LN-mediated PR elongation and LR inhibition. The inhibition rate of PR length, LRP density and number of ZmPIN1a-OE plants was higher than that of wild-type plants after auxin transport inhibitor NPA treatment under NN and LN conditions, and the degree of inhibition of root growth in ZmPIN1a-OE plants was more obvious under LN condition. CONCLUSION: These findings suggest that ZmPIN1a was involved in modulating auxin levels and transport to alter NO3--mediated root formation in maize.


Asunto(s)
Ácidos Indolacéticos , Nitratos , Ácidos Indolacéticos/metabolismo , Nitratos/metabolismo , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Transporte Biológico/genética , Zea mays/metabolismo
6.
J Plant Physiol ; 280: 153891, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36495813

RESUMEN

1,9-decanediol (1,9-D) is a biological nitrification inhibitor secreted in roots, which effectively inhibits soil nitrifier activity and reduces nitrogen loss from agricultural fields. However, the effects of 1,9-D on plant root growth and the involvement of signaling pathways in the plant response to 1,9-D have not been investigated. Here, we report that 1,9-D, in the 100-400 µM concentration range, promotes primary root length in Arabidopsis seedlings at 3d and 5d, by 10.1%-33.3% and 6.9%-32.6%, and, in a range of 50-200 µM, leads to an increase in the number of lateral roots. 150 µM 1,9-D was found optimum for the positive regulation of root growth. qRT-PCR analysis reveals that 1,9-D can significantly increase AtABA3 gene expression and that a mutation in ABA3 results in insensitivity of root growth to 1,9-D. Moreover, through pharmacological experiments, we show that exogenous addition of ABA (abscisic acid) with 1,9-D enhances primary root length by 23.5%-63.3%, and an exogenous supply of 1,9-D with the ABA inhibitor Flu reduces primary root length by 1.0%-14.3%. Primary root length of the pin2/eir1-1 is shown to be insensitive to both exogenous addition of 1,9-D and ABA, indicating that the auxin carrier PIN2/EIR1 is involved in promotion of root growth by 1,9-D. These results suggest a novel for 1,9-D in regulating plant root growth through ABA and auxin signaling.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Oryza , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Oryza/metabolismo , Nitrificación , Raíces de Plantas/metabolismo , Ácidos Indolacéticos/farmacología , Ácidos Indolacéticos/metabolismo , Regulación de la Expresión Génica de las Plantas
7.
Front Plant Sci ; 13: 967031, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35979077

RESUMEN

Phytohormone auxin plays a vital role in plant development and responses to environmental stresses. The spatial and temporal distribution of auxin mainly relies on the polar distribution of the PIN-FORMED (PIN) auxin efflux carriers. In this study, we dissected the functions of OsPIN9, a monocot-specific auxin efflux carrier gene, in modulating chilling tolerance in rice. The results showed that OsPIN9 expression was dramatically and rapidly suppressed by chilling stress (4°C) in rice seedlings. The homozygous ospin9 mutants were generated by CRISPR/Cas9 technology and employed for further research. ospin9 mutant roots and shoots were less sensitive to 1-naphthaleneacetic acid (NAA) and N-1-naphthylphthalamic acid (NPA), indicating the disturbance of auxin homeostasis in the ospin9 mutants. The chilling tolerance assay showed that ospin9 mutants were more tolerant to chilling stress than wild-type (WT) plants, as evidenced by increased survival rate, decreased membrane permeability, and reduced lipid peroxidation. However, the expression of well-known C-REPEAT BINDING FACTOR (CBF)/DEHYDRATION-RESPONSIVE ELEMENT-BINDING PROTEIN 1 (DREB)-dependent transcriptional regulatory pathway and Ca2+ signaling genes was significantly induced only under normal conditions, implying that defense responses in ospin9 mutants have probably been triggered in advance under normal conditions. Histochemical staining of reactive oxygen species (ROS) by 3'3-diaminobenzidine (DAB) and nitroblue tetrazolium (NBT) showed that ospin9 mutants accumulated more ROS than WT at the early stage of chilling stress, while less ROS was observed at the later stage of chilling treatment in ospin9 mutants. Consistently, antioxidant enzyme activity, including catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD), improved significantly during the early chilling treatments, while was kept similar to WT at the later stage of chilling treatment, implying that the enhanced chilling tolerance of ospin9 mutants is mainly attributed to the earlier induction of ROS and the improved ROS scavenging ability at the subsequent stages of chilling treatment. In summary, our results strongly suggest that the OsPIN9 gene regulates chilling tolerance by modulating ROS homeostasis in rice.

8.
Int J Mol Sci ; 23(9)2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35563008

RESUMEN

Molecular responses of plants to natural phytotoxins comprise more general and compound-specific mechanisms. How phytotoxic chalcones and other flavonoids inhibit seedling growth was widely studied, but how they interfere with seed germination is largely unknown. The dihydrochalcone and putative allelochemical myrigalone A (MyA) inhibits seed germination and seedling growth. Transcriptome (RNAseq) and hormone analyses of Lepidium sativum seed responses to MyA were compared to other bioactive and inactive compounds. MyA treatment of imbibed seeds triggered the phased induction of a detoxification programme, altered gibberellin, cis-(+)-12-oxophytodienoic acid and jasmonate metabolism, and affected the expression of hormone transporter genes. The MyA-mediated inhibition involved interference with the antioxidant system, oxidative signalling, aquaporins and water uptake, but not uncoupling of oxidative phosphorylation or p-hydroxyphenylpyruvate dioxygenase expression/activity. MyA specifically affected the expression of auxin-related signalling genes, and various transporter genes, including for auxin transport (PIN7, ABCG37, ABCG4, WAT1). Responses to auxin-specific inhibitors further supported the conclusion that MyA interferes with auxin homeostasis during seed germination. Comparative analysis of MyA and other phytotoxins revealed differences in the specific regulatory mechanisms and auxin transporter genes targeted to interfere with auxin homestasis. We conclude that MyA exerts its phytotoxic activity by multiple auxin-dependent and independent molecular mechanisms.


Asunto(s)
Germinación , Lepidium sativum , Chalconas , Regulación de la Expresión Génica de las Plantas , Germinación/genética , Homeostasis , Hormonas/metabolismo , Ácidos Indolacéticos/metabolismo , Lepidium sativum/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Plantones/metabolismo , Semillas/genética
9.
New Phytol ; 232(2): 958, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34397106
10.
Int J Biol Macromol ; 185: 277-286, 2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34147526

RESUMEN

Members of group Bacillus are most widely occurring microbes in agricultural soil and they affect crop health in various ways. They directly stimulate plant growth either by augmenting nutrients availability, invigorating plants' defence mechanisms; repressing soil-borne phytopathogens or by producing growth-regulating hormones like auxins and cytokinins. It is a well known fact that indole-3- acetic acid (a type of auxin) is a vital biologically active phytohormone excreted by certain Bacillus species, but its molecular mechanism has not yet been described. In this study, the auxin efflux carrier gene is isolated from the metagenome of the Tapta Kund hot spring, Uttrakhand, India. In addition, auxin efflux carrier (AEC) transporter protein of Bacillus licheniformis is modeled and the 318 amino acid residues long protein was found homologous to the apical sodium-dependent bile acid transporter (ASBT) of Yersinia frederiksnii, with 10 transmembrane segments (TM1-10) split into different domains: a panel domain defined by TM1, 2, 6 and 7; and a core domain defined by TM3-5 and 8-10. Finally, the predicted Bacillus licheniformis AEC protein has also been phylogenetically evaluated and its detailed molecular transport mechanism was worked out using molecular dynamics simulation analysis. Conclusively, this study demonstrates the efflux mechanism of the substrate, Indole 3- acetic acid by AEC transporter protein.


Asunto(s)
Bacillus licheniformis/aislamiento & purificación , Manantiales de Aguas Termales/microbiología , Ácidos Indolacéticos/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Secuencia de Aminoácidos , Bacillus licheniformis/genética , Bacillus licheniformis/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transporte Biológico , India , Proteínas de Transporte de Membrana/metabolismo , Metagenómica , Modelos Moleculares , Simulación de Dinámica Molecular , Dominios Proteicos , Estructura Terciaria de Proteína
11.
Int J Mol Sci ; 22(6)2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33806722

RESUMEN

Auxins play an essential role in regulating plant growth and adaptation to abiotic stresses, such as nutrient stress. Our current understanding of auxins is based almost entirely on the results of research on the eudicot Arabidopsis thaliana, however, the role of the rice PIN-FORMED (PIN) auxin efflux carriers in the regulation of the ammonium-dependent response remains elusive. Here, we analyzed the expression patterns in various organs/tissues and the ammonium-dependent response of rice PIN-family genes (OsPIN genes) via qRT-PCR, and attempted to elucidate the relationship between nitrogen (N) utilization and auxin transporters. To investigate auxin distribution under ammonium-dependent response after N deficiency in rice roots, we used DR5::VENUS reporter lines that retained a highly active synthetic auxin response. Subsequently, we confirmed that ammonium supplementation reduced the DR5::VENUS signal compared with that observed in the N-deficient condition. These results are consistent with the decreased expression patterns of almost all OsPIN genes in the presence of the ammonium-dependent response to N deficiency. Furthermore, the ospin1b mutant showed an insensitive phenotype in the ammonium-dependent response to N deficiency and disturbances in the regulation of several N-assimilation genes. These molecular and physiological findings suggest that auxin is involved in the ammonium assimilation process of rice, which is a model crop plant.


Asunto(s)
Ácidos Indolacéticos/metabolismo , Oryza/fisiología , Desarrollo de la Planta , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Compuestos de Amonio/metabolismo , Transporte Biológico , Fertilizantes , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Mutación , Nitrógeno/metabolismo , Especificidad de Órganos , Desarrollo de la Planta/genética , Raíces de Plantas/crecimiento & desarrollo , Carácter Cuantitativo Heredable , Plantones/genética , Plantones/crecimiento & desarrollo
12.
BMC Plant Biol ; 21(1): 125, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33648452

RESUMEN

BACKGROUND: Banana plant height is an important trait for horticultural practices and semi-dwarf cultivars show better resistance to damages by wind and rain. However, the molecular mechanisms controlling the pseudostem height remain poorly understood. Herein, we studied the molecular changes in the pseudostem of a semi-dwarf banana mutant Aifen No. 1 (Musa spp. Pisang Awak sub-group ABB) as compared to its wild-type dwarf cultivar using a combined transcriptome and metabolome approach. RESULTS: A total of 127 differentially expressed genes and 48 differentially accumulated metabolites were detected between the mutant and its wild type. Metabolites belonging to amino acid and its derivatives, flavonoids, lignans, coumarins, organic acids, and phenolic acids were up-regulated in the mutant. The transcriptome analysis showed the differential regulation of genes related to the gibberellin pathway, auxin transport, cell elongation, and cell wall modification. Based on the regulation of gibberellin and associated pathway-related genes, we discussed the involvement of gibberellins in pseudostem elongation in the mutant banana. Genes and metabolites associated with cell wall were explored and their involvement in cell extension is discussed. CONCLUSIONS: The results suggest that gibberellins and associated pathways are possibly developing the observed semi-dwarf pseudostem phenotype together with cell elongation and cell wall modification. The findings increase the understanding of the mechanisms underlying banana stem height and provide new clues for further dissection of specific gene functions.


Asunto(s)
Musa/crecimiento & desarrollo , Musa/genética , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/genética , Pared Celular/genética , Pared Celular/metabolismo , Giberelinas/metabolismo , Metaboloma , Fenotipo , Reguladores del Crecimiento de las Plantas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Transcriptoma
13.
Int J Mol Sci ; 22(2)2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33478110

RESUMEN

The protein phosphatase PP2A is essential for the control of integrated eukaryotic cell functioning. Several cellular and developmental events, e.g., plant growth regulator (PGR) mediated signaling pathways are regulated by reversible phosphorylation of vesicle traffic proteins. Reviewing present knowledge on the relevant role of PP2A is timely. We discuss three aspects: (1) PP2A regulates microtubule-mediated vesicle delivery during cell plate assembly. PP2A dephosphorylates members of the microtubule associated protein family MAP65, promoting their binding to microtubules. Regulation of phosphatase activity leads to changes in microtubule organization, which affects vesicle traffic towards cell plate and vesicle fusion to build the new cell wall between dividing cells. (2) PP2A-mediated inhibition of target of rapamycin complex (TORC) dependent signaling pathways contributes to autophagy and this has possible connections to the brassinosteroid signaling pathway. (3) Transcytosis of vesicles transporting PIN auxin efflux carriers. PP2A regulates vesicle localization and recycling of PINs related to GNOM (a GTP-GDP exchange factor) mediated pathways. The proper intracellular traffic of PINs is essential for auxin distribution in the plant body, thus in whole plant development. Overall, PP2A has essential roles in membrane interactions of plant cell and it is crucial for plant development and stress responses.


Asunto(s)
Vesículas Citoplasmáticas/metabolismo , Desarrollo de la Planta/fisiología , Proteína Fosfatasa 2/fisiología , Transporte Biológico/genética , Fosforilación/genética , Células Vegetales/metabolismo , Desarrollo de la Planta/genética , Proteína Fosfatasa 2/genética , Transducción de Señal/fisiología
14.
New Phytol ; 230(6): 2261-2274, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33338267

RESUMEN

The nucellus tissue in flowering plants provides nutrition for the development of the female gametophyte (FG) and young embryo. The nucellus degenerates as the FG develops, but the mechanism controlling the coupled process of nucellar degeneration and FG expansion remains largely unknown. The degeneration process of the nucellus and spatiotemporal auxin distribution in the developing ovule before fertilization were investigated in Arabidopsis thaliana. Nucellar degeneration before fertilization occurs through vacuolar cell death and in an ordered degeneration fashion. This sequential nucellar degeneration is controlled by the signalling molecule auxin. Auxin efflux plays the core role in precisely controlling the spatiotemporal pattern of auxin distribution in the nucellus surrounding the FG. The auxin efflux carrier PIN1 transports maternal auxin into the nucellus while PIN3/PIN4/PIN7 further delivers auxin to degenerating nucellar cells and concurrently controls FG central vacuole expansion. Notably, auxin concentration and auxin efflux are controlled by the maternal tissues, acting as a key communication from maternal to filial tissue.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Ácidos Indolacéticos , Óvulo Vegetal/metabolismo
15.
Comput Struct Biotechnol J ; 18: 2709-2722, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33101609

RESUMEN

A series of complex transport, storage and regulation mechanisms control iron metabolism and thereby maintain iron homeostasis in plants. Despite several studies on iron deficiency responses in different plant species, these mechanisms remain unclear in the allohexaploid wheat, which is the most widely cultivated commercial crop. We used RNA sequencing to reveal transcriptomic changes in the wheat flag leaves and roots, when subjected to iron limited conditions. We identified 5969 and 2591 differentially expressed genes (DEGs) in the flag leaves and roots, respectively. Genes involved in the synthesis of iron ligands i.e., nicotianamine (NA) and deoxymugineic acid (DMA) were significantly up-regulated during iron deficiency. In total, 337 and 635 genes encoding transporters exhibited altered expression in roots and flag leaves, respectively. Several genes related to MAJOR FACILITATOR SUPERFAMILY (MFS), ATP-BINDING CASSETTE (ABC) transporter superfamily, NATURAL RESISTANCE ASSOCIATED MACROPHAGE PROTEIN (NRAMP) family and OLIGOPEPTIDE TRANSPORTER (OPT) family were regulated, indicating their important roles in combating iron deficiency stress. Among the regulatory factors, the genes encoding for transcription factors of BASIC HELIX-LOOP-HELIX (bHLH) family were highly up-regulated in both roots and the flag leaves. The jasmonate biosynthesis pathway was significantly altered but with notable expression differences between roots and flag leaves. Homoeologs expression and induction bias analysis revealed subgenome specific differential expression. Our findings provide an integrated overview on regulated molecular processes in response to iron deficiency stress in wheat. This information could potentially serve as a guideline for breeding iron deficiency stress tolerant crops as well as for designing appropriate wheat iron biofortification strategies.

16.
Plants (Basel) ; 9(9)2020 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-32825074

RESUMEN

Coffee is one of the most popular beverages around the world, which is mainly produced from the allopolyploid Coffea arabica. The genomes of C. arabica and its two ancestors C. canephora and C. eugenioides have been released due to the development of next generation sequencing. However, few studies on C. arabica are related to the PIN-FORMED (PIN) auxin efflux transporter despite its importance in auxin-mediated plant growth and development. In the present study, we conducted a genome-wide analysis of the PIN gene family in the three coffee species. Totals of 17, 9 and 10 of the PIN members were characterized in C. Arabica, C. canephora and C. eugenioides, respectively. Phylogenetic analysis revealed gene loss of PIN1 and PIN2 homologs in C. arabica, as well as gene duplication of PIN5 homologs during the fractionation process after tetraploidy. Furthermore, we conducted expression analysis of PIN genes in C. arabica by in silico and qRT-PCR. The results revealed the existence of gene expression dominance in allopolyploid coffee and illustrated several PIN candidates in regulating auxin transport and homeostasis under leaf rust fungus inoculation and the tissue-specific expression pattern of C. arabica. Together, this study provides the basis and guideline for future functional characterization of the PIN gene family.

17.
Planta ; 251(6): 109, 2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32472155

RESUMEN

MAIN CONCLUSION: TDIF and TDIF-like peptides in excess simultaneously facilitate primary root elongation and lateral root formation through regulating auxin distribution and transport. Tracheary element differentiation inhibitory factor (TDIF) plays key roles in mediating cell-cell communication and stem cell maintenance during vascular development. Recently, TDIF has also been linked to lateral root (LR) organogenesis through Brassinosteroid Insensitive 2 (BIN2) action. In this work, by comparing the in vitro and in vivo activities of AtCLE41-encoded TDIF and one poplar-derived TDIF-like peptide in Arabidopsis thaliana, we demonstrated that both TDIFs promoted primary root (PR) growth and stimulated LR formation. Without affecting auxin biosynthesis and catabolism, TDIFs suppressed the auxin maxima at PR apex but intensified the auxin accumulation at LR initiation sites along the longitudinal axis of PR. TDIF did not alter root sensitivity to exogenous auxin and mutants with varied endogenous auxin levels responded to TDIF peptides in a wild-type manner but to a lesser extent. Intriguingly, TDIF specifically upregulated the transcript abundance of PINs and multiple pin mutants displayed insensitivity to TDIF, demonstrating that PIN-mediated polar auxin transport (PAT) is indispensably required for the TDIF-induced root phenotypes. Taken together, our results revealed that TDIF might target PAT via mobilizing auxin efflux carriers to dynamically regulate the auxin signaling output and hence facilitate PR growth and LR formation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Ácidos Indolacéticos/metabolismo , Oligopéptidos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Transporte Biológico , Brasinoesteroides/metabolismo , Diferenciación Celular , Homeostasis , Oligopéptidos/genética , Fenotipo
18.
Bull Math Biol ; 82(2): 17, 2020 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-31970524

RESUMEN

Plant hormone auxin has critical roles in plant growth, dependent on its heterogeneous distribution in plant tissues. Exactly how auxin transport and developmental processes such as growth coordinate to achieve the precise patterns of auxin observed experimentally is not well understood. Here we use mathematical modelling to examine the interplay between auxin dynamics and growth and their contribution to formation of patterns in auxin distribution in plant tissues. Mathematical models describing the auxin-related signalling pathway, PIN and AUX1 dynamics, auxin transport, and cell growth in plant tissues are derived. A key assumption of our models is the regulation of PIN proteins by the auxin-responsive ARF-Aux/IAA signalling pathway, with upregulation of PIN biosynthesis by ARFs. Models are analysed and solved numerically to examine the long-time behaviour and auxin distribution. Changes in auxin-related signalling processes are shown to be able to trigger transition between passage- and spot-type patterns in auxin distribution. The model was also shown to be able to generate isolated cells with oscillatory dynamics in levels of components of the auxin signalling pathway which could explain oscillations in levels of ARF targets that have been observed experimentally. Cell growth was shown to have influence on PIN polarisation and determination of auxin distribution patterns. Numerical simulation results indicate that auxin-related signalling processes can explain the different patterns in auxin distributions observed in plant tissues, whereas the interplay between auxin transport and growth can explain the 'reverse-fountain' pattern in auxin distribution observed at plant root tips.


Asunto(s)
Ácidos Indolacéticos/metabolismo , Modelos Biológicos , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Transporte Biológico Activo , Simulación por Computador , Conceptos Matemáticos , Proteínas de Transporte de Membrana/metabolismo , Dinámicas no Lineales , Desarrollo de la Planta , Proteínas de Plantas/metabolismo , Transducción de Señal
19.
BMC Plant Biol ; 19(1): 589, 2019 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-31881837

RESUMEN

BACKGROUND: Short internodes contribute to plant dwarfism, which is exceedingly beneficial for crop production. However, the underlying mechanisms of internode elongation are complicated and have been not fully understood. RESULTS: Here, we report a maize dwarf mutant, dwarf2014 (d2014), which displays shortened lower internodes. Map-based cloning revealed that the d2014 gene is a novel br2 allele with a splicing variation, resulting in a higher expression of BR2-T02 instead of normal BR2-T01. Then, we found that the internode elongation in d2014/br2 exhibited a pattern of inhibition-normality-inhibition (transient for the ear-internode), correspondingly, at the 6-leaf, 12-leaf and 14-leaf stages. Indeed, BR2 encodes a P-glycoprotein1 (PGP1) protein that functions in auxin efflux, and our in situ hybridization assay showed that BR2 was mainly expressed in vascular bundles of the node and internode. Furthermore, significantly higher auxin concentration was detected in the stem apex of d2014 at the 6-leaf stage and strictly in the node region for the ear-internode at the 14-leaf stage. In such context, we propose that BR2/PGP1 transports auxin from node to internode through the vascular bundles, and excessive auxin accumulation in the node (immediately next to the intercalary meristem) region suppresses internode elongation of d2014. CONCLUSIONS: These findings suggest that low auxin levels mediated by BR2/PGP1 in the intercalary meristem region are crucial for internode elongation.


Asunto(s)
Ácidos Indolacéticos/metabolismo , Meristema/metabolismo , Proteínas de Plantas/fisiología , Zea mays/crecimiento & desarrollo , Subfamilia B de Transportador de Casetes de Unión a ATP/fisiología , Alelos , Transporte Biológico , Isoformas de Proteínas , Zea mays/genética , Zea mays/metabolismo
20.
Life Sci Space Res (Amst) ; 22: 29-37, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31421846

RESUMEN

To clarify the mechanism of gravity-controlled polar auxin transport, we conducted the International Space Station (ISS) experiment "Auxin Transport" (identified by NASA's operation nomenclature) in 2016 and 2017, focusing on the expression of genes related to auxin efflux carrier protein PsPIN1 and its localization in the hook and epicotyl cells of etiolated Alaska pea seedlings grown for three days in the dark under microgravity (µg) and artificial 1 g conditions on a centrifuge in the Cell Biology Experiment Facility (CBEF) in the ISS, and under 1 g conditions on Earth. Regardless of gravity conditions, the accumulation of PsPIN1 mRNA in the proximal side of epicotyls of the seedlings was not different, but tended to be slightly higher as compared with that in the distal side. 2,3,5-Triiodobenzoic acid (TIBA) also did not affect the accumulation of PsPIN1 mRNA in the proximal and distal sides of epicotyls. However, in the apical hook region, TIBA increased the accumulation of PsPIN1 mRNA under µg conditions as compared with that under artificial 1 g conditions in the ISS. The accumulation of PsPIN1 proteins in epicotyls determined by western blotting was almost parallel to that of mRNA of PsPIN1. Immunohistochemical analysis with a specific polyclonal antibody of PsPIN1 revealed that a majority of PsPIN1 in the apical hook and subapical regions of the seedlings grown under artificial 1 g conditions in the ISS localized in the basal side (rootward) of the plasma membrane of the endodermal tissues. Conversely, in the seedlings grown under µg conditions, localization of PsPIN1 was greatly disarrayed. TIBA substantially altered the cellular localization pattern of PsPIN1, especially under µg conditions. These results strongly suggest that the mechanisms by which gravity controls polar auxin transport are more likely to be due to the membrane localization of PsPIN1. This physiologically valuable report describes a close relationship between gravity-controlled polar auxin transport and the localization of auxin efflux carrier PsPIN1 in etiolated pea seedlings based on the µg experiment conducted in space.


Asunto(s)
Ácidos Indolacéticos/metabolismo , Proteínas de Transporte de Membrana/análisis , Pisum sativum/crecimiento & desarrollo , Proteínas de Plantas/análisis , Vuelo Espacial , Transporte Biológico , Membrana Celular/química , Etiolado , Expresión Génica , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ARN Mensajero/genética , Plantones/crecimiento & desarrollo , Ingravidez
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA