Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros











Intervalo de año de publicación
1.
Small ; : e2402312, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39077967

RESUMEN

Reactive oxygen species (ROS)-dependent monotherapy usually demonstrates poor therapeutic outcomes, due to the accompanied activation of protective autophagy in tumor cells, which results in ROS tolerance and immune suppression. In this study, a bimetallic electro-sensitizer, Pt-Ir NPs is constructed, loaded with the autophagy inhibitor chloroquine (Pt-Ir-CQ NPs), to enhance the effectiveness of electrotherapy by inhibiting autophagy and activating anti-tumor immune responses. This novel electrotherapy platform demonstrates unique advantages, particularly in the treatment of hypoxic and immunosuppressive tumors. First, the electro-sensitizer catalyzes water molecules into ROS under electric field, achieving tumor ablation through electrotoxicity. Second, the incorporated CQ inhibits the protective autophagy induced by electrotherapy, restoring the sensitivity of tumor cells to ROS and thereby enhancing the anti-tumor effects of electrotherapy. Third, Pt-Ir-CQ NPs enhance the functionality of antigen-presenting cells and immunogenic cells through inhibiting autophagy, synergistically activating the anti-tumor immune responses along with the immunogenic cell death (ICD) effect induced by electrotherapy. This study provides a novel approach for the effective ablation and long-term inhibition of solid tumors through flexible modulation by an exogenous electric field.

2.
Breast Cancer ; 31(2): 195-204, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38315272

RESUMEN

Breast cancer is the most prevalent malignant tumor among women, with a high incidence and mortality rate all year round, which seriously affects women's health. Autophagy, a well-conserved cellular process inherent in eukaryotic organisms, plays a pivotal role in degrading damaged proteins and organelles, recycling their breakdown products to aid cells in navigating stress and gradually restoring homeostatic equilibrium. Recent studies have unveiled the intricate connection between autophagy and breast cancer. Autophagy is a double-edged sword in breast cancer, demonstrating a dual role: restraining its onset and progression on one hand, while promoting its metastasis and advancement on the other. It is also because of this interrelationship between the two that regulation of autophagy in the treatment of breast cancer is now an important strategy in clinical treatment. In this article, we systematically survey the recent research findings, elucidating the multifaceted role of autophagy in breast cancer and its underlying mechanisms, with the aim of contributing new references to the clinical management of breast cancer.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Neoplasias de la Mama/patología , Proteínas , Autofagia
3.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1021357

RESUMEN

BACKGROUND:Autophagy has become a rapidly developing research hotspot in the biomedical fields.Many researchers are actively exploring the molecular regulatory mechanism of autophagy in a variety of diseases.However,the role of autophagy in hair growth is still unknown. OBJECTIVE:To review the current research progress and application value of autophagy in hair growth and regeneration,to understand the role of autophagy in hair growth,to explore the pathogenesis of autophagy in pathological hair loss,and to provide new ideas for the study of drugs for hair loss. METHODS:Using"hair follicle growth,hair growth,hair regeneration,autophagy associated proteins,autophagy activity,autophagy associated genes,autophagy"as Chinese search terms and"hair growth,hair follicle,hair regeneration,autophagy"as English search terms,PubMed and CNKI databases were searched.The research progress on autophagy,hair growth and the role of autophagy in hair growth in and outside China in recent years was reviewed and summarized.Articles incompatible with the subject content of the paper were excluded.Finally,78 articles were included for the result analysis. RESULTS AND CONCLUSION:(1)Autophagy is a normal metabolic process in eukaryotes with complex molecular mechanisms and functional properties,which is beneficial to cell survival and cell death.(2)Alopecia-related diseases are associated with changes in autophagy activity,which can regulate hair growth cycle.Knockout or overexpression of autophagy-related genes can change the state of hair growth.Multiple autophagy related signaling pathways have been found to be related to hair follicle growth.Activators or inhibitors of autophagy can be used to treat or prevent hair loss.

4.
Dev Reprod ; 27(3): 149-157, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38074457

RESUMEN

We investigated the involvement of autophagy with steroidogenesis in testicular Leydig cells. Human chorionic gonadotropin (hCG)-stimulated T production in Leydig cells was not remarkably altered in the presence of an autophagy inhibitor 3-methyladenine (3-MA). Although pretreatment with 3-MA demonstrated a tendency to decrease hCG-induced T production, the differences were significant only at a higher time point of 24 h following hCG. Microtubule associated protein light chain 3 (LC3)-II was detectable in the control cells in all the experiments. The hCG-induced increase in steroidogenic acute regulatory protein (StAR) and cytochrome P450 side chain cleave (P450scc) protein levels were not significantly altered by 3-MA. Leydig cells isolated from immature rat testes 12 h following hCG treatment showed relatively increased levels of LC3-II protein compared to the control group. Furthermore, LC3-II levels shown in these cells reached almost the identical to those from normal adult testes. However, LC3-II protein levels were almost comparable or even slightly lower than the controls at 48 h following hCG. Expression of StAR and P450scc was upregulated at both 12 and 48 h after hCG. We also used MA-10 cells, the mouse Leydig cell line, in this experiment. When dibutyryl cyclic-AMP was treated with MA-10 cells, P4 levels were significantly increased in the cell culture medium. However, P4 levels tended to decrease in the presence of 3-MA, but the difference was not statistically significant. This was consistent with the results of the rat Leydig cell experiments. Together, we believe that although autophagy participates in steroidogenesis and enhances steroidogenic efficacy of Leydig cells, it may not be a decisive cellular process for steroidogenesis, specifically in the mature Leydig cells.

5.
Metabolites ; 13(10)2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37887398

RESUMEN

Hepatocellular carcinoma (HCC) is one of the most refractory cancers with a high rate of recurrence. Iron is an essential trace element, and iron chelation has garnered attention as a novel therapeutic strategy for cancer. Since intracellular metabolism is significantly altered by inhibiting various proteins by iron chelation, we investigated combination anticancer therapy targeting metabolic changes that are forcibly modified by iron chelator administration. The deferoxamine (DFO)-resistant cell lines were established by gradually increasing the DFO concentration. Metabolomic analysis was conducted to evaluate the metabolic alterations induced by DFO administration, aiming to elucidate the resistance mechanism in DFO-resistant strains and identify potential novel therapeutic targets. Metabolom analysis of the DFO-resistant Huh7 cells revealed enhanced glycolysis and salvage cycle, alternations in glutamine metabolism, and accumulation of dipeptides. Huh7 cultured in the absence of glutamine showed enhanced sensitivity to DFO, and glutaminase inhibitor (CB839) showed a synergistic effect with DFO. Furthermore, the effect of DFO was enhanced by an autophagy inhibitor (chloroquine) in vitro. DFO-induced metabolic changes are specific targets for the development of efficient anticancer combinatorial therapies using DFO. These findings will be useful for the development of new cancer therapeutics in refractory liver cancer.

6.
Anal Biochem ; 683: 115333, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37907159

RESUMEN

The present study evaluates the pharmacokinetics and metabolic stability of a novel lysosomotropic autophagy inhibitor, IITZ-01 using an ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS-MS). It is required as this lead molecule awaits pre-clinical studies for development because of significant therapeutic outcomes in triple-negative breast cancer and renal cancer. A bioanalytical method for the quantitative determination of IITZ-01 in the plasma of mice was developed using the UPLC-MS/MS technique. The UPLC-MS/MS method was validated according to US-FDA bioanalytical guidance and successfully applied to study the pharmacokinetics and metabolic stability. Separation of IITZ- 01 and ZSTK474 (IS) from endogenous components with high selectivity and sensitivity (0.5 ng/mL) was achieved using Waters Acquity BEH C-18 column (50 mm × 2.1 mm, 1.7 µm). A gradient mobile phase consisting of 0.1 % formic acid in water and 0.1 % formic acid in acetonitrile was applied at a flow rate of 0.2 mL/min. Electrospray ionization was employed in positive ion mode for detection, while quantification utilized the multiple reaction monitoring (MRM) mode. This involved using [M+H]+fragment ions at m/z 483.19 â†’ 235.09 for IITZ-01 and m/z 418 â†’ 138 for the internal standard (IS). The method was validated over the calibration range of 0.5-800 ng/mL. The LLOQ of IITZ-01 was 0.5 ng/mL in mice plasma. The method demonstrated good in terms of intra- and inter-day precision and accuracy. The matrix effect was found to be negligible, and the stability data were within acceptable limits. The validated technique supports suitability, reliability, reproducibility, and sensitivity for the pre-clinical investigation of IITZ-01 pharmacokinetics in mice and metabolic stability in human liver microsomes.


Asunto(s)
Espectrometría de Masas en Tándem , Ratas , Humanos , Ratones , Animales , Espectrometría de Masas en Tándem/métodos , Ratas Sprague-Dawley , Reproducibilidad de los Resultados , Cromatografía Liquida , Cromatografía Líquida de Alta Presión/métodos
7.
Ann Clin Lab Sci ; 53(4): 598-606, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37625845

RESUMEN

OBJECTIVE: The present study aimed to investigate the effects of the PI3K inhibitor PX-866 or PI-103 combined with the autophagy inhibitor 3-methyladenine (3-MA) on the apoptosis of T lymphoblastic leukemia cells. METHODS: The proliferation and apoptosis of T lymphoblastic leukemia cell lines were detected by CCK-8 and flow cytometer. The expression of proteins was measured by western blot. The effect of PI3K inhibitors combined with 3-MA on the number of autophagosomes was detected by transmission electron microscopy (TEM). RESULTS: We found PX-866 and PI-103 treatment reduced cell viability while increasing apoptosis in CCRF-CEM and Jurkat cells, which was further enhanced when combined with 3-MA. The phosphorylation levels of AKT and mTOR were suppressed by PX-866 or PI-103, which were reversed by 3-MA. Further, the expression of LC3, ATG5, ATG12 and Beclin-1 was upregulated by PX-866 or PI-103 and downregulated by 3-MA. TEM results revealed that the number of autophagosome was increased by PX-866 or PI-103 treatment, which was reversed by 3-MA. CONCLUSIONS: The results demonstrated that 3-MA could suppress PI3K inhibitor-mediated activation of autophagy to promote the apoptosis of tumor cells. This discovery provided experimental support for constituting a promising strategy for T-cell acute lymphoblastic leukemia (T-ALL) therapy.


Asunto(s)
Linfoma no Hodgkin , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas , Autofagia , Apoptosis , Línea Celular
8.
Acta Biomater ; 168: 593-605, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37474083

RESUMEN

Immune checkpoint blockade (ICB) antibody such as anti-PD-L1 (aPD-L1) activates cytotoxic T cells (CTLs) to combat cancer, but they showed poor efficacy in prostate cancer (PCa). Lysosome-dependent autophagy is utilized by cancer cells to degrade their MHC-I and to lower their vulnerability to TNF-α and CTLs. Lysosomal pH-sensitive polymeric nanoparticle as a drug delivery carrier may also be a novel autophagy inhibitor to boost immunotherapy, but such an important effect has not been investigated. Herein, we developed a unique tumor acidity-activatable macromolecular nanodrug (called P-PDL1-CP) with the poly(2-diisopropylaminoethyl methacrylate) (PDPA) core and the conjugations of both aPD-L1 and long-chain polyethylene glycol (PEG) coating. The PDPA core was demonstrated to disturb lysosome to block the autophagic flux, thus elevating the cancer cell's MHC-I expression and vulnerability to the TNF-α and CTLs. Long-chain PEG facilitated a good tumor accumulation of P-PDL1-CP nanodrug. Furthermore, P-PDL1-CP nanodrug inhibited tumor autophagy, which synergized with aPD-L1 to promote the tumor-infiltrating CTLs and DCs maturation, to elevate intratumoral TNF-α and IFN-γ levels, and to elicit an anti-tumor immune memory effect in mice for PCa growth inhibition with low side effects. This study verified the synergistic anti-PCa treatment between autophagy inhibition and PD-L1 blockade and meantime broadened the application of pH-sensitive macromolecular nanodrug. STATEMENT OF SIGNIFICANCE: A macromolecular nanodrug, comprising the PDPA core and the surface conjugation of both aPD-L1 antibodies and long-chain PEG coating via a tumor acidity-labile α-carboxy-dimethylmaleic anhydride amine bond, was developed. Tumoral acidity triggered the release of aPD-L1 for immunotherapy. Meantime, the charge switch of the remanent nanodrug enhanced the cancer cell uptake of PDPA, which disturbed the lysosomes to inhibit autophagy. This advanced nanodrug promoted the tumor-infiltrating CTLs and DCs maturation, elevated the intratumoral TNF-α and IFN-γ levels, and elicited the robust anti-tumor immune memory effect. This study demonstrated that the pH-sensitive PDPA macromolecule could serve as a carrier for the aPD-L1 delivery and as an efficient autophagy inhibitor to boost the immunotherapy of prostate cancer.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Neoplasias de la Próstata , Humanos , Masculino , Animales , Ratones , Factor de Necrosis Tumoral alfa/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Linfocitos T Citotóxicos/metabolismo , Inmunoterapia , Línea Celular Tumoral , Autofagia , Microambiente Tumoral
9.
J Transl Med ; 21(1): 413, 2023 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-37355631

RESUMEN

In recent decades, the incidence of thyroid cancer keeps growing at a shocking rate, which has aroused increasing concerns worldwide. Autophagy is a fundamental and ubiquitous biological event conserved in mammals including humans. Basically, autophagy is a catabolic process that cellular components including small molecules and damaged organelles are degraded for recycle to meet the energy needs, especially under the extreme conditions. The dysregulated autophagy has indicated to be involved in thyroid cancer progression. The enhancement of autophagy can lead to autophagic cell death during the degradation while the produced energies can be utilized by the rest of the cancerous tissue, thus this influence could be bidirectional, which plays either a tumor-suppressive or oncogenic role. Accordingly, autophagy can be suppressed by therapeutic agents and is thus regarded as a drug target for thyroid cancer treatments. In the present review, a brief description of autophagy and roles of autophagy in tumor context are given. We have addressed summary of the mechanisms and functions of autophagy in thyroid cancer. Some potential autophagy-targeted treatments are also summarized. The aim of the review is linking autophagy to thyroid cancer, so as to develop novel approaches to better control cancer progression.


Asunto(s)
Neoplasias , Neoplasias de la Tiroides , Animales , Humanos , Neoplasias/patología , Autofagia/fisiología , Mamíferos
10.
Colloids Surf B Biointerfaces ; 227: 113344, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37257302

RESUMEN

Given that currently used classical chemotherapeutic drugs lack the ideal therapeutic effect and produce severe side effects, platinum nanomaterials (Pt-NMs) have gradually gained attention, and their antitumor effect has been initially explored. However, the specific mechanisms underlying the action of Pt-NMs in non-small cell lung cancer (NSCLC) cells remain unclear. Moreover, the interaction between Pt-NMs and autophagy in inducing apoptosis of NSCLC cells remains unexplored. In this study, we explored the anti-NSCLC effect of amine-caged Pt nanoclusters (Nano-Pt) using cell cycle, migration, proliferation, apoptosis, and autophagy assays. We found that Nano-Pt significantly inhibited cell viability, reduced migration ability, caused DNA damage, induced S phase (period of DNA synthesis in the cell cycle) arrest, and promoted apoptosis in NSCLC cells. Nano-Pt also reduced mitochondrial membrane potential (MMP), increased permeability transition, and promoted apoptosis by upregulating Bax and PARP expression. Nano-Pt-induced apoptosis was accompanied by protective autophagy, which could be enhanced by autophagy inhibitors. Our findings on the biological behavior and the interaction between autophagy and apoptosis can provide the clear anti-NSCLC molecular mechanism of Nano-Pt, which have a promising potential for the development of novel Pt-based antitumor chemotherapy drugs with excellent curative efficacy and fewer side effects.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/patología , Línea Celular Tumoral , Apoptosis , Antineoplásicos/uso terapéutico , Autofagia , Mitocondrias , Platino (Metal)/farmacología , Proliferación Celular
11.
Nano Res ; 16(4): 5226-5236, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36465522

RESUMEN

Numerous therapeutic anti-tumor strategies have been developed in recent decades. However, their therapeutic efficacy is reduced by the intrinsic protective autophagy of tumors. Autophagy plays a key role in tumorigenesis and tumor treatment, in which the overproduction of reactive oxygen species (ROS) is recognized as the direct cause of protective autophagy. Only a few molecules have been employed as autophagy inhibitors in tumor therapy to reduce protective autophagy. Among them, hydroxychloroquine is the most commonly used autophagy inhibitor in clinics, but it is severely limited by its high therapeutic dose, significant toxicity, poor reversal efficacy, and nonspecific action. Herein, we demonstrate a reductive-damage strategy to enable tumor therapy by the inhibition of protective autophagy via the catalytic scavenging of ROS using porous nanorods of ceria (PN-CeO2) nanozymes as autophagy inhibitor. The antineoplastic effects of PN-CeO2 were mediated by its high reductive activity for intratumoral ROS degradation, thereby inhibiting protective autophagy and activating apoptosis by suppressing the activities of phosphatidylinositide 3-kinase/protein kinase B and p38 mitogen-activated protein kinase pathways in human cutaneous squamous cell carcinoma. Further investigation highlighted PN-CeO2 as a safe and efficient anti-tumor autophagy inhibitor. Overall, this study presents a reductive-damage strategy as a promising anti-tumor approach that catalytically inhibits autophagy and activates the intrinsic antioxidant pathways of tumor cells and also shows its potential for the therapy of other autophagy-related diseases. Electronic Supplementary Material: Supplementary material (cellular uptake of PN-CeO2, effects of PN-CeO2 on several common malignant tumor models, viability of HaCaT cells treated with PN-CeO2 at different concentrations, time-dependent body-weight curves of SCL-1 tumor-bearing nude mice, the biodistribution of Ce element in main tissues and tumors after injection of PN-CeO2, measurement of Ce element concentration in urine and feces samples, H&E-stained images of main organs, and measurement of liver and kidney function in mice after different treatment) is available in the online version of this article at 10.1007/s12274-022-5139-z.

12.
Biomol Ther (Seoul) ; 31(1): 1-15, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36579459

RESUMEN

Autophagy is a process of eliminating damaged or unnecessary proteins and organelles, thereby maintaining intracellular homeostasis. Deregulation of autophagy is associated with several diseases including cancer. Contradictory dual roles of autophagy have been well established in cancer. Cytoprotective mechanism of autophagy has been extensively investigated for overcoming resistance to cancer therapies including radiotherapy, targeted therapy, immunotherapy, and chemotherapy. Selective autophagy inhibitors that directly target autophagic process have been developed for cancer treatment. Efficacies of autophagy inhibitors have been tested in various pre-clinical cancer animal models. Combination therapies of autophagy inhibitors with chemotherapeutics are being evaluated in clinal trials. In this review, we will focus on genetical and pharmacological perturbations of autophagy-related proteins in different steps of autophagic process and their therapeutic benefits. We will also summarize combination therapies of autophagy inhibitors with chemotherapies and their outcomes in pre-clinical and clinical studies. Understanding of current knowledge of development, progress, and application of cytoprotective autophagy inhibitors in combination therapies will open new possibilities for overcoming drug resistance and improving clinical outcomes.

13.
Front Immunol ; 14: 1238827, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38239356

RESUMEN

Nanoparticles have unique physical and chemical properties and are currently widely used in disease diagnosis, drug delivery, and new drug development in biomedicine. In recent years, the role of nanomedical technology in cancer treatment has become increasingly obvious. Autophagy is a multi-step degradation process in cells and an important pathway for material and energy recovery. It is closely related to the occurrence and development of cancer. Because nanomaterials are highly targeted and biosafe, they can be used as carriers to deliver autophagy regulators; in addition to their favorable physicochemical properties, nanomaterials can be employed to carry autophagy inhibitors, reducing the breakdown of chemotherapy drugs by cancer cells and thereby enhancing the drug's efficacy. Furthermore, certain nanomaterials can induce autophagy, triggering oxidative stress-mediated autophagy enhancement and cell apoptosis, thus constraining the progression of cancer cells.There are various types of nanoparticles, including liposomes, micelles, polymers, metal-based materials, and carbon-based materials. The majority of clinically applicable drugs are liposomes, though other materials are currently undergoing continuous optimization. This review begins with the roles of autophagy in tumor treatment, and then focuses on the application of nanomaterials with autophagy-regulating functions in tumor treatment.


Asunto(s)
Nanomedicina , Neoplasias , Humanos , Liposomas/uso terapéutico , Neoplasias/metabolismo , Sistemas de Liberación de Medicamentos , Autofagia
14.
Biomol Ther (Seoul) ; 30(6): 616-624, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36305295

RESUMEN

Mebendazole (MBZ), a microtubule depolymerizing drug commonly used for the treatment of helminthic infections, has been suggested as a repositioning candidate for the treatment of brain tumors. However, the efficacy of MBZ needs further study to improve the beneficial effect on the survival of those patients. In this study, we explored a novel strategy to improve MBZ efficacy using a drug combination. When glioblastoma cells were treated with MBZ, cell proliferation was dose-dependently inhibited with an IC50 of less than 1 µM. MBZ treatment also inhibited glioblastoma cell migration with an IC50 of less than 3 µM in the Boyden chamber migration assay. MBZ induced G2-M cell cycle arrest in U87 and U373 cells within 24 h. Then, at 72 h of treatment, it mainly caused cell death in U87 cells with an increased sub-G1 fraction, whereas polyploidy was seen in U373 cells. However, MBZ treatment did not affect ERK1/2 activation stimulated by growth factors. The marked induction of autophagy by MBZ was observed, without any increased expression of autophagy-related genes ATG5/7 and Beclin 1. Co-treatment with MBZ and the autophagy inhibitor chloroquine (CQ) markedly enhanced the anti-proliferative effects of MBZ in the cells. Triple combination treatment with temozolomide (TMZ) (another autophagy inducer) further enhanced the anti-proliferative effect of MBZ and CQ. The combination of MBZ and CQ also showed an enhanced effect in TMZ-resistant glioblastoma cells. Therefore, we suggest that the modulation of protective autophagy could be an efficient strategy for enhancing the anti-tumor efficacy of MBZ in glioblastoma cells.

15.
Int J Mol Med ; 50(4)2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36052845

RESUMEN

Being a highly conserved catabolic process, autophagy is induced by various forms of cellular stress, and its modulation has considerable potential as a cancer therapeutic approach. In the present study, it was demonstrated that dicitrinone B (DB), a rare carbon­bridged citrinin dimer, may exert anticancer effects by blocking autophagy at a late stage, without disrupting lysosomal function in MCF7 breast cancer and MDA­MB­231 triple­negative breast cancer cells. Furthermore, it was discovered that DB significantly enhanced intracellular reactive oxygen species (ROS) production and that the removal of ROS was followed by the attenuation of autophagy inhibition. In addition, DB exerted notable inhibitory effects on the proliferation and promoting effects on the apoptosis of MCF7 and MDA­MB­231 cells. In combination with conventional chemotherapeutic drugs, DB exhibited a further enhanced synergistic effect than when used as a single agent. Overall, the data of the present study demonstrate that DB may prove to be a promising autophagy inhibitor with anticancer activity against breast cancer.


Asunto(s)
Productos Biológicos , Neoplasias de la Mama , Citrinina , Neoplasias de la Mama Triple Negativas , Apoptosis , Autofagia , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Proliferación Celular , Citrinina/análogos & derivados , Citrinina/farmacología , Femenino , Humanos , Especies Reactivas de Oxígeno/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico
16.
Biomater Adv ; 138: 212919, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35913232

RESUMEN

Photothermal therapy (PTT) usually causes hyperthermia and damages healthy tissues. Developing a PTT platform with enhanced therapeutic effects and reduced side effects to normal tissues attracts increasing attention. Herein, we developed a multifunctional theranostic nanoplatform using poly(lactic-co-glycolic acid) (PLGA) loaded with near-infrared (NIR) photothermal agent (new indocyanine green IR820), fluorescence imaging agent (ZnCdSe/ZnS quantum dots, QDs) and autophagy inhibitor (chloroquine, CQ). These PLGA/IR820/Fluorescence imaging agent/CQ co-loading nanoparticles (termed PIFC NPs) displayed photothermal effects, enhanced the stability of IR820 in vivo, and enabled QDs to have stable fluorescent signals in vitro and in vivo. The PIFC NPs with particle size around 240 nm aggregated to tumor sites through the high permeability and retention effects of solid tumors. The intracellular delivery of CQ molecules through PIFC NPs significantly attenuated the degradation of autophagic lysosomes in tumor cells and effectively inhibited the autophagy mediated repair of photothermal damaged cells. Under milder NIR irradiation conditions, PIFC NPs exhibited high antitumor effect. By regulating autophagy, PTT can be effectively sensitized, which will provide a new idea for future cancer treatment research.


Asunto(s)
Hipertermia Inducida , Neoplasias , Autofagia , Humanos , Neoplasias/terapia , Fototerapia/métodos , Terapia Fototérmica , Medicina de Precisión
17.
Cancers (Basel) ; 14(14)2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35884450

RESUMEN

Overcoming resistance is one of the most challenging features in current anticancer therapy. Autophagy is a cellular process that confers resistance in some advanced tumors, since it enables cancer cells to adapt to stressful situations, such as anticancer treatments. Hence, the inhibition of this cytoprotective autophagy leads to tumor cells sensitization and death. In this regard, we designed a novel potent anionophore compound that specifically targets lysosomes, called LAI-1 (late-stage autophagy inhibitor-1), and evaluated its role in blocking autophagy and its potential anticancer effects in three lung cancer cell lines from different histological subtypes. Compared to other autophagy inhibitors, such as chloroquine and 3-Methyladenine, the LAI-1 treatment induced more potent anticancer effects in all tested cancer cells. LAI-1 was able to efficiently target and deacidify lysosomes, while acidifying cytoplasmic pH. Consequently, LAI-1 efficiently blocked autophagy, indicated by the increased LC3-II/I ratio and p62/SQSTM1 levels. Moreover, no colocalization was observed between autophagosomes, marked with LC3 or p62/SQSTM1, and lysosomes, stained with LAMP-1, after the LAI-1 treatment, indicating the blockage of autophagolysosome formation. Furthermore, LAI-1 induced cell death by activating apoptosis (enhancing the cleavage of caspase-3 and PARP) or necrosis, depending on the cancer cell line. Finally, LAI-1 sensitized cancer cells to the first-line chemotherapeutic agent cisplatin. Altogether, LAI-1 is a new late-stage autophagy inhibitor that causes lysosomal dysfunction and the blockage of autophagolysosome formation, as well as potently induces cancer cell death and sensitization to conventional treatments at lower concentrations than other known autophagy inhibitors, appearing as a potential new therapeutic approach to overcome cancer resistance.

18.
Biomaterials ; 287: 121651, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35777331

RESUMEN

ICD effect is usually accompanied with robust autophagy that can depredate immune-associated antigens in tumors, thereby weakening the immune response against tumor growth. To circumvent this dilemma, we combined an ICD inducer (Shikonin, SHK) with an autophagy inhibitor (hydroxychloroquine, HCQ) for colon cancer immunotherapy. Notably, HCQ boosted SHK-induced antigen exposure in colon cancer in vitro and in vivo. However, autophagy inhibition caused loss of ATP, which compromised antitumor immune response. Therefore, a compensatory strategy was employed by introducing ATP as a remote loading gradient of the liposome to encapsulate HCQ (LipHCQa). LipHCQa achieved an excellent antitumor efficiency without dampening the immune response. Furthermore, a systematic determination of the optimal dosage of combined LipSHK and LipHCQa suggested that autophagy inhibiting at an appropriate dosage level was beneficial for maximizing ICD-based antitumor immunity. This study proved that autophagy inhibitors can recover the deficient ICD-based antitumor immune response and present potential clinical applications for cancer immunotherapy.


Asunto(s)
Neoplasias del Colon , Hidroxicloroquina , Humanos , Hidroxicloroquina/farmacología , Neoplasias del Colon/tratamiento farmacológico , Autofagia , Inmunoterapia , Adenosina Trifosfato , Línea Celular Tumoral
19.
Int J Biol Sci ; 18(7): 2684-2702, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35541921

RESUMEN

Macroautophagy/autophagy is the process of self-digestion through the lysosomes; it disassembles unnecessary or dysfunctional long-lived proteins and damaged organelles for the recycling of biomacromolecules. Unfortunately, cancer cells can hijack this mechanism to survive under metabolic stress or develop drug resistance during chemotherapy. Increasing evidence indicates that the combination of autophagy inhibition and chemotherapy is a promising cancer treatment strategy. However, effective autophagy inhibitors with satisfied potency, bioavailability, and clearly-defined drug targets are still rare. Here, we report the identification of a potent autophagy inhibitor toosendanin which can effectively block autophagosome maturation, causing the accumulation of autophagy substrates in multiple cancer cells. Toosendanin did not inhibit the fusion process between autophagosome and lysosome but elevated lysosomal pH and impaired lysosomal enzymes activity. Using rat liver lysosome fraction and purified yeast V-ATPase, we found that toosendanin directly inhibited V-ATPase activity. By applying cellular thermal shift assay (CETSA), immunoprecipitation-coupled LC-MS/MS analysis, and biotin-toosendanin pull-down assay, we confirmed the direct binding between toosendanin and V-ATPase. Furthermore, toosendanin blocked chemotherapy-induced protective autophagy in cultured cancer cells and xenograft tumor tissues to significantly enhance anti-cancer activity. These results suggest that toosendanin has the potential to be developed into an anti-cancer drug by blocking chemotherapy-induced protective autophagy.


Asunto(s)
Antineoplásicos , Neoplasias , ATPasas de Translocación de Protón Vacuolares , Adenosina Trifosfatasas/metabolismo , Animales , Antineoplásicos/farmacología , Autofagia , Cromatografía Liquida , Humanos , Neoplasias/tratamiento farmacológico , Ratas , Espectrometría de Masas en Tándem , Triterpenos , ATPasas de Translocación de Protón Vacuolares/metabolismo , ATPasas de Translocación de Protón Vacuolares/farmacología
20.
Biochem Biophys Res Commun ; 603: 130-137, 2022 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-35287054

RESUMEN

In recent years, extracellular vesicles (EVs) were loaded with therapeutic molecules to be delivered to recipient cells, so the possibility of utilizing EVs for drug delivery has been investigated in various models. Nonetheless, most EVs are degraded through the autophagy pathway after being up-taken by recipient cells, resulting in a low delivery efficiency. Here we introduced a strategy to overcome inefficient delivery of EVs. We demonstrated that autophagy inhibitors, used for reducing lysosomal degradation of EVs, enhanced the protein or plasmid DNA delivery efficiency of EVs in recipient cells without influencing the uptake of EVs by recipient cells. Moreover, autophagy inhibitors could also improve gene-editing efficiency of EV-loaded CRISPR/Cas9 system.


Asunto(s)
Vesículas Extracelulares , Autofagia , Transporte Biológico , Vesículas Extracelulares/metabolismo , Edición Génica , Lisosomas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA