Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Childs Nerv Syst ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39289198

RESUMEN

Cranial vault remodelling for craniosynostosis aims to increase intracranial volume to facilitate brain growth, avoid the development of raised intracranial pressure and address cosmesis. The extent of vault expansion is predominantly limited by scalp closure and reconstruction technique. Virtual surgical planning tools have been developed to predict post-operative changes and guide expansion. We present a validation study of a novel 'Dura-based Automated Vault Expansion-Remodeling' (DAVE-R) model to guide pre-operative planning for fronto-orbital advancement and remodelling (FOAR). METHODS: Patients with trigonocephaly who underwent FOAR with pre- and post-operative imaging from 2018 to 2020 were identified from a prospectively maintained database. Post-operative scans, normative atlas and whole brain parcellation were registered to the pre-operative images to quantify the change in intracranial volume and morphology (utilising measurement of fronto-orbital advancement and bifrontozygomatic distance) compared to that predicted by the DAVE-R model. RESULTS: Ten patients were included. The DAVE-R model predicted bifrontozygomatic distances of 92.0 + / - 5.14 mm (mean + /SD), which closely matched the post-operative results of 92.7 + / - 6.02 mm (mean + / - SD); (t(d.f. 9) = -0.306, p = 0.77). The fronto-orbital advancement predicted by the DAVE-R method was 11.5 + / - 1.96 mm (mean + / - SD) which was significantly greater than 8.6 + / - 2.94 mm (mean ± SD); (t(d.f. 9) = 3.137, p = 0.01) achieved post-operatively. CONCLUSIONS: We demonstrate that the DAVE-R model provides an objective means of extracting realistic surgical goals in patients undergoing FOAR for trigonocephaly that closely correlates with post-operative outcomes. The normative dural model warrants further study and validation for other forms of craniosynostosis correction.

2.
J Biomed Inform ; 156: 104681, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38960273

RESUMEN

The multimorbidity problem involves the identification and mitigation of adverse interactions that occur when multiple computer interpretable guidelines are applied concurrently to develop a treatment plan for a patient diagnosed with multiple diseases. Solving this problem requires decision support approaches which are difficult to comprehend for physicians. As such, the rationale for treatment plans generated by these approaches needs to be provided. OBJECTIVE: To develop an explainability component for an automated planning-based approach to the multimorbidity problem, and to assess the fidelity and interpretability of generated explanations using a clinical case study. METHODS: The explainability component leverages the task-network model for representing computer interpretable guidelines. It generates post-hoc explanations composed of three aspects that answer why specific clinical actions are in a treatment plan, why specific revisions were applied, and how factors like medication cost, patient's adherence, etc. influence the selection of specific actions. The explainability component is implemented as part of MitPlan, where we revised our planning-based approach to support explainability. We developed an evaluation instrument based on the system causability scale and other vetted surveys to evaluate the fidelity and interpretability of its explanations using a two dimensional comparison study design. RESULTS: The explainability component was implemented for MitPlan and tested in the context of a clinical case study. The fidelity and interpretability of the generated explanations were assessed using a physician-focused evaluation study involving 21 participants from two different specialties and two levels of experience. Results show that explanations provided by the explainability component in MitPlan are of acceptable fidelity and interpretability, and that the clinical justification of the actions in a treatment plan is important to physicians. CONCLUSION: We created an explainability component that enriches an automated planning-based approach to solving the multimorbidity problem with meaningful explanations for actions in a treatment plan. This component relies on the task-network model to represent computer interpretable guidelines and as such can be ported to other approaches that also use the task-network model representation. Our evaluation study demonstrated that explanations that support a physician's understanding of the clinical reasons for the actions in a treatment plan are useful and important.


Asunto(s)
Multimorbilidad , Humanos , Sistemas de Apoyo a Decisiones Clínicas , Planificación de Atención al Paciente
3.
Radiother Oncol ; 196: 110308, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38677330

RESUMEN

AIM: To validate a fully-automated lexicographic optimization-planning system (mCycle, Elekta) for single-(SL) and multiple-(ML, up to 4 metastases) lesions in intracranial stereotactic radiosurgery (SRS, 21 Gy, single fraction). METHODS: A pre-determined priority list, Wish-List (WL), represents a dialogue between planner and clinician, establishing strict constraints and pursuing objectives. In order to satisfy the clinical protocol without manual intervention, four patients were required to tweak and fine-tune each WL (SLp, MLp) for coplanar arcs. Thirty-five testing plans (20 SLp, 15 MLp) were automatically re-planned (mCP). Automatic and manual plans were compared including dose constraints, conformality, modulation complexity score (MCS), delivery time, and local gamma analysis (2%/2 mm). To ensure plan clinical acceptability, two radiation oncologists conducted an independent blind plan choice. RESULTS: Each WL-tuning took 3 days. Estimated median manual plans and mCP calculation time were 8 and 3 h, respectively. Significant increases in SLp and MLp target coverage and conformity were registered. mCP showed a not significant and clinically acceptable higher median brain V12Gy. SLp registered a -5.8% MU decrease with comparable median delivery time (MP 2.0 min, mCP 1.9 min) while MLp showed a +9.8% MU increase and longer delivery time (MP 3.5 min, mCP 4.4 min). mCP MCS resulted significantly higher without affecting gamma passing rates. At blind choice, mCP were preferred in the majority of cases. CONCLUSIONS: Lexicographic optimization produced acceptable SRS plans with coplanar arcs significantly reducing the overall planning time in cases with up to 4 brain metastases. These planning improvements suggest further investigations by setting high-quality non-coplanar arc plans as a reference.


Asunto(s)
Neoplasias Encefálicas , Radiocirugia , Planificación de la Radioterapia Asistida por Computador , Humanos , Radiocirugia/métodos , Neoplasias Encefálicas/secundario , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/diagnóstico por imagen , Planificación de la Radioterapia Asistida por Computador/métodos , Dosificación Radioterapéutica
4.
J Appl Clin Med Phys ; 25(5): e14361, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38642406

RESUMEN

PURPOSES: This study aimed to develop and validate algorithms for automating intensity modulated radiation therapy (IMRT) planning in breast cancer patients, with a focus on patient anatomical characteristics. MATERIAL AND METHODS: We retrospectively selected 400 breast cancer patients without lymph node involvement for automated treatment planning. Automation was achieved using the Eclipse Scripting Application Programming Interface (ESAPI) integrated into the Eclipse Treatment Planning System. We employed three beam insertion geometries and three optimization strategies, resulting in 3600 plans, each delivering a 40.05 Gy dose in 15 fractions. Gantry angles in the tangent fields were selected based on a criterion involving the minimum intersection area between the Planning Target Volume (PTV) and the ipsilateral lung in the Beam's Eye View projection. ESAPI was also used to gather patient anatomical data, serving as input for Random Forest models to select the optimal plan. The Random Forest classification considered both beam insertion geometry and optimization strategy. Dosimetric data were evaluated in accordance with the Radiation Therapy Oncology Group (RTOG) 1005 protocol. RESULTS: Overall, all approaches generated high-quality plans, with approximately 94% meeting the acceptable dose criteria for organs at risk and/or target coverage as defined by RTOG guidelines. Average automated plan generation time ranged from 6 min and 37 s to 9 min and 22 s, with the mean time increasing with additional fields. The Random Forest approach did not successfully enable automatic planning strategy selection. Instead, our automated planning system allows users to choose from the tested geometry and strategy options. CONCLUSIONS: Although our attempt to correlate patient anatomical features with planning strategy using machine learning tools was unsuccessful, the resulting dosimetric outcomes proved satisfactory. Our algorithm consistently produced high-quality plans, offering significant time and efficiency advantages.


Asunto(s)
Algoritmos , Neoplasias de la Mama , Órganos en Riesgo , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada , Humanos , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Femenino , Neoplasias de la Mama/radioterapia , Órganos en Riesgo/efectos de la radiación , Estudios Retrospectivos , Automatización , Pronóstico
5.
Math Biosci Eng ; 21(1): 1058-1081, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38303454

RESUMEN

In this study, a car transfer planning system for parking lots was designed based on reinforcement learning. The car transfer planning system for parking lots is an intelligent parking management system that is designed by using reinforcement learning techniques. The system features autonomous decision-making, intelligent path planning and efficient resource utilization. And the problem is solved by constructing a Markov decision process and using a dynamic planning-based reinforcement learning algorithm. The system has the advantage of looking to the future and using reinforcement learning to maximize its expected returns. And this is in contrast to manual transfer planning which relies on traditional thinking. In the context of this paper on parking lots, the states of the two locations form a finite set. The system ultimately seeks to find a strategy that is beneficial to the long-term development of the operation. It aims to prioritize strategies that have positive impacts in the future, rather than those that are focused solely on short-term benefits. To evaluate strategies, as its basis the system relies on the expected return of a state from now to the future. This approach allows for a more comprehensive assessment of the potential outcomes and ensures the selection of strategies that align with long-term goals. Experimental results show that the system has high performance and robustness in the area of car transfer planning for parking lots. By using reinforcement learning techniques, parking lot management systems can make autonomous decisions and plan optimal paths to achieve efficient resource utilization and reduce parking time.

6.
Phys Imaging Radiat Oncol ; 29: 100547, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38390589

RESUMEN

Background and Purpose: The lack of dedicated tools in commercial planning systems currently restricts efficient review and planning for re-irradiation. The aim of this study was to develop an automated re-irradiation planning framework based on cumulative doses. Materials and Methods: We performed a retrospective study of 14 patients who received spine SBRT re-irradiation near a previously irradiated treatment site. A fully-automated workflow, DART (Dose Accumulation-based Re-irradiation Tool), was implemented within Eclipse by leveraging a combination of a dose accumulation script and a proprietary automated optimization algorithm. First, we converted the prior treatment dose into equivalent dose in 2 Gy fractions (EQD2) and mapped it to the current anatomy, utilizing deformable image registration. Subsequently, the intersection of EQD2 isodose lines with relevant organs at risk defines a series of optimization structures. During plan optimization, the residual allowable dose at a specified tissue tolerance was treated as a hard constraint. Results: All DART plans met institutional physical and cumulative constraints and passed plan checks by qualified medical physicists. DART demonstrated significant improvements in target coverage over clinical plans, with an average increase in PTV D99% and V100% of 2.3 Gy [range -0.3-7.7 Gy] and 3.4 % [range -0.4 %-7.6 %] (p < 0.01, paired t-test), respectively. Moreover, high-dose spillage (>105 %) outside the PTV was reduced by up to 7 cm3. The homogeneity index for DART plans was improved by 19 % (p < 0.001). Conclusions: DART provides a powerful framework to achieve more tailored re-irradiation plans by accounting for dose distributions from the previous treatments. The superior plan quality could improve the therapeutic ratio for re-irradiation patients.

7.
Biomed Phys Eng Express ; 10(2)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38364285

RESUMEN

Objective.Automated Stereotactic Radiosurgery (SRS) planning solutions improve clinical efficiency and reduce treatment plan variability. Available commercial solutions employ a template-based strategy that may not be optimal for all SRS patients. This study compares a novel beam angle optimized Volumetric Modulated Arc Therapy (VMAT) planning solution for multi-metastatic SRS to the commercial solution HyperArc.Approach.Stereotactic Optimized Automated Radiotherapy (SOAR) performs automated plan creation by combining collision prediction, beam angle optimization, and dose optimization to produce individualized high-quality SRS plans using Eclipse Scripting. In this retrospective study 50 patients were planned using SOAR and HyperArc. Assessed dose metrics included the Conformity Index (CI), Gradient Index (GI), and doses to organs-at-risk. Complexity metrics evaluated the modulation, gantry speed, and dose rate complexity. Plan dosimetric quality, and complexity were compared using double-sided Wilcoxon signed rank tests (α= 0.05) adjusted for multiple comparisons.Main Results.The median target CI was 0.82 with SOAR and 0.79 with HyperArc (p < .001). Median GI was 1.85 for SOAR and 1.68 for HyperArc (p < .001). The median V12Gy normal brain volume for SOAR and HyperArc were 7.76 cm3and 7.47 cm3respectively. Median doses to the eyes, lens, optic nerves, and optic chiasm were statistically significant favoring SOAR. The SOAR algorithm scored lower for all complexity metrics assessed.Significance.In-house developed automated planning solutions are a viable alternative to commercial solutions. SOAR designs high-quality patient-specific SRS plans with a greater degree of versatility than template-based methods.


Asunto(s)
Radiocirugia , Humanos , Dosificación Radioterapéutica , Radiocirugia/métodos , Estudios Retrospectivos , Planificación de la Radioterapia Asistida por Computador/métodos , Encéfalo
8.
Appl Intell (Dordr) ; 54(1): 470-489, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38225993

RESUMEN

Goal Recognition is the task of discerning the intended goal that an agent aims to achieve, given a set of goal hypotheses, a domain model, and a sequence of observations (i.e., a sample of the plan executed in the environment). Existing approaches assume that goal hypotheses comprise a single conjunctive formula over a single final state and that the environment dynamics are deterministic, preventing the recognition of temporally extended goals in more complex settings. In this paper, we expand goal recognition to temporally extended goals in Fully Observable Non-Deterministic (fond) planning domain models, focusing on goals on finite traces expressed in Linear Temporal Logic (ltlf) and Pure-Past Linear Temporal Logic (ppltl). We develop the first approach capable of recognizing goals in such settings and evaluate it using different ltlf and ppltl goals over six fond planning domain models. Empirical results show that our approach is accurate in recognizing temporally extended goals in different recognition settings.

9.
J Appl Clin Med Phys ; 25(2): e14168, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37798910

RESUMEN

PURPOSE: Knowledge-based planning (KBP) aims to automate and standardize treatment planning. New KBP users are faced with many questions: How much does model size matter, and are multiple models needed to accommodate specific physician preferences? In this study, six head-and-neck KBP models were trained to address these questions. METHODS: The six models differed in training size and plan composition: The KBPFull (n = 203 plans), KBP101 (n = 101), KBP50 (n = 50), and KBP25 (n = 25) were trained with plans from two head-and-neck physicians. KBPA and KBPB each contained n = 101 plans from only one physician, respectively. An independent set of 39 patients treated to 6000-7000 cGy by a third physician was re-planned with all KBP models for validation. Standard head-and-neck dosimetric parameters were used to compare resulting plans. KBPFull plans were compared to the clinical plans to evaluate overall model quality. Additionally, clinical and KBPFull plans were presented to another physician for blind review. Dosimetric comparison of KBPFull against KBP101 , KBP50 , and KBP25 investigated the effect of model size. Finally, KBPA versus KBPB tested whether training KBP models on plans from one physician only influences the resulting output. Dosimetric differences were tested for significance using a paired t-test (p < 0.05). RESULTS: Compared to manual plans, KBPFull significantly increased PTV Low D95% and left parotid mean dose but decreased dose cochlea, constrictors, and larynx. The physician preferred the KBPFull plan over the manual plan in 20/39 cases. Dosimetric differences between KBPFull , KBP101 , KBP50 , and KBP25 plans did not exceed 187 cGy on aggregate, except for the cochlea. Further, average differences between KBPA and KBPB were below 110 cGy. CONCLUSIONS: Overall, all models were shown to produce high-quality plans. Differences between model outputs were small compared to the prescription. This indicates only small improvements when increasing model size and minimal influence of the physician when choosing treatment plans for training head-and-neck KBP models.


Asunto(s)
Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada , Humanos , Planificación de la Radioterapia Asistida por Computador/métodos , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/métodos , Bases del Conocimiento , Radiometría , Órganos en Riesgo
10.
Radiat Oncol ; 18(1): 176, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37904150

RESUMEN

BACKGROUND: This study aimed to evaluate an a-priori multicriteria plan optimization algorithm (mCycle) for locally advanced breast cancer radiation therapy (RT) by comparing automatically generated VMAT (Volumetric Modulated Arc Therapy) plans (AP-VMAT) with manual clinical Helical Tomotherapy (HT) plans. METHODS: The study included 25 patients who received postoperative RT using HT. The patient cohort had diverse target selections, including both left and right breast/chest wall (CW) and III-IV node, with or without internal mammary node (IMN) and Simultaneous Integrated Boost (SIB). The Planning Target Volume (PTV) was obtained by applying a 5 mm isotropic expansion to the CTV (Clinical Target Volume), with a 5 mm clip from the skin. Comparisons of dosimetric parameters and delivery/planning times were conducted. Dosimetric verification of the AP-VMAT plans was performed. RESULTS: The study showed statistically significant improvements in AP-VMAT plans compared to HT for OARs (Organs At Risk) mean dose, except for the heart and ipsilateral lung. No significant differences in V95% were observed for PTV breast/CW and PTV III-IV, while increased coverage (higher V95%) was seen for PTV IMN in AP-VMAT plans. HT plans exhibited smaller values of PTV V105% for breast/CW and III-IV, with no differences in PTV IMN and boost. HT had an average (± standard deviation) delivery time of (17 ± 8) minutes, while AP-VMAT took (3 ± 1) minutes. The average γ passing rate for AP-VMAT plans was 97%±1%. Planning times reduced from an average of 6 h for HT to about 2 min for AP-VMAT. CONCLUSIONS: Comparing AP-VMAT plans with clinical HT plans showed similar or improved quality. The implementation of mCycle demonstrated successful automation of the planning process for VMAT treatment of locally advanced breast cancer, significantly reducing workload.


Asunto(s)
Neoplasias de la Mama , Radioterapia de Intensidad Modulada , Humanos , Femenino , Radioterapia de Intensidad Modulada/métodos , Neoplasias de la Mama/radioterapia , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Radiometría/métodos , Órganos en Riesgo
11.
Radiat Oncol ; 18(1): 147, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37670390

RESUMEN

BACKGROUND: Volumetric modulated arc therapy (VMAT) for locally advanced rectal cancer (LARC) has emerged as a promising technique, but the planning process can be time-consuming and dependent on planner expertise. We aimed to develop a fully automated VMAT planning program for LARC and evaluate its feasibility and efficiency. METHODS: A total of 26 LARC patients who received VMAT treatment and the computed tomography (CT) scans were included in this study. Clinical target volumes and organs at risk were contoured by radiation oncologists. The automatic planning program, developed within the Raystation treatment planning system, used scripting capabilities and a Python environment to automate the entire planning process. The automated VMAT plan (auto-VMAT) was created by our automated planning program with the 26 CT scans used in the manual VMAT plan (manual-VMAT) and their regions of interests. Dosimetric parameters and time efficiency were compared between the auto-VMAT and the manual-VMAT created by experienced planners. All results were analyzed using the Wilcoxon signed-rank sum test. RESULTS: The auto-VMAT achieved comparable coverage of the target volume while demonstrating improved dose conformity and uniformity compared with the manual-VMAT. V30 and V40 in the small bowel were significantly lower in the auto-VMAT compared with those in the manual-VMAT (p < 0.001 and < 0.001, respectively); the mean dose of the bladder was also significantly reduced in the auto-VMAT (p < 0.001). Furthermore, auto-VMAT plans were consistently generated with less variability in quality. In terms of efficiency, the auto-VMAT markedly reduced the time required for planning and expedited plan approval, with 93% of cases approved within one day. CONCLUSION: We developed a fully automatic feasible VMAT plan creation program for LARC. The auto-VMAT maintained target coverage while providing organs at risk dose reduction. The developed program dramatically reduced the time to approval.


Asunto(s)
Neoplasias Primarias Secundarias , Radioterapia de Intensidad Modulada , Neoplasias del Recto , Humanos , Estudios de Factibilidad , Órganos en Riesgo
12.
Discov Oncol ; 14(1): 180, 2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37775613

RESUMEN

BACKGROUND: To investigate the capability of a not-yet commercially available fully automated lexicographic optimization (LO) planning algorithm, called mCycle (Elekta AB, Stockholm, Sweden), to further improve the plan quality of an already-validated Wish List (WL) pushing on the organs-at-risk (OAR) sparing without compromising target coverage and plan delivery accuracy. MATERIAL AND METHODS: Twenty-four mono-institutional consecutive cervical cancer Volumetric-Modulated Arc Therapy (VMAT) plans delivered between November 2019 and April 2022 (50 Gy/25 fractions) have been retrospectively selected. In mCycle the LO planning algorithm was combined with the a-priori multi-criterial optimization (MCO). Two versions of WL have been defined to reproduce manual plans (WL01), and to improve the OAR sparing without affecting minimum target coverage and plan delivery accuracy (WL02). Robust WLs have been tuned using a subset of 4 randomly selected patients. The remaining plans have been automatically re-planned by using the designed WLs. Manual plans (MP) and mCycle plans (mCP01 and mCP02) were compared in terms of dose distributions, complexity, delivery accuracy, and clinical acceptability. Two senior physicians independently performed a blind clinical evaluation, ranking the three competing plans. Furthermore, a previous defined global quality index has been used to gather into a single score the plan quality evaluation. RESULTS: The WL tweaking requests 5 and 3 working days for the WL01 and the WL02, respectively. The re-planning took in both cases 3 working days. mCP01 best performed in terms of target coverage (PTV V95% (%): MP 98.0 [95.6-99.3], mCP01 99.2 [89.7-99.9], mCP02 96.9 [89.4-99.5]), while mCP02 showed a large OAR sparing improvement, especially in the rectum parameters (e.g., Rectum D50% (Gy): MP 41.7 [30.2-47.0], mCP01 40.3 [31.4-45.8], mCP02 32.6 [26.9-42.6]). An increase in plan complexity has been registered in mCPs without affecting plan delivery accuracy. In the blind comparisons, all automated plans were considered clinically acceptable, and mCPs were preferred over MP in 90% of cases. Globally, automated plans registered a plan quality score at least comparable to MP. CONCLUSIONS: This study showed the flexibility of the Lexicographic approach in creating more demanding Wish Lists able to potentially minimize toxicities in RT plans.

13.
Phys Imaging Radiat Oncol ; 28: 100488, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37694264

RESUMEN

Background and Purpose: The association between dose to selected bladder and rectum symptom-related sub-regions (SRS) and late toxicity after prostate cancer radiotherapy has been evidenced by voxel-wise analyses. The aim of the current study was to explore the feasibility of combining knowledge-based (KB) and multi-criteria optimization (MCO) to spare SRSs without compromising planning target volume (PTV) dose delivery, including pelvic-node irradiation. Materials and Methods: Forty-five previously treated patients (74.2 Gy/28fr) were selected and SRSs (in the bladder, associated with late dysuria/hematuria/retention; in the rectum, associated with bleeding) were generated using deformable registration. A KB model was used to obtain clinically suitable plans (KB-plan). KB-plans were further optimized using MCO, aiming to reduce dose to the SRSs while safeguarding target dose coverage, homogeneity and avoiding worsening dose volume histograms of the whole bladder, rectum and other organs at risk. The resulting MCO-generated plans were examined to identify the best-compromise plan (KB + MCO-plan). Results: The mean SRS dose decreased in almost all patients for each SRS. D1% also decreased in the large majority, less frequently for dysuria/bleeding SRS. Mean differences were statistically significant (p < 0.05) and ranged between 1.3 and 2.2 Gy with maximum reduction of mean dose up to 3-5 Gy for the four SRSs. The better sparing of SRSs was obtained without compromising PTVs coverage. Conclusions: Selectively sparing SRSs without compromising PTV coverage is feasible and has the potential to reduce toxicities in prostate cancer radiotherapy. Further investigation to better quantify the expected risk reduction of late toxicities is warranted.

14.
Eur J Med Res ; 28(1): 309, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37653551

RESUMEN

OBJECTIVE: The aim of this study was to investigate the feasibility of VMAT library-derived model transfer in the prediction of IMRT plans by dosimetry comparison among with three groups of IMRT plans: two groups of automatic IMRT plans generated by the knowledge-based the volumetric modulated arc therapy (VMAT) model and intensity-modulated radiation therapy (IMRT) model and one group of manual IMRT plans. METHODS: 52 prostate cancer patients who had completed radiotherapy were selected and randomly divided into 2 groups with 40 and 12 separately. Then both VMAT and IMRT plans were manually designed for all patients. The total plans in the group with 40 cases as training datasets were added to the knowledge-based planning (KBP) models for learning and finally obtained VMAT and IMRT training models. Another 12 cases were selected as the validation group to be used to generated auto IMRT plans by KBP VMAT and IMRT models. At last, the radiotherapy plans from three groups were obtained: the automated IMRT plan (V-IMRT) predicted by the VMAT model, the automated IMRT plan (I-IMRT) predicted by the IMRT model and the manual IMRT plan (M-IMRT) designed before. The dosimetric parameters of planning target volume (PTV) and organ at risks (OARs) as well as the time parameters (monitor unit, MU) were statistically analyzed. RESULTS: The dose limit of all plans in the training datasets met the clinical requirements. Compared with the training plans added to VMAT model, the dosimetry parameters have no statistical differences in PTV (P > 0.05); the dose of X% volume (Dx%) with D25% and D35% in rectal and the maximum dose (Dmax) in the right femoral head were lower (P = 0.04, P = 0.01, P = 0.00) while D50% in rectal was higher (< 0.05) in the IMRT model plans. In the 12 validation cases, both automated plans showed better dose distribution compared with the M-IMRT plan: the Dmax of PTV in the I-IMRT plans and the dose in volume of interesting (VOI) of bladder and bilateral femoral heads were lower with a statistically significant difference (P < 0.05). Compared with the I-IMRT plans, dosimetric parameters in PTV and VOI of all OARs had no statistically significant differences (P > 0.05), but the Dmax in left femoral heard and D15% in the right femoral head were lower and have significant differences (P < 0.05). Furthermore, the low-dose regions, which was defined as all volumes outside of the PTV (RV) with the statistical parameters of mean dose (Dmean), the volume of covering more than 5 Gy dose (V5Gy), and also the time parameter (MU) required to perform the plan were considered. The results showed that Dmean in V-IMRT was smaller than that in the I-IMRT plan (P = 0.02) and there was no significant difference in V5Gy and MU (P > 0.05). CONCLUSION: Compared with the manual plan, the IMRT plans generated by the KBP models had a significant advantage in dose control of both OARs and PTV. Compared to the I-IMRT plans, the V-IMRT plans was not only without significant disadvantages, but it also achieved slightly better control of the low-dose region, which meet the clinical requirements and can used in the clinical treatment. This study demonstrates that it is feasible to transfer the KBP VMAT model in the prediction of IMRT plans.


Asunto(s)
Neoplasias de la Próstata , Radioterapia de Intensidad Modulada , Masculino , Humanos , Fémur , Conocimiento , Neoplasias de la Próstata/radioterapia
15.
Zhongguo Yi Liao Qi Xie Za Zhi ; 47(4): 365-369, 2023 Jul 30.
Artículo en Chino | MEDLINE | ID: mdl-37580284

RESUMEN

OBJECTIVE: To study the feasibility and potential benefits of beam angle optimization (BAO) to automated planning in liver cancer. METHODS: An approach of beam angle sampling is proposed to implement BAO along with the module Auto-planning in treatment planning system (TPS) Pinnacle. An in-house developed plan quality metric (PQM) is taken as the preferred evaluating method during the sampling. The process is driven automatically by in-house made Pinnacle scripts both in sampling and scoring. In addition, dosimetry analysis and physician's opinion are also performed as the supplementary and compared with the result of PQM. RESULTS: It is revealed by the numerical analysis of PQM scores that only 15% patients whose superior trials evaluated by PQM are also the initial trials. Gantry optimization can bring benefit to plan quality along with auto-planning in liver cancer. Similar results are provided by both dose comparison and physician's opinion. CONCLUSIONS: It is possible to introduce a full automated approach of beam angle optimization to automated planning process. The advantages of this procedure can be observed both in numerical analysis and physician's opinion.


Asunto(s)
Neoplasias Hepáticas , Radioterapia de Intensidad Modulada , Humanos , Planificación de la Radioterapia Asistida por Computador/métodos , Estudios de Factibilidad , Radiometría/métodos , Neoplasias Hepáticas/radioterapia , Radioterapia de Intensidad Modulada/métodos , Dosificación Radioterapéutica
16.
Phys Med Biol ; 68(17)2023 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-37524087

RESUMEN

Objective. In conventional radiotherapy, a single treatment plan is generated pre-treatment, and delivered in daily fractions. In this study, we propose to generate different treatment plans for all fractions ('Per-fraction' planning) to reduce cumulative organs at risk (OAR) doses. Per-fraction planning was compared to the 'Conventional' single-plan approach for non-coplanar 4 × 9.5 Gy prostate stereotactic body radiation therapy (SBRT).Approach. An in-house application for fully automated, non-coplanar multi-criterial treatment planning with integrated beam angle and fluence optimization was used for plan generations. For the Conventional approach, a single 12-beam non-coplanar IMRT plan with individualized beam angles was generated for each of the 20 included patients. In Per-fraction planning, four fraction plans were generated for each patient. For each fraction, a different set of patient-specific 12-beam configurations could be automatically selected. Per-fraction plans were sequentially generated by adding dose to already generated fraction plan(s). For each fraction, the cumulative- and fraction dose were simultaneously optimized, allowing some minor constraint violations in fraction doses, but not in cumulative.Main results. In the Per-fraction approach, on average 32.9 ± 3.1 [29;39] unique beams per patient were used. PTV doses in the separate Per-fraction plans were acceptable and highly similar to those in Conventional plans, while also fulfilling all OAR hard constraints. When comparing total cumulative doses, Per-fraction planning showed improved bladder sparing for all patients with reductions in Dmean of 22.6% (p= 0.0001) and in D1cc of 2.0% (p= 0.0001), reductions in patient volumes receiving 30% and 50% of the prescribed dose of 54.7% and 6.3%, respectively, and a 3.1% lower rectum Dmean (p= 0.007). Rectum D1cc was 4.1% higher (p= 0.0001) and Urethra dose was similar.Significance. In this proof-of-concept paper, Per-fraction planning resulted in several dose improvements in healthy tissues compared to the Conventional single-plan approach, for similar PTV dose. By keeping the number of beams per fraction the same as in Conventional planning, reported dosimetric improvements could be obtained without increase in fraction durations. Further research is needed to explore the full potential of the Per-fraction planning approach.


Asunto(s)
Radiocirugia , Radioterapia de Intensidad Modulada , Masculino , Humanos , Planificación de la Radioterapia Asistida por Computador/métodos , Radiocirugia/métodos , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/métodos , Radiometría , Órganos en Riesgo
17.
Phys Med Biol ; 68(15)2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37343584

RESUMEN

Objective.To develop and clinically implement a fully automated treatment planning system (TPS) for volumetric modulated arc therapy (VMAT).Approach.We solve two constrained optimization problems sequentially. The tumor coverage is maximized at the first step while respecting all maximum/mean dose clinical criteria. The second step further reduces the dose at the surrounding organs-at-risk as much as possible. Our algorithm optimizes the machine parameters (leaf positions and monitor units) directly and the resulting mathematical non-convexity is handled using thesequential convex programmingby solving a series of convex approximation problems. We directly integrate two novel convex surrogate metrics to improve plan delivery efficiency and reduce plan complexity by promoting aperture shape regularity and neighboring aperture similarity. The entire workflow is automated using the Eclipse TPS application program interface scripting and provided to users as a plug-in, requiring the users to solely provide the contours and their preferred arcs. Our program provides the optimal machine parameters and does not utilize the Eclipse optimization engine, however, it utilizes the Eclipse final dose calculation engine. We have tested our program on 60 patients of different disease sites and prescriptions for stereotactic body radiotherapy (paraspinal (24 Gy × 1, 9 Gy × 3), oligometastis (9 Gy × 3), lung (18 Gy × 3, 12 Gy × 4)) and retrospectively compared the automated plans with the manual plans used for treatment. The program is currently deployed in our clinic and being used in our daily clinical routine to treat patients.Main results.The automated plans found dosimetrically comparable or superior to the manual plans. For paraspinal (24 Gy × 1), the automated plans especially improved tumor coverage (the average PTV (Planning Target Volume) 95% from 96% to 98% and CTV100% from 95% to 97%) and homogeneity (the average PTV maximum dose from 120% to 116%). For other sites/prescriptions, the automated plans especially improved the duty cycle (23%-39.4%).Significance.This work proposes a fully automated approach to the mathematically challenging VMAT problem. It also shows how the capabilities of the existing (Food and Drug Administration)FDA-approved commercial TPS can be enhanced using an in-house developed optimization algorithm that completely replaces the TPS optimization engine. The code and pertained models along with a sample dataset will be released on our ECHO-VMAT GitHub (https://github.com/PortPy-Project/ECHO-VMAT).


Asunto(s)
Neoplasias , Radioterapia de Intensidad Modulada , Humanos , Radioterapia de Intensidad Modulada/métodos , Estudios Retrospectivos , Planificación de la Radioterapia Asistida por Computador/métodos , Dosificación Radioterapéutica , Neoplasias/radioterapia , Algoritmos , Órganos en Riesgo
18.
Int J Comput Assist Radiol Surg ; 18(7): 1151-1157, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37160582

RESUMEN

PURPOSE: Computer-assisted surgical planning methods help to reduce the risks and costs in transpedicular fixation surgeries. However, most methods do not consider the speed and versatility of the planning as factors that improve its overall performance. In this work, we propose a method able to generate surgical plans in minimal time, within the required safety margins and accounting for the surgeon's personal preferences. METHODS: The proposed planning module takes as input a CT image of the patient, initial-guess insertion trajectories provided by the surgeon and a reduced set of parameters, delivering optimal screw sizes and trajectories in a very reduced time frame. RESULTS: The planning results were validated with quantitative metrics and feedback from surgeons. The whole planning pipeline can be executed at an estimated time of less than 1 min per vertebra. The surgeons remarked that the proposed trajectories remained in the safe area of the vertebra, and a Gertzbein-Robbins ranking of A or B was obtained for 95 % of them. CONCLUSIONS: The planning algorithm is safe and fast enough to perform in both pre-operative and intra-operative scenarios. Future steps will include the improvement of the preprocessing efficiency, as well as consideration of the spine's biomechanics and intervertebral rod constraints to improve the performance of the optimisation algorithm.


Asunto(s)
Tornillos Pediculares , Fusión Vertebral , Cirugía Asistida por Computador , Humanos , Tomografía Computarizada por Rayos X/métodos , Cirugía Asistida por Computador/métodos , Columna Vertebral/cirugía , Algoritmos , Fusión Vertebral/métodos
19.
Artif Intell Med ; 140: 102550, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37210156

RESUMEN

Clinical practice guidelines (CPGs) are patient management tools that synthesize medical knowledge into an actionable format. CPGs are disease specific with limited applicability to the management of complex patients suffering from multimorbidity. For the management of these patients, CPGs need to be augmented with secondary medical knowledge coming from a variety of knowledge repositories. The operationalization of this knowledge is key to increasing CPGs' uptake in clinical practice. In this work, we propose an approach to operationalizing secondary medical knowledge inspired by graph rewriting. We assume that the CPGs can be represented as task network models, and provide an approach for representing and applying codified medical knowledge to a specific patient encounter. We formally define revisions that model and mitigate adverse interactions between CPGs and we use a vocabulary of terms to instantiate these revisions. We demonstrate the application of our approach using synthetic and clinical examples. We conclude by identifying areas for future work with the vision of developing a theory of mitigation that will facilitate the development of comprehensive decision support for the management of multimorbid patients.


Asunto(s)
Multimorbilidad , Guías de Práctica Clínica como Asunto , Humanos , Interacciones Farmacológicas
20.
Phys Med ; 109: 102586, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37062102

RESUMEN

PURPOSE: To develop an automated planning approach in Raystation and evaluate its feasibility in multiple clinical application scenarios. METHODS: An automated planning approach (Ruiplan) was developed by using the scripting platform of Raystation. Radiotherapy plans were re-generated both automatically by using Ruiplan and manually. 60 patients, including 20 patients with nasopharyngeal carcinoma (NPC), 20 patients with esophageal carcinoma (ESCA), and 20 patients with rectal cancer (RECA) were retrospectively enrolled in this study. Dosimetric and planning efficiency parameters of the automated plans (APs) and manual plans (MPs) were statistically compared. RESULTS: For target coverage, APs yielded superior dose homogeneity in NPC and RECA, while maintaining similar dose conformity for all studied anatomical sites. For OARs sparing, APs led to significant improvement in most OARs sparing. The average planning time required for APs was reduced by more than 43% compared with MPs. Despite the increased monitor units (MUs) for NPC and RECA in APs, the beam-on time of APs and MPs had no statistical difference. Both the MUs and beam-on time of APs were significantly lower than that of MPs in ESCA. CONCLUSIONS: This study developed a new automated planning approach, Ruiplan, it is feasible for multi-treatment techniques and multi-anatomical sites cancer treatment planning. The dose distributions of targets and OARs in the APs were similar or better than those in the MPs, and the planning time of APs showed a sharp reduction compared with the MPs. Thus, Ruiplan provides a promising approach for realizing automated treatment planning in the future.


Asunto(s)
Carcinoma , Neoplasias Esofágicas , Neoplasias Nasofaríngeas , Radioterapia de Intensidad Modulada , Neoplasias del Recto , Humanos , Estudios Retrospectivos , Radioterapia de Intensidad Modulada/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Dosificación Radioterapéutica , Carcinoma Nasofaríngeo/radioterapia , Neoplasias Nasofaríngeas/radioterapia , Órganos en Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA