Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neural Netw ; 169: 637-659, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37972509

RESUMEN

Cancer is a condition in which abnormal cells uncontrollably split and damage the body tissues. Hence, detecting cancer at an early stage is highly essential. Currently, medical images play an indispensable role in detecting various cancers; however, manual interpretation of these images by radiologists is observer-dependent, time-consuming, and tedious. An automatic decision-making process is thus an essential need for cancer detection and diagnosis. This paper presents a comprehensive survey on automated cancer detection in various human body organs, namely, the breast, lung, liver, prostate, brain, skin, and colon, using convolutional neural networks (CNN) and medical imaging techniques. It also includes a brief discussion about deep learning based on state-of-the-art cancer detection methods, their outcomes, and the possible medical imaging data used. Eventually, the description of the dataset used for cancer detection, the limitations of the existing solutions, future trends, and challenges in this domain are discussed. The utmost goal of this paper is to provide a piece of comprehensive and insightful information to researchers who have a keen interest in developing CNN-based models for cancer detection.


Asunto(s)
Neoplasias , Redes Neurales de la Computación , Masculino , Humanos , Diagnóstico por Imagen , Encéfalo , Neoplasias/diagnóstico por imagen
2.
J Biomed Inform ; 83: 159-166, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29890313

RESUMEN

Methods based on microarrays (MA), mass spectrometry (MS), and machine learning (ML) algorithms have evolved rapidly in recent years, allowing for early detection of several types of cancer. A pitfall of these approaches, however, is the overfitting of data due to large number of attributes and small number of instances -- a phenomenon known as the 'curse of dimensionality'. A potentially fruitful idea to avoid this drawback is to develop algorithms that combine fast computation with a filtering module for the attributes. The goal of this paper is to propose a statistical strategy to initiate the hidden nodes of a single-hidden layer feedforward neural network (SLFN) by using both the knowledge embedded in data and a filtering mechanism for attribute relevance. In order to attest its feasibility, the proposed model has been tested on five publicly available high-dimensional datasets: breast, lung, colon, and ovarian cancer regarding gene expression and proteomic spectra provided by cDNA arrays, DNA microarray, and MS. The novel algorithm, called adaptive SLFN (aSLFN), has been compared with four major classification algorithms: traditional ELM, radial basis function network (RBF), single-hidden layer feedforward neural network trained by backpropagation algorithm (BP-SLFN), and support vector-machine (SVM). Experimental results showed that the classification performance of aSLFN is competitive with the comparison models.


Asunto(s)
Algoritmos , Neoplasias/diagnóstico , Redes Neurales de la Computación , Proteómica , Expresión Génica , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Máquina de Vectores de Soporte
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA