Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 299
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39291428

RESUMEN

Hematological and neurological expressed 1 (HN1) is homolog of Jupiter protein from Drosophila melanogaster where it functions as a microtubule-associated protein. However, in mammalian cells, HN1 is associated partially with y-tubulin in centrosomes, Stathmin for stabilizing microtubules, and Cdh1 for regulating Cyclin B1 for cell cycle regulation. Moreover, HN1 overexpression leads to early mitotic exit as well. Other molecular functions and interactions of HN1 are not clear yet. Here, based on our previous analysis where HN1 was shown to cluster supernumerary centrosomes and maintain mitotic spindle assembly, we further investigated the role of HN1 in centrosome maintenance and mitotic fidelity in PC-3 prostate and MDA-MB231 mammary cancer cell lines. The maturation-associated roles of HN1 during cell division by examining the AuroraA-PLK1 axis involving a plus end kinesin, Eg5 as well as pericentriolar matrix protein (PCM1) as components of centrosomes were established. We found that HN1 co-localized to centrioles with Eg5 and Aurora A to suppress aberrant spindle formation to ensure the fidelity of centriole/centrosome duplication when overexpressed. Consistently, depleting the HN1 expression using siRNA or shRNA resulted in an increased number of dysregulated mitotic spindle structures, where Aurora A as well as PLK1 co-localizations with Eg5 and PCM1 were disrupted. Further, the PLK1 and Aurora A kinase's phosphorylations also decreased, confirming the hypothesis that the cells struggle in mitotic progression, display nuclear and cytokinetic abnormalities with supernumerary but immature mononucleated centrosomes. In summary, we described the role of HN1 in centrosome nucleation/maturation in PLK1-Eg5 axis and concomitant mitotic spindle formation in human cells.

2.
Front Pharmacol ; 15: 1385598, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38751786

RESUMEN

Prostate cancer (PC) is an aggressive cancer that can progress rapidly and eventually become castrate-resistant prostate cancer (CRPC). Stage IV metastatic castrate-resistant prostate cancer (mCRPC) is an incurable late-stage cancer type with a low 5-year overall survival rate. Targeted therapeutics such as antibody-drug conjugates (ADCs) based on high-affinity monoclonal antibodies and potent drugs conjugated via smart linkers are being developed for PC management. Conjugating further with in vitro or in vivo imaging agents, ADCs can be used as antibody-theranostic conjugates (ATCs) for diagnostic and image-guided drug delivery. In this study, we have developed a novel ATC for PSMA (+) PC therapy utilizing (a) anti-PSMA 5D3 mAb, (b) Aurora A kinase inhibitor, MLN8237, and (c) for the first time using tetrazine (Tz) and trans-cyclooctene (TCO) click chemistry-based conjugation linker (CC linker) in ADC development. The resulting 5D3(CC-MLN8237)3.2 was labeled with suitable fluorophores for in vitro and in vivo imaging. The products were characterized by SDS-PAGE, MALDI-TOF, and DLS and evaluated in vitro by optical imaging, flow cytometry, and WST-8 assay for cytotoxicity in PSMA (+/-) cells. Therapeutic efficacy was determined in human PC xenograft mouse models following a designed treatment schedule. After the treatment study animals were euthanized, and toxicological studies, complete blood count (CBC), blood clinical chemistry analysis, and H&E staining of vital organs were conducted to determine side effects and systemic toxicities. The IC50 values of 5D3(CC-MLN8237)3.2-AF488 in PSMA (+) PC3-PIP and PMSA (-) PC3-Flu cells are 8.17 nM and 161.9 nM, respectively. Pure MLN8237 shows 736.9 nM and 873.4 nM IC50 values for PC3-PIP and PC3-Flu cells, respectively. In vivo study in human xenograft mouse models confirmed high therapeutic efficacy of 5D3(CC-MLN8237)3.2-CF750 with significant control of PSMA (+) tumor growth with minimal systemic toxicity in the treated group compared to PSMA (-) treated and untreated groups. Approximately 70% of PSMA (+) PC3-PIP tumors did not exceed the threshold of the tumor size in the surrogate Kaplan-Meyer analysis. The novel ATC successfully controlled the growth of PSMA (+) tumors in preclinical settings with minimal systemic toxicities. The therapeutic efficacy and favorable safety profile of novel 5D3(CC-MLN8237)3.2 ATC demonstrates their potential use as a theranostic against aggressive PC.

3.
Cancers (Basel) ; 16(8)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38672538

RESUMEN

BACKGROUND: This study further evaluated the safety and efficacy of the combination of alisertib and sapanisertib in an expansion cohort of patients, including a subset of patients with refractory pancreatic adenocarcinoma, with further evaluation of the pharmacodynamic characteristics of combination therapy. METHODS: Twenty patients with refractory solid tumors and 11 patients with pancreatic adenocarcinoma were treated at the recommended phase 2 dose of alisertib and sapanisertib. Adverse events and disease response were assessed. Patients in the expansion cohort were treated with a 7-day lead-in of either alisertib or sapanisertib prior to combination therapy, with tumor tissue biopsy and serial functional imaging performed for correlative analysis. RESULTS: Toxicity across treatment groups was overall similar to prior studies. One partial response to treatment was observed in a patient with ER positive breast cancer, and a patient with pancreatic cancer experienced prolonged stable disease. In an additional cohort of pancreatic cancer patients, treatment response was modest. Correlative analysis revealed variability in markers of apoptosis and immune cell infiltrate according to lead-in therapy and response. CONCLUSIONS: Dual targeting of Aurora A kinase and mTOR resulted in marginal clinical benefit in a population of patients with refractory solid tumors, including pancreatic adenocarcinoma, though individual patients experienced significant response to therapy. Correlatives indicate apoptotic response and tumor immune cell infiltrate may affect clinical outcomes.

4.
Med Chem Res ; 33(4): 620-634, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646411

RESUMEN

Isatin (indol-2,3-dione), a secondary metabolite of tryptophan, has been used as the core structure to design several compounds that have been tested and identified as potent inhibitors of apoptosis, potential antitumor agents, anticonvulsants, and antiviral agents. In this work, several analogs of isatin hybrids have been synthesized and characterized, and their activities were established as inhibitors of both Aurora A kinase and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike/host angiotensin-converting enzyme II (ACE2) interactions. Amongst the synthesized isatin hybrids, compounds 6a, 6f, 6g, and 6m exhibited Aurora A kinase inhibitory activities (with IC50 values < 5 µM), with GScore values of -7.9, -7.6, -8.2 and -7.7 kcal/mol, respectively. Compounds 6g and 6i showed activities in blocking SARS-CoV-2 spike/ACE2 binding (with IC50 values in the range < 30 µM), with GScore values of -6.4 and -6.6 kcal/mol, respectively. Compounds 6f, 6g, and 6i were both capable of inhibiting spike/ACE2 binding and blocking Aurora A kinase. Pharmacophore profiling indicated that compound 6g tightly fits Aurora A kinase and SARS-CoV-2 pharmacophores, while 6d fits SARS-CoV-2 and 6l fits Aurora A kinase pharmacophore. This work is a proof of concept that some existing cancer drugs may possess antiviral properties. Molecular modeling showed that the active compound for each protein adopted different binding modes, hence interacting with a different set of amino acid residues in the binding site. The weaker activities against spike/ACE2 could be explained by the small sizes of the ligands that fail to address the important interactions for binding to the ACE2 receptor site.

5.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167116, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38447882

RESUMEN

The Aurora-A kinase (AurkA) and its major regulator TPX2 (Targeting Protein for Xklp2) are key mitotic players frequently co-overexpressed in human cancers, and the link between deregulation of the AurkA/TPX2 complex and tumourigenesis is actively investigated. Chromosomal instability, one of the hallmarks of cancer related to the development of intra-tumour heterogeneity, metastasis and chemo-resistance, has been frequently associated with TPX2-overexpressing tumours. In this study we aimed to investigate the actual contribution to chromosomal instability of deregulating the AurkA/TPX2 complex, by overexpressing it in nontransformed hTERT RPE-1 cells. Our results show that overexpression of both AurkA and TPX2 results in increased AurkA activation and severe mitotic defects, compared to AurkA overexpression alone. We also show that AurkA/TPX2 co-overexpression yields increased aneuploidy in daughter cells and the generation of micronucleated cells. Interestingly, the p53/p21 axis response is impaired in AurkA/TPX2 overexpressing cells subjected to different stimuli; consistently, cells acquire increased ability to proliferate after independent induction of mitotic errors, i.e. following nocodazole treatment. Based on our observation that increased levels of the AurkA/TPX2 complex affect chromosome segregation fidelity and interfere with the activation of a pivotal surveillance mechanism in response to altered cell division, we propose that co-overexpression of AurkA and TPX2 per se represents a condition promoting the generation of a genetically unstable context in nontransformed human cells.


Asunto(s)
Aurora Quinasa A , Proteínas de Ciclo Celular , Humanos , Aurora Quinasa A/genética , Aurora Quinasa A/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteína p53 Supresora de Tumor/genética , Segregación Cromosómica/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Inestabilidad Genómica , Inestabilidad Cromosómica/genética , Cromosomas/metabolismo
6.
Development ; 151(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38488018

RESUMEN

During asymmetric cell division, cell polarity is coordinated with the cell cycle to allow proper inheritance of cell fate determinants and the generation of cellular diversity. In the Caenorhabditis elegans zygote, polarity is governed by evolutionarily conserved Partitioning-defective (PAR) proteins that segregate to opposing cortical domains to specify asymmetric cell fates. Timely establishment of PAR domains requires a cell cycle kinase, Aurora A (AIR-1 in C. elegans). Aurora A depletion by RNAi causes a spectrum of phenotypes including reversed polarity, excess posterior domains and no posterior domain. How depletion of a single kinase can cause seemingly opposite phenotypes remains obscure. Using an auxin-inducible degradation system and drug treatments, we found that AIR-1 regulates polarity differently at different times of the cell cycle. During meiosis I, AIR-1 acts to prevent later formation of bipolar domains, whereas in meiosis II, AIR-1 is necessary to recruit PAR-2 onto the membrane. Together, these data clarify the origin of multiple polarization phenotypes in RNAi experiments and reveal multiple roles of AIR-1 in coordinating PAR protein localization with cell cycle progression.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cigoto/metabolismo , Ciclo Celular/genética , Polaridad Celular/genética , Embrión no Mamífero/metabolismo
7.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167062, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38342416

RESUMEN

Primary cilia are antenna-like organelles that play critical roles in sensing and responding to various signals. Nevertheless, the function of primary cilia in cellular response to ionizing radiation (IR) in tumor cells remains unclear. Here, we show that primary cilia are frequently expressed in tumor cells and tissues. Notably, IR promotes cilia formation and elongation in time- and dose-dependent manners. Mechanistic study shows that the suppression of YAP/Aurora A pathway contributes to IR-induced ciliogenesis, which is diminished by Aurora A overexpression. The ciliated tumor cells undergo senescence but not apoptosis in response to IR and the abrogation of cilia formation is sufficient to elevate the lethal effect of IR. Furthermore, we show that IR-induced ciliogenesis leads to the activation of Hedgehog signaling pathway to drive senescence and resist apoptosis, and its blockage enhances cellular radiosensitivity by switching senescence to apoptosis. In summary, this work shows evidence of primary cilia in coordinating cellular response to IR in tumor cells, which may help to supply a novel sensitizing target to improve the outcome of radiotherapy.


Asunto(s)
Cilios , Proteínas Hedgehog , Apoptosis , Cilios/metabolismo , Proteínas Hedgehog/metabolismo , Radiación Ionizante , Transducción de Señal , Humanos
8.
Chembiochem ; 25(2): e202300649, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-37907395

RESUMEN

Using N-Myc61-89 as a starting template we showcase the systematic use of truncation and maleimide constraining to develop peptidomimetic inhibitors of the N-Myc/Aurora-A protein-protein interaction (PPI); a potential anticancer drug discovery target. The most promising of these - N-Myc73-94-N85C/G89C-mal - is shown to favour a more Aurora-A compliant binding ensemble in comparison to the linear wild-type sequence as observed through fluorescence anisotropy competition assays, circular dichroism (CD) and nuclear magnetic resonance (NMR) experiments. Further in silico investigation of this peptide in its Aurora-A bound state, by molecular dynamics (MD) simulations, imply (i) the bound conformation is more stable as a consequence of the constraint, which likely suppresses dissociation and (ii) the constraint may make further stabilizing interactions with the Aurora-A surface. Taken together this work unveils the first orthosteric N-Myc/Aurora-A inhibitor and provides useful insights on the biophysical properties and thus design of constrained peptides, an attractive therapeutic modality.


Asunto(s)
Peptidomiméticos , Peptidomiméticos/farmacología , Proteína Proto-Oncogénica N-Myc , Ciclización , Péptidos/química , Unión Proteica
9.
Biochem Biophys Res Commun ; 690: 149247, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38000292

RESUMEN

Hepatocellular carcinoma (HCC) is a highly malignant tumor with a global prevalence. In addition to the existing clinical guidelines, the effectiveness of anlotinib and Aurora-A inhibitors in treating HCC has also been demonstrated. However, Anlotinib, as an anti-angiogenesis therapy, has shown significant benefits in clinical trials but is limited by its single-agent treatment and the development of drug resistance. Aurora-A inhibitors are currently being tested in clinical trials but have limited efficacy. Combination therapy may offer clear advantages over monotherapy in this context. METHODS: In this study, we used HCC cell lines to investigate whether the combination of the two drugs could enhance their individual strengths and mitigate their weaknesses, thereby providing greater clinical benefits both in vitro and in vivo. RESULTS: Our findings confirmed that the Aurora-A inhibitor alisertib and anlotinib exhibited a time-dose-dependent inhibitory effect on HCC cells. In vitro cytological experiments demonstrated that the combination of the two drugs synergistically inhibited cell proliferation, invasion, and metastasis, while promoting cell apoptosis. Furthermore, we identified the underlying molecular mechanism by which the combination of the Aurora-A inhibitor alisertib and anlotinib inhibited HCC through the inhibition of the NF-ĸB signaling pathway. CONCLUSIONS: In summary, we have demonstrated the effectiveness of combining anlotinib with an Aurora-A inhibitor, which expands the potential applications of anlotinib in the clinical treatment of HCC in the future.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Quinolinas , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Indoles/farmacología , Indoles/uso terapéutico , Quinolinas/farmacología , Quinolinas/uso terapéutico , Apoptosis , Proliferación Celular , Línea Celular Tumoral
10.
FEBS J ; 291(5): 1027-1042, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38050648

RESUMEN

The primary cilium is an antenna-like organelle protruding from the cell surface that can detect physical and chemical stimuli in the extracellular space to activate specific signaling pathways and downstream gene expressions. Calcium ion (Ca2+ ) signaling regulates a wide spectrum of cellular processes, including fertilization, proliferation, differentiation, muscle contraction, migration, and death. This study investigated the effects of the regulation of cytosolic Ca2+ levels on ciliogenesis using chemical, genetic, and optogenetic approaches. We found that ionomycin-induced Ca2+ influx inhibited ciliogenesis and Ca2+ chelator BATPA-AM-induced Ca2+ depletion promoted ciliogenesis. In addition, store-operated Ca2+ entry and the endoplasmic reticulum Ca2+ sensor stromal interaction molecule 1 (STIM1) negatively regulated ciliogenesis. Moreover, an optogenetic platform was used to create different Ca2+ oscillation patterns by manipulating lighting parameters, including density, frequency, exposure time, and duration. Light-activated Ca2+ -translocating channelrhodopsin (CatCh) is activated by 470-nm blue light to induce Ca2+ influx. Our results show that high-frequency Ca2+ oscillations decrease ciliogenesis. Furthermore, the inhibition of cilia formation induced by Ca2+ may occur via the activation of Aurora kinase A. Cilia not only induce Ca2+ signaling but also regulate cilia formation by Ca2+ signaling.


Asunto(s)
Canales de Calcio , Señalización del Calcio , Señalización del Calcio/fisiología , Canales de Calcio/genética , Canales de Calcio/metabolismo , Calcio/metabolismo , Aurora Quinasa A/genética , Aurora Quinasa A/metabolismo , Retículo Endoplásmico/metabolismo
11.
Comput Biol Med ; 168: 107759, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38043467

RESUMEN

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is a prominent form of esophageal cancer. Aurora A (AURKA), an enzyme that phosphorylates serine and threonine, has a vital function in controlling the process of separating chromosomes during cell division. The contribution of this entity has been documented in the advancement of malignant proliferations, including tumors occurring in the breast, stomach, and ovaries. METHODS: The potential molecular mechanism of AURKA is comprehensively examined through the analysis of bulk RNA-seq and single-cell RNA-seq data obtained from publicly available databases. This analysis encompasses various aspects such as expression levels, prognosis, and functional pathways, among others. RESULTS: The upregulation of AURKA in ESCC has been found to be correlated with the overall survival of patients. The functional annotation and pathway enrichment analysis conducted in this study lead to the conclusion that AURKA participates in the regulation of a number of malignant processes connected to cell proliferation, such as cell cycle control, apoptosis, and the p53 signaling pathway. Additionally, AURKA has been found to be associated with drug sensitivity and has an impact on the infiltration of tumor-infiltrating immune cells in ESCC. CONCLUSIONS: AURKA exhibits potential as a prognostic and therapeutic biomarker linked to the regulation of cell cycle and cell proliferation.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Aurora Quinasa A/genética , Aurora Quinasa A/metabolismo , Biomarcadores , Línea Celular Tumoral , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/terapia , Carcinoma de Células Escamosas de Esófago/diagnóstico , Carcinoma de Células Escamosas de Esófago/genética , Regulación Neoplásica de la Expresión Génica
12.
Sci Total Environ ; 912: 168966, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38043816

RESUMEN

Cadmium, an environmental pollutant, is highly toxic and resistant to degradation. It exhibits toxicity at elevated doses but triggers excitatory effects at low doses, a phenomenon referred to as hormesis. Microalgae, as primary producers in aquatic ecosystems, demonstrate hormesis induced by cadmium, though the specific mechanisms are not yet fully understood. Consequently, we examined the hormesis of cadmium in Chromochloris zofingiensis. A minimal Cd2+ concentration (0.05 mg L-1) prompted cell proliferation, whereas higher concentrations (2.50 mg L-1) inhibited growth. The group exposed to higher doses exhibited increased levels of reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT). Contrastingly, the group exposed to low doses exhibited a moderate antioxidant response without significantly increasing ROS. This implies that increased levels of antioxidative components counteract excessive ROS, maintaining cellular redox balance and promoting growth under conditions of low Cd2+. Validation experiments have established that NADPH oxidase-derived ROS primarily coordinates the hormesis effect in microalgae. Comparative transcriptome analysis has proved the involvement of antioxidant systems and photosynthesis in regulating hormesis. Notably, Aurora A kinases consistently displayed varying expression levels across all Cd2+ treatments, and their role in microalgal hormesis was confirmed through validation with SNS-314 mesylate. This study unveils the intricate regulatory mechanisms of Cd-induced hormesis in C. zofingiensis, with implications for environmental remediation and industrial microalgae applications.


Asunto(s)
Antioxidantes , Microalgas , Antioxidantes/metabolismo , Cadmio/análisis , Especies Reactivas de Oxígeno/metabolismo , Hormesis , Ecosistema , Fotosíntesis , Glutatión/metabolismo , Superóxido Dismutasa/metabolismo
13.
BMC Cancer ; 23(1): 1263, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38129815

RESUMEN

BACKGROUND: The maintenance of spindle pole integrity is essential for spindle assembly and chromosome segregation during mitosis. However, the underlying mechanisms governing spindle pole integrity remain unclear. METHODS: ENSA was inhibited by siRNA or MKI-2 treatment and its effect on cell cycle progression, chromosome alignment and microtubule alignment was observed by immunohistochemical staining and western blotting. PP2A-B55α knockdown by siRNA was performed to rescue the phenotype caused by ENSA inhibition. The interaction between ENSA and Aurora A was detected by in situ PLA. Furthermore, orthotopic implantation of 4Tl-luc cancer cells was conducted to confirm the consistency between the in vitro and in vivo relationship of the ENSA-Aurora A interaction. RESULTS: During mitosis, p-ENSA is localized at the spindle poles, and the inhibition of ENSA results in mitotic defects, such as misaligned chromosomes, multipolar spindles, asymmetric bipolar spindles, and centrosome defects, with a delay in mitotic progression. Although the mitotic delay caused by ENSA inhibition was rescued by PP2A-B55α depletion, spindle pole defects persisted. Notably, we observed a interaction between ENSA and Aurora A during mitosis, and inhibition of ENSA reduced Aurora A expression at the mitotic spindle poles. Injecting MKI-2-sensitized tumors led to increased chromosomal instability and downregulation of the MASTL-ENSA-Aurora A pathway in an orthotopic breast cancer mouse model. CONCLUSIONS: These findings provide novel insights into the regulation of spindle pole integrity by the MASTL-ENSA-Aurora A pathway during mitosis, highlighting the significance of ENSA in recruiting Aurora A to the spindle pole, independent of PP2A-B55α.


Asunto(s)
Huso Acromático , Polos del Huso , Animales , Ratones , Huso Acromático/metabolismo , Polos del Huso/metabolismo , Centrosoma/metabolismo , Mitosis , ARN Interferente Pequeño/metabolismo
14.
Cell Rep Med ; 4(11): 101282, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37992688

RESUMEN

Despite small cell lung cancers (SCLCs) having a high mutational burden, programmed death-ligand 1 (PD-L1) immunotherapy only modestly increases survival. A subset of SCLCs that lose their ASCL1 neuroendocrine phenotype and restore innate immune signaling (termed the "inflammatory" subtype) have durable responses to PD-L1. Some SCLCs are highly sensitive to Aurora kinase inhibitors, but early-phase trials show short-lived responses, suggesting effective therapeutic combinations are needed to increase their durability. Using immunocompetent SCLC genetically engineered mouse models (GEMMs) and syngeneic xenografts, we show durable efficacy with the combination of a highly specific Aurora A kinase inhibitor (LSN3321213) and PD-L1. LSN3321213 causes accumulation of tumor cells in mitosis with lower ASCL1 expression and higher expression of interferon target genes and antigen-presentation genes mimicking the inflammatory subtype in a cell-cycle-dependent manner. These data demonstrate that inflammatory gene expression is restored in mitosis in SCLC, which can be exploited by Aurora A kinase inhibition.


Asunto(s)
Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Ratones , Animales , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Antígeno B7-H1/genética , Aurora Quinasa A/genética , Aurora Quinasa A/uso terapéutico , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/patología , Mitosis , Interferones/genética
15.
Cancers (Basel) ; 15(22)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38001709

RESUMEN

PURPOSE: To search for new predictive breast cancer biomarkers. We analyzed the serum concentrations of biomarkers involved in carcinogenesis, which can also be targeted by therapy. METHODS: In a single-center prospective study, the serum levels of Aurora A, thymidine kinase 1, and human epidermal growth factor receptor type 3 (HER3) were determined in 119 women with BC before neoadjuvant treatment using ELISA kits. RESULTS: The following clinical data were analyzed: age; TNM; the expression of ER, PGR, HER2, and Ki67; histological grade (G); and the response to neoadjuvant treatment (NAT) in the residual tumor burden classification (RCB). A complete pathological response (pCR) was achieved after NAT in 41 patients (34%). The highest proportion of the patients with a confirmed pCR was found for triple negative breast cancer (TNBC) (62.5%); non-luminal HER2-positive (52.6%) cancer subtypes (p = 0.0003); and in the G3 group (50%; p = 0.0078). The patients with higher levels of Aurora A were more likely to achieve pCR (p = 0.039). In the multivariate analysis, the serum Aurora A levels ≥ 4.75 ng/mL correlated with a higher rate of pCR (OR: 3.5; 95% CI: 1.2-10.1; p = 0.023). CONCLUSIONS: We showed that in a biologically heterogeneous group of BC patients, the pretreatment serum Aurora A levels were of significant value in predicting the response to NAT.

16.
Cell Rep ; 42(12): 113495, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-37995185

RESUMEN

Nuclear envelope (NE) disassembly during mitosis is critical to ensure faithful segregation of the genetic material. NE disassembly is a phosphorylation-dependent process wherein mitotic kinases hyper-phosphorylate lamina and nucleoporins to initiate nuclear envelope breakdown (NEBD). In this study, we uncover an unexpected role of the PP2A phosphatase B55SUR-6 in NEBD during the first embryonic division of Caenorhabditis elegans embryo. B55SUR-6 depletion delays NE permeabilization and stabilizes lamina and nucleoporins. As a result, the merging of parental genomes and chromosome segregation is impaired. NEBD defect upon B55SUR-6 depletion is not due to delayed mitotic onset or mislocalization of mitotic kinases. Importantly, we demonstrate that microtubule-dependent mechanical forces synergize with B55SUR-6 for efficient NEBD. Finally, our data suggest that the lamin LMN-1 is likely a bona fide target of PP2A-B55SUR-6. These findings establish a model highlighting biochemical crosstalk between kinases, PP2A-B55SUR-6 phosphatase, and microtubule-generated mechanical forces in timely NE dissolution.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Laminina/metabolismo , Mitosis , Membrana Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo
17.
Pharmaceuticals (Basel) ; 16(11)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-38004405

RESUMEN

Natural products are the precursors of many medicinal substances. Peppers (Piper, Capsicum, Pimienta) are a rich source of compounds with potential multidirectional biological activity. One of the studied directions is antitumor activity. Little research has been carried out so far on the ability of the compounds contained in peppers to inhibit the activity of Aurora A kinase, the overexpression of which is characteristic of cancer development. In this study, molecular docking methods, as well as molecular dynamics, were used, looking for compounds that could inhibit the activity of Aurora A kinase and trying to determine whether there is a relationship between the stimulation of the TRPV1 receptor and the inhibition of Aurora A kinase. We compared our results with anticancer activity studied earlier on MCF-7 cell lines (breast cancer cells). Our research indicates that the compounds contained in peppers can inhibit Aurora A. Further in vitro research is planned to confirm the obtained results.

18.
Bioorg Chem ; 141: 106901, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37797455

RESUMEN

Pyrazole, as a small molecule, was discovered for higher cytotoxicity and affinity towards Aurora-A kinase. Based on these facts, a novel pyrazole substituted at the 4th position was designed, synthesized, and evaluated against MCF-7, MDA-MB-23, and Vero (non-cancerous kidney cell) cell lines. Compounds5hand5eexhibited greater cytotoxicity in the series against MCF-7 and MDA-MB-231, with GI50 values of 0.12 µM and 0.63 µM, respectively, as compared to Imatinib (GI50 values of 16.08 µM and 10.36 µM). All of the compounds displayed selective cytotoxicity against cancer cells but not on normal Vero cells, supporting the design strategy to be a selective anticancer agent. Furthermore, compounds 5h and 5e inhibited Aurora-A kinase with IC50 values of 0.78 µM (4.70-fold) and 1.12 µM (2.84-fold), respectively, as compared to alisertib (IC50 = 3.36 µM). In addition, compound 5h significantly arrested the cell cycle at G2/M (34.89 %, 5.56-fold) and the apoptotic phase (25.04 %, 11.81-fold) compared to the control. It also triggered an increase in early (7.43 %) and late (14.89 %) phase apoptosis compared to vehicle (0.235 and 0.36 %, respectively), causing 37.89-fold higher total apoptosis in the annexin-V assay. These data imply that Aurora-A kinase inhibition may be linked to apoptosis induction and cell cycle arrest. Furthermore, their higher docking score in the study confirmed evidence of Aurora-kinase suppression. It was observed that fluorine and imidazole increased the H-bond and lipophilic interactions with the binding residue. Also, the substitution of electron-rich and lipophilic groups increased hydrophobic interactions. Moreover, the three-atom linkage (CH2NHCH2) expanded compound 5h to fill the cavity. Based on current findings, it is concluded that compounds 5h and 5e with strong Aurora-A kinase suppression may be promising anticancer agents.


Asunto(s)
Antineoplásicos , Aurora Quinasa A , Pirazoles , Animales , Antineoplásicos/química , Apoptosis , Aurora Quinasa A/antagonistas & inhibidores , Línea Celular Tumoral , Proliferación Celular , Chlorocebus aethiops , Ensayos de Selección de Medicamentos Antitumorales , Simulación del Acoplamiento Molecular , Estructura Molecular , Inhibidores de Proteínas Quinasas , Pirazoles/farmacología , Relación Estructura-Actividad , Células Vero
19.
J Nutr Biochem ; 121: 109438, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37666476

RESUMEN

Combination therapies to induce mixed-type cell death and synthetic lethality have the potential to overcome drug resistance in cancer. In this study, we demonstrated that the curcumin-enhanced cytotoxicity of cisplatin/carboplatin in combination with gemcitabine was associated with Aurora A suppression-mediated G2/M arrest, and thus apoptosis, as well as MEK/ERK-mediated autophagy in human bladder cancer cells. Animal study data confirmed that curcumin combined with cisplatin/gemcitabine reduced tumorigenesis of xenograft in mice and this phenomenon was associated with elevated expressions of p-ERK and reduced p-Aurora A in tumors. Gene analyses using data repositories further revealed that reduced Aurora A expression alone did not significantly elevate the sensitivity of human bladder carcinoma cells to these anticancer drugs. Unlike other major cancer types, human bladder urothelial carcinoma tissue coexpressed higher AURKA and lower MAP1LC3B than normal tissue, and reduced Aurora A and induction of autophagy have been clinically associated with a better prognosis in patients with early but not advanced stage bladder cancer. Therefore, our results suggest that treatment strategies can utilize the synthetic lethal pair to concurrently suppress oncogenic Aurora A and induce autophagy by coadministrating curcumin with anticancer drugs for early-stage bladder cancer with high expression of Aurora A.

20.
Int J Mol Sci ; 24(16)2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37628962

RESUMEN

Diatoms synthesize species-specific exoskeletons inside cells under the control of the cytoskeleton and microtubule center. Previous studies have been conducted with the visualization of the microtubule center; however, its composition has not been studied and reliably established. In the present study, several components of MTOC in diatoms, GCP (gamma complex proteins), Aurora A, and centrins have been identified. Analysis of the predicted amino acid sequences of these proteins revealed structural features typical for diatoms. We analyzed the conserved amino acids and the motives necessary for the functioning of proteins. Phylogenetic analysis of GCP showed that all major groups of diatoms are distributed over phylogenetic trees according to their systematic position. This work is a theoretical study; however, it allows drawing some conclusions about the functioning of the studied components and possible ways to regulate them.


Asunto(s)
Diatomeas , Secuencia de Aminoácidos , Diatomeas/genética , Filogenia , Microtúbulos , Citoesqueleto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA