Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Intervalo de año de publicación
1.
BMC Vet Res ; 17(1): 263, 2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34353312

RESUMEN

BACKGROUND: Escherichia coli is a bacterial species widely distributed among mammals and avian species, and also a member of the normal intestinal microbiota. However, some E. coli strains of different pathotypes can cause disease in both humans and animals. Atypical enteropathogenic E. coli (aEPEC) can infect both animals and humans or influence the severity of other ongoing infections. RESULTS: In the present study, a total of 332 samples were collected from ducks, geese, turkeys, chickens, and pigeons from the Hungarian Veterinary Diagnostic Directorate, two slaughterhouses, two pigeon keepers and one backyard chicken farm. E. coli was isolated and verified from 319 samples. The isolates were screened by PCR for diarrheagenic E. coli pathotypes. Altogether seven atypical enteropathogenic E. coli (aEPEC) strains were identified: two from four-week-old dead turkeys, two from force-fed geese, and three from pigeons. No further pathotypes were identified in the collection. The atypical EPEC strains were classified phylogenetically to B1, B2, and F, and four out of the seven aEPEC isolates proved to be multidrug resistant. Serotypes of aEPEC strains were uniform collected from same farms and showed diversity between their origins with O76, O145, O109 serogroups. CONCLUSIONS: This is the first report in the literature about aEPEC in goose (Anser anser domestica). Furthermore, this is the first isolation of aEPEC from turkeys and pigeons in Hungary. The uneven distribution of aEPEC in different age groups of poultry suggests that aEPEC disappears with growing up, but stress (e.g.: force-feeding) and concurrent diseases might promote its reappearance in the intestine.


Asunto(s)
Columbidae/microbiología , Escherichia coli Enteropatógena/aislamiento & purificación , Aves de Corral/microbiología , Envejecimiento , Animales , Escherichia coli Enteropatógena/genética , Gansos/microbiología , Genotipo , Hungría , Pavos/microbiología
2.
Food Microbiol ; 94: 103647, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33279072

RESUMEN

Contaminated beef is a prominent source of foodborne pathogens such as Escherichia coli O177. Susceptibility of nine multi-drug resistant E. coli O177 strains against eight individual phages and six phage cocktails was assessed using polystyrene microplate titer plate. Further, 180 beef samples were independently inoculated with E. coli O177 cells in triplicates and treated with eight individual phages and six phage cocktails to determine their efficacy in inhibiting bacteria growth at 4 °C over a 7-day incubation period. Results revealed that all E. coli O177 strains were susceptible to the phages. A significant log reduction in viable E. coli O177 cell counts was observed on beef samples upon phage treatment over the 7-day incubation period. Two individual phages and three phage cocktails reduced E. coli cell counts to levels below the detection limit (1.0 log10 CFU/g). Log reduction of viable E. coli cell counts ranged from 2.10 to 7.81 CFU/g for individual phages and from 2.86 to 7.81 CFU/g for cocktails. Individual phages and phage cocktails inhibited E. coli O177 biofilm formation with phage cocktails showing high efficacy. Furthermore, phage cocktails showed greater efficacy in destroying pre-formed biofilm than individual phages. Based on these findings, we concluded that phage cocktails developed in this study could be used to reduce E. coli O177 contamination and extend the shelf-life of stored raw beef.


Asunto(s)
Bacteriófagos/fisiología , Colifagos/fisiología , Escherichia coli/fisiología , Escherichia coli/virología , Conservación de Alimentos/métodos , Carne/microbiología , Animales , Antibacterianos/farmacología , Bacteriófagos/genética , Biopelículas , Bovinos , Colifagos/genética , Farmacorresistencia Bacteriana Múltiple , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo
3.
Front Vet Sci ; 7: 511, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32903588

RESUMEN

Escherichia coli (EC) strains belong to several pathotypes capable of infecting both humans and animals. Some of them have zoonotic potential and can sporadically cause epidemic outbreaks. Our aim was to screen for the distribution of these pathotypes in broilers and their related products. Therefore, E. coli strains were isolated (n = 118) from poultry intestine (n = 57), carcass (n = 57), and wastewater (n = 4) samples from one slaughterhouse with own reared poultry source and the National Reference Laboratory (NRL) poultry E. coli collection (n = 170) from the year 2017 was also studied. All 288 E. coli strains were screened by PCR for pathotype-specific genes stx, eae, st-lt, aggR, ipaH, and for further EPEC-specific virulence genes (bfp, EAF, tir, perA, ler). Altogether 35 atypical enteropathogenic E. coli (aEPEC) strains from the slaughterhouse and 48 aEPEC strains from the NRL collection were found. Regarding the phylogenetic groups of aEPEC, all four main groups were represented but there was a shift toward the B2 group (25%) as compared with the non-EPEC isolates (3%). The aEPEC isolates belonged to serogroups O14, O108, and O45. Multidrug resistance (MDR) was abundant in aEPEC strains (80 out of 83 aEPEC) with a diverse resistance pattern (n = 56). Our results of this study indicate that the high frequency of aEPEC in broilers and on their carcass surface, with frequent MDR to several antibiotic groups, raises the possibility that these strains pose a zoonotic risk to humans.

4.
BMC Microbiol ; 20(1): 138, 2020 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-32471348

RESUMEN

BACKGROUND: In previous studies, we have shown that atypical enteropathogenic Escherichia coli (aEPEC) strains are important diarrheal pathogens among Brazilian children. In the characterization of a collection of 126 aEPEC strains, we identified 29 strains expressing the localized-like adherence (LAL) pattern on HEp-2 cells and harboring large plasmids in the range of 60 to 98 MDa. In this study, we examined 18 of these strains for their ability to transfer the LAL phenotype to a E. coli K-12 C600 strain. RESULTS: In conjugation experiments, using eight strains which were resistant to one or more antimicrobials and positive for F-pili genes (traA), we were able to cotransfer antimicrobial resistance markers along with adhesion genes. By transforming E. coli DH5α with plasmid DNA from strains A46 (pIS46), A66 (pIS66) and A102 (pIS102), we were able to demonstrate that genes encoding ampicillin, tetracycline and LAL were encoded on a 98-MDa conjugative plasmid. To identify a gene responsible for LAL, we constructed a transposon mutant library of A102 strain. Among 18 mutants that did not adhere to HeLa cells, four carried insertions within fimbrial genes (fimA and traJ) and agglutinin genes (tia and hek). Using these Tn5 mutants as donors, we were able to obtain kanamycin-resistant E. coli MA3456 transconjugants. Sequence analysis of the plasmid genes revealed a region exhibit to 80 and 73% amino acid similarities to the agglutinins Tia and Hek, respectively. CONCLUSION: In this study, we have identified three large conjugative plasmids, pIS46, pIS66 and pIS102, coding for antimicrobial resistance and localized-like adherence (LAL) to HeLa cells. In addition, we identified a tia/hek homolog encoded on the pIS102 plasmid, which seems to be involved in adhesion of A102 strain.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Escherichia coli Enteropatógena/genética , Proteínas de Escherichia coli/genética , Plásmidos/genética , Ampicilina/farmacología , Adhesión Bacteriana , Conjugación Genética , Escherichia coli Enteropatógena/efectos de los fármacos , Escherichia coli Enteropatógena/aislamiento & purificación , Proteínas Fimbrias/genética , Transferencia de Gen Horizontal , Células HeLa , Humanos , Kanamicina/farmacología , Pruebas de Sensibilidad Microbiana , Mutagénesis Insercional , Tetraciclina/farmacología
5.
Artículo en Inglés | MEDLINE | ID: mdl-31608246

RESUMEN

Atypical enteropathogenic E. coli (aEPEC) is a group of diarrhoeagenic Escherichia coli with high diversity of serogroups, which lack the bundle-forming pili (BFP) and genes encoding for shiga toxins. The aim of this study was to isolate, identify and determine virulence and antibiotic resistance profiles of aEPEC O177 strains from cattle feces. A total of 780 samples were collected from beef and dairy cattle and analyzed for the presence of E. coli O177. One thousand two hundred and seventy-two (1272) presumptive isolates were obtained and 915 were confirmed as E. coli species. Three hundred and seventy-six isolates were positively confirmed as E. coli O177 through amplification of rmlB and wzy gene sequences using multiplex PCR. None of these isolates harbored bfpA gene. A larger proportion (12.74%) of the isolates harbored hlyA gene while 11.20, 9.07, 7.25, 2.60, and 0.63% possessed stx2, stx1, eaeA, stx2a , and stx2d , respectively. Most of E. coli O177 isolates carried stx2/hlyA (9.74%). Furthermore, 7.40% of the isolates harbored stx1/stx2 while 7.09% possessed stx1/stx2/hlyA genes. Only one isolate harbored stx1/stx2/hly/eaeA/stx2a/stx2d while 5.11% of the isolates harbored all the four major virulence genes stx1/stx2/hlyA/eaeA, simultaneously. Further analysis revealed that the isolates displayed varied antimicrobial resistance to erythromycin (63.84%), ampicillin (21.54%), tetracycline (13.37%), streptomycin (17.01%), kanamycin (2.42%), chloramphenicol (1.97%), and norfloxacin (1.40%). Moreover, 20.7% of the isolates exhibited different phenotypic multi-drug resistance patterns. All 73 isolates harbored at least one antimicrobial resistance gene. The aadA, streA, streB, erm, and tetA resistance genes were detected separately and/or concurrently. In conclusion, our findings indicate that environmental isolates of aEPEC O177 strains obtained from cattle in South Africa harbored virulence and antimicrobial resistance gene determinants similar to those reported in other shiga-toxin producing E. coli strains and suggest that these determinants may contribute to the virulence of the isolates.


Asunto(s)
Antibacterianos/farmacología , Enfermedades de los Bovinos/microbiología , Farmacorresistencia Bacteriana Múltiple , Escherichia coli Enteropatógena/efectos de los fármacos , Escherichia coli Enteropatógena/genética , Infecciones por Escherichia coli/veterinaria , Toxina Shiga/genética , Animales , Antibacterianos/uso terapéutico , Bovinos , Enfermedades de los Bovinos/tratamiento farmacológico , Escherichia coli Enteropatógena/clasificación , Escherichia coli Enteropatógena/aislamiento & purificación , Heces/microbiología , Genotipo , Pruebas de Sensibilidad Microbiana , Reacción en Cadena de la Polimerasa Multiplex , Serogrupo , Toxina Shiga/biosíntesis , Sudáfrica , Virulencia/genética , Factores de Virulencia/genética
6.
Environ Res ; 172: 630-636, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30878734

RESUMEN

The microbial quality of irrigation water has increasingly become a concern as a source of contamination for fruits and vegetables. Non-traditional sources of water are being used by more and more growers in smaller, highly diversified farms in the Mid-Atlantic region of the U.S. Shiga-toxigenic E. coli (STEC) have been responsible for several outbreaks of infections associated with the consumption of leafy greens. Our study evaluated the prevalence of the "big seven" STEC serogroups and the associated enterohemorrhagic E. coli (EHEC) virulence factors (VF) genes in conventional and nontraditional irrigation waters in the Mid-Atlantic region of the U.S. Water samples (n = 510) from 170 sampling events were collected from eight untreated surface water sites, two wastewater reclamation facilities, and one vegetable processing plant, over a 12-month period. Ten liters of water were filtered through Modified Moore swabs (MMS); swabs were then enriched into Universal Pre-enrichment Broth (UPB), followed by enrichment into non-O157 STEC R&F broth and isolation on R & F non-O157 STEC chromogenic plating medium. Isolates (n = 2489) from enriched MMS from water samples were screened for frequently reported STEC serogroups that cause foodborne illness: O26, O45, O103, O111, O121, O145, and O157, along with VF genes stx1, stx2, eae, and ehxA. Through this screening process, STEC isolates were found in 2.35% (12/510) of water samples, while 9.0% (46/510) contained an atypical enteropathogenic E. coli (aEPEC) isolate. The eae gene (n = 88 isolates) was the most frequently detected EHEC VF of the isolates screened. The majority of STEC isolates (stx1 or stx2) genes mainly came from either a pond or reclamation pond water site on two specific dates, potentially indicating that these isolates were not spatially or temporally distributed among the sampling sites. STEC isolates at reclaimed water sites may have been introduced after wastewater treatment. None of the isolates containing eae were determined to be Escherichia albertii. Our work showed that STEC prevalence in Mid-Atlantic untreated surface waters over a 12-month period was lower than the prevalence of atypical EPEC.


Asunto(s)
Riego Agrícola , Escherichia coli Enteropatógena , Proteínas de Escherichia coli , Escherichia coli Shiga-Toxigénica , Microbiología del Agua , Riego Agrícola/estadística & datos numéricos , Carga Bacteriana , Escherichia coli Enteropatógena/fisiología , Heces/microbiología , Mid-Atlantic Region , Prevalencia , Escherichia coli Shiga-Toxigénica/fisiología
7.
J Food Prot ; 81(11): 1761-1767, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30277802

RESUMEN

Atypical enteropathogenic Escherichia coli (aEPEC) is an emerging pathogen that has been implicated in outbreaks of diarrhea worldwide. The objective of this study was to investigate the occurrence of aEPEC in retail foods at markets in the People's Republic of China and to characterize the isolates for virulence genes, intimin gene ( eae) subtypes, multilocus sequence types (STs), and antimicrobial susceptibility. From May 2014 to April 2015, 1,200 food samples were collected from retail markets in China, and 41 aEPEC isolates were detected in 2.75% (33 of 1,200) of the food samples. The virulence genes tir, katP, etpD, efa/lifA, ent, nleB, and nleE were commonly detected in these isolates. Nine eae subtypes were detected in the isolates, among which θ (23 isolates) and ß1 (6 isolates) were the most prevalent. The 41 isolates were divided into 27 STs by multilocus sequence typing. ST752 and ST10 were the most prevalent. Antibiotic susceptibility testing revealed high resistance among isolates to streptomycin (87.80%), cephalothin (73.16%), ampicillin (51.22%), tetracycline (63.42%), trimethoprim-sulfamethoxazole (43.90%), and kanamycin (43.90%). Thirty isolates (73.17%) were resistant to at least three antibiotics, and 20 (53.66 %) were resistant to five or more antibiotics. Our results suggest that retail foods in markets are important sources of aEPEC. The presence of virulent and multidrug-resistant aEPEC in retail foods poses a potential threat to consumers. Surveillance of aEPEC contamination and prudent use of antibiotics is strongly recommended in China.


Asunto(s)
Escherichia coli Enteropatógena , Comida Rápida/microbiología , Contaminación de Alimentos/análisis , Microbiología de Alimentos , Antibacterianos/farmacología , China , Diarrea/epidemiología , Diarrea/microbiología , Escherichia coli Enteropatógena/efectos de los fármacos , Escherichia coli Enteropatógena/genética , Escherichia coli Enteropatógena/aislamiento & purificación , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/microbiología , Humanos , Prevalencia , Virulencia
8.
Int J Med Microbiol ; 308(8): 1085-1095, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30115547

RESUMEN

Enterohemorrhagic Escherichia coli (EHEC) are a cause of bloody diarrhea, hemorrhagic colitis (HC) and the potentially fatal hemolytic uremic syndrome (HUS). While O157:H7 is the dominant EHEC serotype, non-O157 EHEC have emerged as serious causes of disease. In Germany, the most important non-O157 O-serogroups causing one third of EHEC infections, including diarrhea as well as HUS, are O26, O103, O111 and O145. Interestingly, we identified EHEC O-serogroups O26 and O111 in one single sequence type complex, STC29, that also harbours atypical enteropathogenic E. coli (aEPEC). aEPEC differ from typical EHEC merely in the absence of stx-genes. These findings inspired us to unravel a putative microevolutionary scenario of these non-O157 EHEC by whole genome analyses. Analysis of single nucleotide polymorphisms (SNPs) of the maximum common genome (MCG) of 20 aEPEC (11 human/ 9 bovine) and 79 EHEC (42 human/ 36 bovine/ 1 food source) of STC29 identified three distinct clusters: Cluster 1 harboured strains of O-serogroup O111, the central Cluster 2 harboured only O26 aEPEC strains, while the more heterogeneous Cluster 3 contained both EHEC and aEPEC strains of O-serogroup O26. Further combined analyses of accessory virulence associated genes (VAGs) and insertion sites for mobile genetic elements suggested a parallel evolution of the MCG and the acquisition of virulence genes. The resulting microevolutionary model suggests the development of two distinct EHEC lineages from one common aEPEC ancestor of ST29 by lysogenic conversion with stx-converting bacteriophages, independent of the host species the strains had been isolated from. In conclusion, our cumulative data indicate that EHEC of O-serogroups O26 and O111 of STC29 originate from a common aEPEC ancestor and are bona fide zoonotic agents. The role of aEPEC in the emergence of O26 and O111 EHEC should be considered for infection control measures to prevent possible lysogenic conversion with stx-converting bacteriophages as major vehicle driving the emergence of EHEC lineages with direct Public Health consequences.


Asunto(s)
Infecciones por Escherichia coli/microbiología , Escherichia coli O157/genética , Evolución Molecular , Síndrome Hemolítico-Urémico/microbiología , Serogrupo , Animales , Bovinos , Infecciones por Escherichia coli/epidemiología , Escherichia coli O157/patogenicidad , Genoma Bacteriano/genética , Alemania/epidemiología , Síndrome Hemolítico-Urémico/epidemiología , Humanos , Polimorfismo de Nucleótido Simple , Virulencia/genética , Secuenciación Completa del Genoma , Zoonosis/epidemiología , Zoonosis/microbiología
9.
Genes (Basel) ; 9(5)2018 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-29762495

RESUMEN

Atypical enteropathogenic Escherichia coli are capable to form biofilm on biotic and abiotic surfaces, regardless of the adherence pattern displayed. Several E. coli mechanisms are regulated by Quorum sensing (QS), including virulence factors and biofilm formation. Quorum sensing is a signaling system that confers bacteria with the ability to respond to chemical molecules known as autoinducers. Suppressor of division inhibitor (SdiA) is a QS receptor present in atypical enteropathogenic E.coli (aEPEC) that detects acyl homoserine lactone (AHL) type autoinducers. However, these bacteria do not encode an AHL synthase, but they are capable of sensing AHL molecules produced by other species, establishing an inter-species bacterial communication. In this study, we performed experiments to evaluate pellicle, ring-like structure and biofilm formation on wild type, sdiA mutants and complemented strains. We also evaluated the transcription of genes involved in different stages of biofilm formation, such as bcsA, csgA, csgD, fliC and fimA. The sdiA mutants were capable of forming thicker biofilm structures and showed increased motility when compared to wild type and complemented strains. Moreover, they also showed denser pellicles and ring-like structures. Quantitative real-time PCR (qRT-PCR) analysis demonstrated increased csgA, csgD and fliC transcription on mutant strains. Biofilm formation, as well as csgD, csgA and fimA transcription decreased on wild type strains by the addition of AHL. These results indicate that SdiA participates on the regulation of these phenotypes in aEPEC and that AHL addition enhances the repressor effect of this receptor on the transcription of biofilm and motility related genes.

10.
Genes, v. 9, n. 5, 253, maio 2018
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2472

RESUMEN

Atypical enteropathogenic Escherichia coli are capable to form biofilm on biotic and abiotic surfaces, regardless of the adherence pattern displayed. Several E. coli mechanisms are regulated by Quorum sensing (QS), including virulence factors and biofilm formation. Quorum sensing is a signaling system that confers bacteria with the ability to respond to chemical molecules known as autoinducers. Suppressor of division inhibitor (SdiA) is a QS receptor present in atypical enteropathogenic E. coli (aEPEC) that detects acyl homoserine lactone (AHL) type autoinducers. However, these bacteria do not encode an AHL synthase, but they are capable of sensing AHL molecules produced by other species, establishing an inter-species bacterial communication. In this study, we performed experiments to evaluate pellicle, ring-like structure and biofilm formation on wild type, sdiA mutants and complemented strains. We also evaluated the transcription of genes involved in different stages of biofilm formation, such as bcsA, csgA, csgD, fliC and fimA. The sdiA mutants were capable of forming thicker biofilm structures and showed increased motility when compared to wild type and complemented strains. Moreover, they also showed denser pellicles and ring-like structures. Quantitative real-time PCR (qRT-PCR) analysis demonstrated increased csgA, csgD and fliC transcription on mutant strains. Biofilm formation, as well as csgD, csgA and fimA transcription decreased on wild type strains by the addition of AHL. These results indicate that SdiA participates on the regulation of these phenotypes in aEPEC and that AHL addition enhances the repressor effect of this receptor on the transcription of biofilm and motility related genes.

11.
J Microbiol ; 54(11): 745-752, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27796929

RESUMEN

Using clonal phylogenetic methods, it has been demonstrated that O111:H25 atypical enteropathogenic E. coli (aEPEC) strains belong to distinct clones, suggesting the possibility that their ability to interact with different hosts and abiotic surfaces can vary from one clone to another. Accordingly, the ability of O111:H25 aEPEC strains derived from human, cat and dogs to adhere to epithelial cells has been investigated, along with their ability to interact with macrophages and to form biofilms on polystyrene, a polymer used to make biomedical devices. The results demonstrated that all the strains analyzed were able to adhere to, and to form pedestals on, epithelial cells, mechanisms used by E. coli to become strongly attached to the host. The strains also show a Localized-Adherence-Like (LAL) pattern of adhesion on HEp-2 cells, a behavior associated with acute infantile diarrhea. In addition, the O111:H25 aEPEC strains derived either from human or domestic animals were able to form long filaments, a phenomenon used by some bacteria to avoid phagocytosis. O111:H25 aEPEC strains were also encountered inside vacuoles, a characteristic described for several bacterial strains as a way of protecting themselves against the environment. They were also able to induce TNF-α release via two routes, one dependent on TLR-4 and the other dependent on binding of Type I fimbriae. These O111:H25 strains were also able to form biofilms on polystyrene. In summary the results suggest that, regardless of their source (i.e. linked to human origin or otherwise), O111:H25 aEPEC strains carry the potential to cause human disease.


Asunto(s)
Adhesión Bacteriana , Escherichia coli Enteropatógena/metabolismo , Escherichia coli Enteropatógena/patogenicidad , Infecciones por Escherichia coli/microbiología , Animales , Biopelículas/crecimiento & desarrollo , Gatos , Perros , Escherichia coli Enteropatógena/aislamiento & purificación , Escherichia coli Enteropatógena/ultraestructura , Células Epiteliales/microbiología , Proteínas de Escherichia coli , Fimbrias Bacterianas/inmunología , Humanos , Macrófagos/inmunología , Macrófagos/microbiología , Ratones , Filogenia , Poliestirenos , Receptor Toll-Like 4/deficiencia , Receptor Toll-Like 4/genética , Factor de Necrosis Tumoral alfa/metabolismo , Factores de Virulencia
12.
Gut Microbes ; 7(2): 115-25, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26963626

RESUMEN

Autotransporter proteins (AT) are associated with bacterial virulence attributes. Originally identified in enteroaggregative Escherichia coli (EAEC), Shigella flexneri 2a and uropathogenic E. coli, the serine protease Pic is one of these AT. We have previously detected one atypical enteropathogenic E. coli strain (BA589) carrying the pic gene. In the present study, we characterized the biological activities of Pic produced by BA589 both in vitro and in vivo. Contrarily to other Pic-producers bacteria, pic in BA589 is located on a high molecular weight plasmid. PicBA589 was able to agglutinate rabbit erythrocytes, cleave mucin and degrade complement system molecules. BA589 was able to colonize mice intestines, and an intense mucus production was observed. The BA589Δpic mutant lost the capacity to colonize as well as the above-mentioned in vitro activities. Thus, Pic represents an additional virulence factor in aEPEC strain BA589, associated with adherence, colonization and evasion from the innate immune system.


Asunto(s)
Escherichia coli Enteropatógena/enzimología , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/metabolismo , Serina Endopeptidasas/metabolismo , Factores de Virulencia/metabolismo , Animales , Adhesión Bacteriana , Escherichia coli Enteropatógena/genética , Escherichia coli Enteropatógena/fisiología , Infecciones por Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Mucinas/metabolismo , Conejos , Serina Endopeptidasas/genética , Factores de Virulencia/genética
13.
Pathog Dis ; 70(2): 167-75, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24339197

RESUMEN

Atypical enteropathogenic Escherichia coli (aEPEC) strains produce attaching-effacing (AE) lesions on enterocytes due to the interaction of the adhesin intimin with its translocated receptor. aEPEC strain 1551-2 was previously shown to invade HeLa and T84 cells by means of the uncommon intimin subtype omicron. Other aEPEC strains carrying uncommon intimin subtypes have also been shown to invade differentiated T84 intestinal cells. In this study, seven aEPEC strains carrying the most common EPEC intimin subtypes (alpha, beta, and gamma) were evaluated regarding the ability to invade differentiated intestinal Caco-2 cells. Although all strains adhered to and promoted AE lesions, the numbers of cell-associated bacteria varied significantly between the different strains regardless of the intimin subtype (P < 0.05). Gentamicin protection assay and transmission electron microscopy analyses showed that in comparison with the invasive strain 1551-2, only one strain (aEPEC EC423/03, intimin beta) was invasive (P = 0.05). Although both strains persisted intracellularly until 48 h, the number of viable bacteria of EC423/03 decreased, whereas that of 1551-2 increased significantly up to 24 h and then decreased. In conclusion, invasiveness is a sporadic property among aEPEC strains carrying some common intimin subtypes.


Asunto(s)
Adhesinas Bacterianas/genética , Adhesinas Bacterianas/metabolismo , Adhesión Bacteriana , Endocitosis , Enterocitos/microbiología , Escherichia coli Enteropatógena/fisiología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Animales , Antibacterianos/farmacología , Células CACO-2 , Bovinos , Niño , Preescolar , Escherichia coli Enteropatógena/clasificación , Escherichia coli Enteropatógena/genética , Escherichia coli Enteropatógena/aislamiento & purificación , Gentamicinas/farmacología , Humanos , Viabilidad Microbiana/efectos de los fármacos , Microscopía Electrónica de Transmisión
14.
Open Microbiol J ; 5: 65-71, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21792379

RESUMEN

Typical and atypical Enteropathogenic Escherichia coli (EPEC) promote attaching-effacing lesions in intestinal cells but only typical EPEC carry the EPEC adherence factor plasmid. Atypical EPEC (aEPEC) are emerging agents of acute and persistent diarrhea worldwide. We aimed at comparing the ability of two aEPEC strains, 1711-4 (serotype O51:H40) and 3991-1 (serotype O non-typeable:non-motile) to invade, persist inside Caco-2 and T84 cells, and to induce IL-8 production. Typical EPEC strain E2348/69 was used for comparisons. The strains associated more significantly with T84 than with Caco-2 cells, with 3991-1 being the most adherent (P < 0.001). In contrast, aEPEC 1711-4 was significantly more invasive than the other strains in both cell lines, and was found within vacuoles near the basolateral cell surfaces. Strains persisted within both cell lines for at least 48 hours, but the persistence index was higher for 3991-1 in Caco-2 cells. IL-8 production was significantly higher from Caco-2 cells infected with 1711-4 for at least 48 hours (P < 0.001), and from T84 cells after 24 and 48 h than with the other strains (P = 0.001). We demonstrated that aEPEC are heterogeneous in various aspects of their interaction with enterocytes in vitro.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA