Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 372
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39244957

RESUMEN

BACKGROUND: The Atractylodes chinensis (DC.) Koidz (A. chinensis) Chinese herb possesses numerous therapeutic properties and is extensively utilized in the pharmaceutical industry. Its quality is closely associated with the harvest periods. However, the optimal quality and harvest periods of A. chinensis remain elusive. METHODS: The bioactive compounds of perennial A. chinensis were detected by ultra-high-performance liquid chromatography coupled with quadrupole Orbitrap mass spectrometry (UHPLC-Q-Orbitrap/MS) metabolomics, and differentially abundant compounds were selected by multivariate statistical analysis. Then, variations in the content of differential compounds in samples harvested at different periods were analyzed, while correlation analysis was carried out on the differential compounds to determine the suitable harvest period for distinct components. RESULTS: A total of 61 bioactive compounds were detected in all samples, grouped into 9 known classes. The results revealed that the chemical compositions of A. chinensis at different harvest periods were significantly different. The volatile oil content in the four-year-old and five-year-old samples was relatively high, at 31.92 mg/g and 32.42 mg/g, respectively. There were also significant differences in the content of the six active ingredients, for example, the five-year-old sample had the highest content of atractylodin (4.38 mg/g). Indeed, the harvest period was correlated with the abundance of most bioactive compounds. Specifically, quinquennial samples were significantly negatively correlated with the abundance of organic acids and aliphatics while moderately positively correlated with the abundance of other classes of bioactive compounds. CONCLUSIONS: According to the results, the ideal harvest time for atractylenolide Ⅲ was 3 years. Regarding organic acids, the optimal harvest time was around 2-3 years. Taken together, these results offer valuable insights to producers for optimizing the harvest period for A. chinensis.


Asunto(s)
Atractylodes , Atractylodes/química , Cromatografía Líquida de Alta Presión/métodos , Análisis Multivariante , Sesquiterpenos/análisis , Lactonas/análisis , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/análisis , Aceites Volátiles/análisis , Aceites Volátiles/química , Espectrometría de Masas/métodos , Metabolómica/métodos
2.
Plant Cell Physiol ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39275794

RESUMEN

The adventitious root (AR) culture of Atractylodes chinensis is an efficient platform for sustainable production of its sesquiterpenoid compounds (atractylon and ß-eudesmol). However, their limited accumulation levels need an effective elicitation approach, and the present study solved this problem using methyl jasmonate (MeJA) as an elicitor. The effects of its treatment concentration and duration on metabolite production were investigated. The ARs treated with 100 µM MeJA for seven days increased atractylon and ß-eudesmol by 3.64- and 1.90-fold, respectively, compared with the control. This study further performed transcriptome analysis to explore the transcriptional regulation mechanism of the MeJA elicitation. A total of 124,464 unigenes were identified in A. chinensis ARs, of which 3,568 genes were upregulated and 3,864 genes were downregulated under the MeJA treatment. The MeJA treatment activated the endogenous JA biosynthesis and signaling pathways and sesquiterpenoid biosynthesis. The MeJA treatment more significantly activated the MEP pathway than the MVA pathway. In addition, 14 genes encoding terpene synthase were identified to be significantly upregulated. A total of 2,700 transcription factors (TFs) were identified in A. chinensis ARs, of which Tify, MYB, and MADS were significantly enriched under the MeJA treatment. We predicted a new antagonistic interaction between MYC2 and CPP TFs, which was significantly regulated by the MeJA treatment. The results of real-time quantitative PCR and enzyme activity assays proved the reliability of the transcriptome data. This study will help improve the in vitro production system of A. chinensis sesquiterpenoids and understand the transcriptional regulation mechanism of MeJA elicitation.

3.
Front Plant Sci ; 15: 1415209, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39104842

RESUMEN

Introduction: Fusarium oxysporum is a significant soil-borne fungal pathogen that affects over 100 plant species, including crucial crops like tomatoes, bananas, cotton, cucumbers, and watermelons, leading to wilting, yellowing, growth inhibition, and ultimately plant death. The root rot disease of A. macrocephala, caused by F. oxysporum, is one of the most serious diseases in continuous cropping, which seriously affects its sustainable development. Methods: In this study, we explored the interaction between A. macrocephala and F. oxysporum through integrated small RNA (sRNA) and degradome sequencing to uncover the microRNA (miRNA)-mediated defense mechanisms. Results: We identified colonization of F. oxysporum in A. macrocephala roots on day 6. Nine sRNA samples were sequenced to examine the dynamic changes in miRNA expression in A. macrocephala infected by F. oxysporum at 0, 6, and 12 days after inoculation. Furthermore, we using degradome sequencing and quantitative real-time PCR (qRT-PCR), validated four miRNA/target regulatory units involved in A. macrocephala-F. oxysporum interactions. Discussion: This study provides new insights into the molecular mechanisms underlying A. macrocephala's early defense against F. oxysporum infection, suggesting directions for enhancing resistance against this pathogen.

4.
Aging (Albany NY) ; 16(16): 12008-12028, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39177661

RESUMEN

Atractylodes lancea which was listed in "Shennong's Materia Medica" and could be used to treat gastrointestinal-associated diseases. However, its roles, core and active ingredients, and mechanisms in treatment of colorectal cancer (CRC) were still unknown. Therefore, network pharmacology and experimental validation were used to clarify the effects, core active ingredients and molecular mechanisms of Atractylodes lancea. We found that Atractylodes lancea has 28 effective active components and 213 potential targets. Seventy-three genes which demonstrate interaction between the Atractylodes lancea and CRC were confirmed. Enrichment analysis showed that 2033 GO biological process items and 144 KEGG pathways. Survival and molecular docking analysis revealed that luteolin as the core component interacted with these genes (Matrix metalloproteinase 3 (MMP3), Matrix metalloproteinase 9 (MMP9), Tissue inhibitor of metalloproteinases 1 (TIMP1), Vascular endothelial growth factor A (VEGFA)) with the lowest binding energy, and these genes were involved in building a prognostic model for CRC. Cellular phenotyping experiments showed that luteolin could inhibit the proliferation and migration of CRC cells and downregulate the expression of MMP3, MMP9, TIMP1, VEGFA probably by Phosphoinositide 3-kinase/ serine/threonine kinase Akt (PI3K/AKT) pathway. To conclude, Atractylodes lancea could inhibit proliferation and migration of CRC cells through its core active ingredient (luteolin) to suppress the expression of MMP3, MMP9, TIMP1, VEGFA probably by PI3K/AKT pathway.


Asunto(s)
Atractylodes , Neoplasias Colorrectales , Luteolina , Simulación del Acoplamiento Molecular , Farmacología en Red , Atractylodes/química , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/genética , Humanos , Luteolina/farmacología , Proliferación Celular/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Movimiento Celular/efectos de los fármacos , Metaloproteinasa 9 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Transducción de Señal/efectos de los fármacos , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Inhibidor Tisular de Metaloproteinasa-1/genética , Línea Celular Tumoral , Medicamentos Herbarios Chinos/farmacología , Metaloproteinasa 3 de la Matriz/metabolismo , Metaloproteinasa 3 de la Matriz/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Antineoplásicos Fitogénicos/farmacología
5.
Phytochemistry ; 227: 114232, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39097216

RESUMEN

A bioassay-guided isolation from Atractylodes lancea (Thunb.) DC. obtained 22 compounds, including eight previously undescribed sesquiterpenoids and polyacetylenes (1, 3 and 12-17), as well as fourteen known analogues, and their structures were confirmed by extensive spectroscopic methods. This study evaluated their antibacterial activity against methicillin resistant Staphylococcus aureus (MRSA) for the first time, as well as anti-inflammatory activity. Most of them, including new compounds, showed varying degrees of antibacterial activity against S. aureus and MRSA. Notably, compound 21 exhibited significant antibacterial activity against four different bacteria (MIC 6.25-20.00 µg/mL). This suggested that 21 may have the potential to be developed into a broad-spectrum antibacterial agent. Moreover, except for 9 and 11, most compounds exhibited great anti-inflammatory activity (IC50 1.92-37.91 µM), and iNOS might be a potential target of these compounds according to the molecular docking analysis.


Asunto(s)
Antibacterianos , Antiinflamatorios , Atractylodes , Staphylococcus aureus Resistente a Meticilina , Pruebas de Sensibilidad Microbiana , Atractylodes/química , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Estructura Molecular , Simulación del Acoplamiento Molecular , Animales , Relación Estructura-Actividad , Ratones , Relación Dosis-Respuesta a Droga , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/aislamiento & purificación , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo II/metabolismo , Bioensayo , Células RAW 264.7 , Staphylococcus aureus/efectos de los fármacos
6.
J Tradit Complement Med ; 14(4): 424-434, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39035690

RESUMEN

Background and aim: Type-2 diabetes mellitus (T2DM) is mainly characterized by insulin resistance (IR) induced by hyperglycaemia and insufficient insulin secretion. We employed a diabetic fly model to examine the effect and molecular mechanism of Atractylodes macrocephala Koidz. and Cuscuta chinensis Lam. (AMK-CCL) extract as traditional Chinese medicine in treating IR and T2DM. Experimental procedure: The contents of the active ingredients (rhamnose, xylose, mannose, and hyperoside) in AMK-CCL extract were determined by high-performance liquid chromatography. Wild-type (Cg-GAL4/+) or diabetic (Cg > InRK1409A) Drosophila flies were divided into the control group or metformin group and AMK-CCL (0.0125, 0.025, 0.05, 0.1 g/ml) groups. Food intake, haemolymph glucose and trehalose, protein, weight, triglycerides (TAG), and glycogen were measured to assess glycolipid metabolism. Phosphatidylinositol-3-kinase (PI3K)/Akt signalling was detected using fluorescent reporters [tGPH, Drosophila forkhead box O (dFoxO)-green fluorescent protein (GFP), Glut1-GFP, 2-NBDG] in vivo. Glut1/3 mRNA levels and Akt phosphorylation levels were detected by quantitative polymerase chain reaction and western blotting, respectively, in vitro. Results: AMK-CCL extract contained 0.038 % rhamnose, 0.017 % xylose, 0.69 % mannose, and 0.039 % hyperoside. AMK-CCL at 0.0125 g/mL significantly suppressed the increase in circulating glucose, and the decrease in body weight, TAG, and glycogen contents of diabetic flies. AMK-CCL improved PI3K activity, Akt phosphorylation, Glut1/3 expression, and glucose uptake in diabetic flies, and also rescued diabetes-induced dFoxO nuclear localisation. Conclusions: These findings indicate that AMK-CCL extract ameliorates IR-induced diabetes via the PI3K/Akt signalling pathway, providing an experimental basis for clinical treatment.

7.
Zhongguo Zhong Yao Za Zhi ; 49(12): 3144-3151, 2024 Jun.
Artículo en Chino | MEDLINE | ID: mdl-39041074

RESUMEN

Atractylodes lancea is a perennial herb of the Asteraceae family and is one of the well-known traditional Chinese medicine(TCM). Several studies have documented polyene alkyne and sesquiterpenoid compounds as the main bioactive compounds of A. lancea, especially atractylodin, atractylon, ß-eudesmol, and hinesol in its rhizomes, which possess anti-virus, anti-inflammation, hypoglycemic, anti-hypoxia, liver protection, and diuresis activities. In parallel with the recent advancements in biotechnology, important achievements have been made in the study of biological characteristics and propagation technology of A. lancea. This study reviews the research progress on morphological features, cytogenetics, ecological planting, effective ingredients, and tissue culture techniques of A. lancea from the biology perspective, so as to provide a theoretical basis for reasonable development of A. lancea resources.


Asunto(s)
Atractylodes , Atractylodes/química , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Animales , Humanos
8.
Front Pharmacol ; 15: 1398294, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38860174

RESUMEN

Ulcerative colitis (UC) is a chronic inflammatory disease of the intestines that can significantly impact quality of life and lead to various complications. Currently, 5-aminosalicylic acid derivatives, corticosteroids, immunosuppressants, and biologics are the major treatment strategies for UC, but their limitations have raised concerns. Atractylenolides (ATs), sesquiterpene metabolites found in Atractylodes macrocephala Koidz., have shown promising effects in treating UC by exerting immune barrier modulation, alleviating oxidative stress, gut microbiota regulation, improving mitochondrial dysfunction and repairing the intestinal barrier. Furthermore, ATs have been shown to possess remarkable anti-fibrosis, anti-thrombus, anti-angiogenesis and anti-cancer. These findings suggest that ATs hold important potential in treating UC and its complications. Therefore, this review systematically summarizes the efficacy and potential mechanisms of ATs in treating UC and its complications, providing the latest insights for further research and clinical applications.

9.
Drug Des Devel Ther ; 18: 2169-2187, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38882048

RESUMEN

Purpose: Traditional Chinese medicine (TCM) therapy is an important means to treat hepatocellular carcinoma (HCC), Astragalus (Latin name: Hedysarum Multijugum Maxim; Chinese name: Huangqi, HQ) and Atractylodes (Latin name: Atractylodes Macrocephala Koidz; Chinese name: Baizhu, BZ) (HQBZ), a classic herb pair, is often used in combination to HCC. However, the main components and potential mechanisms of HQBZ therapy in HCC remain unclear. This study aimed to identify the potential active ingredients and molecular mechanisms of action of HQBZ in HCC treatment. Methods: The HQBZ-Compound-Target-HCC network and HQBZ-HCC transcriptional regulatory network were constructed to screen the core active compound components and targets of HQBZ therapy for HCC. Molecular docking techniques are used to verify the stability of binding core active compound components to targets. GO and KEGG enrichment analysis were used to explore the signaling pathway of HQBZ in HCC treatment, the mechanism of HQBZ treatment of HCC was verified based on in vivo H22 tumor bearing mice and in vitro cell experiments. Results: Network pharmacology and molecular docking studies showed that HQBZ treatment of HCC was related to the targeted regulation of IL-6 and STAT3 by the active compound biatractylolide, KEGG pathway enrichment analysis suggest that HQBZ may play a role in the treatment of HCC through IL-6/STAT3 signaling pathway. In vitro experiment results proved that HQBZ could regulate IL-6/STAT3 signaling pathway transduction on CD8+T cells, inhibit CD8+T cell exhaustion and restore the function of exhausted CD8+T cells. In vivo experiment results proved that HQBZ can regulate IL-6/STAT3 signaling pathway transduction in H22 liver cancer model mouse tumor tissue, increased the proportion of tumor infiltrating CD8+T cells. Conclusion: This study found that HQBZ may play a therapeutic role in HCC by targeting IL-6 and STAT3 through biatractylolide, its mechanism of action is related to regulating IL-6/STAT3 signaling pathway, reversing T cell failure and increasing tumor infiltration CD8+T cells.


Asunto(s)
Antineoplásicos Fitogénicos , Atractylodes , Carcinoma Hepatocelular , Medicamentos Herbarios Chinos , Neoplasias Hepáticas , Farmacología en Red , Factor de Transcripción STAT3 , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Animales , Humanos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Ratones , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/antagonistas & inhibidores , Atractylodes/química , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Simulación del Acoplamiento Molecular , Planta del Astrágalo/química , Proliferación Celular/efectos de los fármacos , Neoplasias Hepáticas Experimentales/tratamiento farmacológico , Neoplasias Hepáticas Experimentales/patología , Neoplasias Hepáticas Experimentales/metabolismo , Interleucina-6/metabolismo , Interleucina-6/antagonistas & inhibidores , Medicina Tradicional China , Ensayos de Selección de Medicamentos Antitumorales
10.
Phytomedicine ; 130: 155739, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38797027

RESUMEN

BACKGROUND: Atractylodes macrocephala Koidz. (Baizhu in Chinese, BZ) is a typical traditional edible-medicinal herb used for thousands of years. Known as "the spleen-reinforcing medicine", it is often used clinically to treat reduced digestive function, abdominal distension, and diarrhoea, which are all caused by spleen deficiency. Among BZ's processing products, honey bran-fried BZ (HBBZ) is the only processed product recorded in BZ in the 2020 Chinese Pharmacopoeia (ChP). There are differences in effectiveness, traditional application, and clinical indications between them. PURPOSE: This review reviewed BZ and its main product HBBZ from botany, ethnopharmacology, chemical composition, pharmacological effectiveness, and safety. The changes in chemical composition and pharmacological effectiveness of BZ induced by the processing of traditional Chinese medicine were emphatically described. METHODS: Keywords related to Atractylodes macrocephala Koidz., honey bran frying, essential oil, lactones, polysaccharide and combinations to include published studies of BZ and HBBZ from 2004-2023 were searched in the following databases: Pubmed, Chengdu University of TCM Library, Google Scholar, China National Knowledge Infrastructure (CNKI), and Wanfang database. All studies, published in English or Chinese, were included. However, in the process of chemical composition collection, we reviewed all available literature on the chemical composition of BZ and HBBZ. CONCLUSION: Honey bran frying processing methods will affect BZ's chemical composition and pharmacological effectiveness. The types and contents of chemical components in the HBBZ showed some changes compared with those in BZ. For example, the content of volatile oil decreased and the content of lactones increased after stir-fried bran. In addition, new ingredients such as phenylacetaldehyde, 2-acetyl pyrrole, 6- (1,1-dimethylethyl) -3,4-dihydro-1 (2H) -naphthalone and 5-hydroxymethylfurfural appeared. Both BZ and HBBZ have a variety of pharmacological effectiveness. After stir-fried with honey bran, the "Zao Xing" is reduced, and the efficacy of tonify spleen is strengthened, which is more suitable for patients with weak spleen and stomach.


Asunto(s)
Atractylodes , Medicamentos Herbarios Chinos , Miel , Medicina Tradicional China , Atractylodes/química , Miel/análisis , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Humanos , Lactonas/farmacología , Lactonas/análisis , Aceites Volátiles/farmacología , Aceites Volátiles/química , Polisacáridos/farmacología , Polisacáridos/química , Animales
11.
Cell Biochem Biophys ; 82(2): 1409-1419, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38722472

RESUMEN

The activation, injury, and dysfunction of endothelial cells are considered to be the initial key events in the development of atherosclerosis. Di (2-ethylhexyl) phthalate (DEHP), a prevalent organic pollutant, can cause damage to multiple organs. Polysaccharide of Atractylodes macrocephala Koidz (PAMK) is a bioactive compound extracted from A. macrocephala Koidz with various biological activities. This study investigates the protective effects of PAMK on porcine aortic valve endothelial cells (PAVEC) damaged by DEHP. PAVECs treated with DEHP alone or with PAMK showed reduced cell apoptosis and death in PAMK-pretreated cells. PAMK up-regulated Bcl-2 expression and down-regulated Bax protein, suppressing apoptosis. Flow cytometry analysis demonstrated that PAMK protected PAVECs from DEHP-induced damage. These findings suggest that PAMK inhibits cell apoptosis and protects against DEHP damage in endothelial cells.


Asunto(s)
Válvula Aórtica , Apoptosis , Atractylodes , Dietilhexil Ftalato , Células Endoteliales , Proteínas Proto-Oncogénicas c-bcl-2 , Proteína X Asociada a bcl-2 , Animales , Dietilhexil Ftalato/toxicidad , Atractylodes/química , Apoptosis/efectos de los fármacos , Porcinos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/citología , Células Endoteliales/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Válvula Aórtica/efectos de los fármacos , Válvula Aórtica/metabolismo , Válvula Aórtica/patología , Polisacáridos/farmacología , Polisacáridos/química , Células Cultivadas , Sustancias Protectoras/farmacología , Sustancias Protectoras/química
12.
Chem Biodivers ; 21(8): e202400817, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38775105

RESUMEN

Four undescribed sesquiterpenes, atramacrolodes A-D (1-4), along with six known compounds 5-10 were isolated from the rhizome of Atractylodes macrocephala. Compound 3 possessed a new skeleton based on an unprecedented carton-carton connection. Their structures were determined by UV, IR, HRESIMS, NMR spectra, 13C NMR calculation with DP4+ analysis, and the comparison of experimental and calculated ECD spectra. Compounds 5 and 8 showed protective effects against paracetamol-induced liver cell injury.


Asunto(s)
Acetaminofén , Atractylodes , Rizoma , Sesquiterpenos de Eudesmano , Atractylodes/química , Rizoma/química , Sesquiterpenos de Eudesmano/aislamiento & purificación , Sesquiterpenos de Eudesmano/química , Sesquiterpenos de Eudesmano/farmacología , Humanos , Conformación Molecular , Estructura Molecular , Sesquiterpenos/química , Sesquiterpenos/aislamiento & purificación , Sesquiterpenos/farmacología
13.
J Fungi (Basel) ; 10(5)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38786706

RESUMEN

Atractylodes lancea is a perennial herb whose rhizome (AR) is a valuable traditional Chinese medicine with immense market demand. The cultivation of Atractylodes lancea faces outbreaks of root rot and deterioration in herb quality due to complex causes. Here, we investigated the effects of Trichoderma spp., well-known biocontrol agents and plant-growth-promoters, on ARs. We isolated Trichoderma strains from healthy ARs collected in different habitats and selected three T. harzianum strains (Th2, Th3 and Th4) with the strongest antagonizing effects on root rot pathogens (Fusarium spp.). We inoculated geo-authentic A. lancea plantlets with Th2, Th3 and Th4 and measured the biomass and quality of 70-day-old ARs. Th2 and Th3 promoted root rot resistance of A. lancea. Th2, Th3 and Th4 all boosted AR quality: the concentration of the four major medicinal compounds in ARs (atractylon, atractylodin, hinesol and ß-eudesmol) each increased 1.6- to 18.2-fold. Meanwhile, however, the yield of ARs decreased by 0.58- to 0.27-fold. Overall, Th3 dramatically increased the quality of ARs at a relatively low cost, namely lower yield, showing great potential for practical application. Our results showed selectivity between A. lancea and allochthonous Trichoderma isolates, indicating the importance of selecting specific microbial patches for herb cultivation.

14.
Antioxidants (Basel) ; 13(5)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38790683

RESUMEN

The natural edible characteristics of Chinese herbs have led more and more people to study them as an alternative product to antibiotics. In this study, crude extracts of Glycyrrhiza radix and Atractylodes macrocephala (abbreviated as GRAM) with glycyrrhizic acid content not less than 0.2 mg/g were selected to evaluate the effects of GRAM on the immune and antioxidant capacity of model animals. Thirty 21-day-old male Leghorn chickens were weighed and randomly assigned to one of three groups of ten animals each. The treatments comprised a control group (CON), in which saline was injected at day 31, day 33, and day 35, an LPS-treated group (LPS), in which LPS (0.5 mg/kg of BW) was injected at day 31, day 33, and day 35, and finally a GRAM and LPS-treated group, (G-L) in which a GRAM-treated diet (at GRAM 2 g/kg) was fed from day 21 to day 35 with LPS injection (0.5 mg/kg of BW) at day 31, day 33, and day 35. The results of diarrhea grade and serum antioxidant measurement showed that the LPS group had obvious diarrhea symptoms, serum ROS and MDA were significantly increased, and T-AOC was significantly decreased. The oxidative stress model of LPS was successfully established. The results of immune and antioxidant indexes showed that feeding GRAM significantly decreased levels of the pro-inflammatory factors TNF-α, IL-1ß, and IL-6 (p < 0.05) and significantly increased levels of the anti-inflammatory factors IL-4 and IL-10 and levels of the antioxidant enzymes GSH-Px and CAT (p < 0.05). GRAM resisted the influence of LPS on ileum morphology, liver, and immune organs and maintained normal index values for ileum morphology, liver, and immune organs. In summary, this study confirmed the antidiarrheal effect of GRAM, which improved the immune and antioxidant capacity of model animals by regulating inflammatory cytokine levels and antioxidant enzyme activity in poultry.

15.
Front Pharmacol ; 15: 1302055, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38738173

RESUMEN

Background: Exosome-like nanoparticles (ELNs) mediate interspecies intercellular communications and modulate gene expression. Hypothesis/Purpose: In this study, we isolated and purified ELNs from the dried rhizome of Atractylodes lancea (Thunb.) DC. [Asteraceae] (ALR-ELNs), a traditional natural medicine, and investigated their potential as neuroinflammatory therapeutic agents. Methods: ALR-ELN samples were isolated and purified using differential centrifugation, and their physical features and microRNA contents were analyzed through transmission electron microscopy and RNA sequencing, respectively. BV-2 microglial murine cells and primary mouse microglial cells were cultured in vitro, and their ability to uptake ALR-ELNs was explored using fluorescence microscopy. The capacity of ALR-ELNs to modulate the anti-inflammatory responses of these cells to lipopolysaccharide (LPS) exposure was assessed through mRNA and protein expression analyses. Results: Overall, BV-2 cells were found to internalize ALR-ELNs, which comprised three microRNAs (ath-miR166f, ath-miR162a-5p, and ath-miR162b-5p) that could have anti-inflammatory activity. Pretreatment of BV-2 cells with ALR-ELN prevented the pro-inflammatory effects of LPS stimulation by significantly reducing the levels of nitric oxide, interleukin-1ß, interleukin-6, and tumor necrosis factor-α. Notably, the mRNA levels of Il1b, Il6, iNos, ccl2, and cxcl10 in BV-2 cells, which increased upon LPS exposure, were significantly reduced following ALR-ELN treatment. Moreover, the mRNA levels of heme oxygenase 1, Irf7, ccl12, and Irg1 also increased significantly following ALR-ELN treatment. In addition, pretreatment of primary mouse microglial cells with ALR-ELN prevented the pro-inflammatory effects of LPS stimulation by significantly reducing the levels of nitric oxide. Conclusion: Our findings indicate that ALR-ELNs exhibit anti-inflammatory effects on murine microglial cells. Further validation may prove ALR-ELNs as a promising neuroinflammatory therapeutic agent.

16.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2138-2146, 2024 Apr.
Artículo en Chino | MEDLINE | ID: mdl-38812229

RESUMEN

In this study, four Atractylodes chinensis(A. chinensis) with different leaf shapes, such as the split leaf, long and narrow leaf, oval leaf, and large round leaf, were used as experimental materials to establish a method for simultaneously determining atractylodin, atractylenolide Ⅰ, ß-eudesmol, and atractylon in the rhizome of A. chinensis. The expression of key enzyme genes for biosynthesis of acetyl-CoA carboxylase(ACC), 3-hydroxy-3-methylglutaryl-CoA reductase(HMGR), and farnesyl pyrophosphate synthase(FPPS) was detected by real-time fluorescence quantitative polymerase chain reaction(qRT-PCR). High performance liquid chromatography(HPLC) was used to compare the difference in the content of four active components in A. chinensis with different leaf shapes, and the correlation between the content of active components and the expression of key enzyme genes in biosynthesis was discussed. The results show that there was good linearity among atractylodin, atractylenolide Ⅰ, ß-eudesmol, and atractylon in the range of 3.30-33.00 µg·mL~(-1)(r =0.999 7), 12.04-120.40 µg·mL~(-1)(r =0.999 5), 29.16-291.60 µg·mL~(-1)(r =0.999 5), and 14.20-142.00 µg·mL~(-1)(r =0.999 5), respectively. The average recoveries were 99.77%(RSD=2.1%), 98.56%(RSD=1.2%), 103.0%(RSD=1.2%), and 100.6%(RSD=1.5%), respectively. The method was accurate and had good reproducibility, which could be used to simultaneously detect atractylodin, atractylenolide Ⅰ, ß-eudesmol, and atractylon. The results showed that there were significant differences in the content of four active components in A. chinensis with different leaf shapes. The content of atractylodin, atractylenolide Ⅰ, and ß-eudesmol in A. chinensis with split leaves was the highest, which were 1.341 9, 5.237 2, and 12.084 3 mg·g~(-1), respectively. The content of atractylon in A. chinensis with long and narrow leaves was the highest(5.470 1 mg·g~(-1)). The content of atractylodin, atractylenolide Ⅰ, ß-eudesmol, and atractylon in A. chinensis with oval leaves was the lowest. The total content of the four effective components in descending order was A. chinensis with split leaves > A. chinensis with long and narrow leaves > A. chinensis with large round leaves > A. chinensis with oval leaves. The gene expression levels of key enzymes ACC, HMGR, and FPPS in A. chinensis with split leaves were the highest(P < 0.05), and the gene expression levels of key enzymes ACC and HMGR in A. chinensis with oval leaves were the lowest(P < 0.05). The gene expression level of key enzyme FPPS in A. chinensis with large round leaves was the lowest. In A. chinensis with different leaf shapes, the key enzyme gene ACC was significantly positively correlated with the polyacetylene component, namely atractylodin(P < 0.01), and the key enzyme genes HMGR and FPPS were positively correlated with the sesquiterpene components, namely atractylenolide Ⅰ, ß-eudesmol, and atractylon. In summary, the quality of A. chinensis with split leaves is the best, and the biosynthesis of atractylodin is significantly correlated with the gene expression of key enzyme ACC, which provides a theoretical basis for screening and optimizing the germplasm resources of A. chinensis and improving the quality of medicinal materials.


Asunto(s)
Atractylodes , Lactonas , Hojas de la Planta , Sesquiterpenos , Atractylodes/genética , Atractylodes/química , Atractylodes/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/química , Sesquiterpenos/metabolismo , Sesquiterpenos/análisis , Lactonas/metabolismo , Lactonas/análisis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Furanos/metabolismo , Medicamentos Herbarios Chinos , Regulación de la Expresión Génica de las Plantas , Rizoma/genética , Rizoma/química , Rizoma/metabolismo , Sesquiterpenos de Eudesmano
17.
Heliyon ; 10(7): e28019, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38560167

RESUMEN

Aim: Atractylodes macrocephala Rhizome (AM) has been used to treat hyperlipidemia for centuries, but its functional components and mechanisms are not clear. This research aimed to investigate the active components in AM and the mechanisms that underlie its anti-hyperlipidemia effect. Methods: SD rats were fed a high-sucrose high-fat diet in conjunction with alcohol (HSHFDAC) along with different AM extracts (AMW, AMO, AME, and AMP) for 4 weeks. AM's active components were analyzed using multiple databases, and their mechanisms were explored through network pharmacology. The relationship between AM's effect of enhancing serum HDL-c and regulating the expression of reverse cholesterol transport (RCT)-related proteins (Apo-A1, LCAT, and SR-BI) was further validated in the HSHFDAC-induced hyperlipidemic rats. The kidney and liver functions of the rats were measured to evaluate the safety of AM. Results: AMO, mainly comprised of volatile and liposoluble components, contributed the most significant anti-hyperlipidemia effect among the four extracts obtained from AM, significantly improving the blood lipid profile. Network pharmacology analysis also suggested that volatile and liposoluble components, comprise AM's main active components and they might act on signaling pathways associated with elevated HDL-c. Validation experiments found that AMO substantially and dose-dependently increased HDL-c levels, upregulated the expression of Apo-A1, SR-BI, and LCAT, improved the pathological changes in the kidney and liver, and significantly reduced the serum creatinine levels in rats with hyperlipidemia. Conclusion: The main anti-hyperlipidemia active components of AM are its volatile and liposoluble components, which may enhance serum HDL-c by increasing the expression of the RCT-related proteins Apo-A1, LCAT, and SR-BI.

18.
J Nat Med ; 78(3): 702-708, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38662303

RESUMEN

Two new sesterterpenoids, atractylodes japonica terpenoid acid I (1) and atractylodes japonica terpenoid aldehyde I (2), were isolated from the rhizomes of Atractylodes japonica Koidz. ex Kitam together with ten known compounds (3-12). Their structures were elucidated on the basis of comprehensive spectroscopic analysis (1D/2D NMR, HRESIMS and IR). In addition, all of these isolated compounds were evaluated for their cytotoxic activities against human gastric cancer cell MGC-803 and human hepatocellular cancer cell HepG-2. Most of them exhibited moderate to weak inhibitory effects with IC50 values in the range of 25.15-88.85 µM except for 9-12.


Asunto(s)
Atractylodes , Rizoma , Sesterterpenos , Atractylodes/química , Humanos , Estructura Molecular , Línea Celular Tumoral , Sesterterpenos/química , Sesterterpenos/farmacología , Sesterterpenos/aislamiento & purificación , Rizoma/química , Células Hep G2 , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Espectroscopía de Resonancia Magnética , Extractos Vegetales/química , Extractos Vegetales/farmacología
19.
Plant Dis ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598853

RESUMEN

The cultivated aromatic medicinal herb Atractylodes lancea (Thunb.) DC. is widely used in the pharmaceuticals, nutraceuticals, and cosmetics industries (Na-Bangchang et al. 2014; Zhan et al. 2023). Huanggang in Hubei Province is a major production area for A. lancea (Huang et al. 2022; Wang et al. 2023). In April 2023, more than two-thirds of the surveyed plant leaves in this region exhibited virus-like symptoms, such as curling and mosaic patterns. To identify the underlying cause, 80 symptomatic plant leaf samples were collected from four fields (20 leaves per field) in this region and pooled for virome analysis. Total RNA, including ribosomal RNA, was extracted from the pooled samples using the Plant RNA Extraction Mini Kit (Onrew Biotech, Guangdong, China), for sequencing library construction. The Illumina NovaSeq 6000 platform was used to sequence the library and generate 150 bp paired-end reads. After processing the raw data with Trimmomatic software, a total of 44,354,650 high-quality clean reads were obtained. The clean reads were aligned against ribosomal RNA using BWA software (v0.7.17) to avoid interference and eliminate corresponding sequences. After removing potential contamination, contig assembly of the clean reads was performed using Megahit software (v1.2.9). The resulting contigs were compared with the virus NT database using the BLASTn program. Sequence pairwise comparison revealed 8 contigs (574 nt to 2243 nt) with identities ranging from 81.88% to 90.77% with Atractylodes mild mottle virus (AMMV, NC_027924.1, Lim et al., 2015). Additionally, contigs mapped to Carlavirus, Pelarspovirus, and other plant viruses in our virome dataset had low coverage and pairwise identity (less than 70%), which need to be further investigated. The presence of AMMV was confirmed by aligning the clean reads to the reference sequence (NC_027924.1) using BWA and SAMtools software, resulting in a consensus sequence (8024 nt) with gaps. DNA extraction from the pooled samples was performed using the Rapid Universal Genomic DNA Extraction Kit (Simgen, Zhejiang, China). Two pairs of specific primers, 3399F (5'-AAAGAAGAACCTCCTGATACGG-3')/5924R (5'-TGAACCTGATTCTCTTGGC-3') and 1830F (5'- CTCAGGAAATCCCAATGC -3')/3640R(5'-TTTCCCAATGTTCTTCGGG-3'), were designed to amplify the complete gene sequences of polymerase and coat protein (CP), based on the consensus sequence. The PCR products with the lengths of 2521 bp and 1814 bp were cloned into the pMD18-T vector (Takara Biotech, Dalian, China) for sequencing. The BLASTn analysis showed that the polymerase and CP gene sequences shared an identity of 94.51% (1929/2041 nt) and 88.41% (1419/1605 nt) with the AMMV isolate (NC_027924.1), respectively. The sequences have been deposited in GenBank under the accession numbers OR544810 and OR544811. We collected leaves from 32 A. lancea plants (16 symptomatic and 16 asymptomatic) in the fields. RT-PCR was conducted using CPF (5'-CTGCGAATATGAAAGTGC-3') and CPR (5'-GGTGAGCTTGTCTGTTAGG-3') primers, which were designed targeting a 527bp fragment of the CP gene (OR544811). Amplicons of the expected size (527bp) were detected in 24 plants (11 symptomatic and 13 asymptomatic), three of which were sequenced by Sanger sequencing, showing a 100% match to OR544811. These findings indicate that AMMV is prevalent in the major production area of A. lancea. Further research is needed to better characterize the potential risks of AMMV to A. lancea cultivation in China as well as other countries.

20.
Biomed Pharmacother ; 175: 116519, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38663104

RESUMEN

OBJECTIVES: To elucidate the therapeutic effects and mechanisms of Atractylodes macrocephala extract crystallize (BZEP) and BZEP self-microemulsion (BZEPWR) on metabolic dysfunction-associated fatty liver disease (MAFLD) induced by "high sugar, high fat, and excessive alcohol consumption" based on the gut-liver axis HDL/LPS signaling pathway. METHODS: In this study, BZEP and BZEPWR were obtained via isolation, purification, and microemulsification. Furthermore, an anthropomorphic MAFLD rat model of "high sugar, high fat, and excessive alcohol consumption" was established. The therapeutic effects of BZEPWR and BZEP on the model rats were evaluated in terms of liver function, lipid metabolism (especially HDL-C), serum antioxidant indexes, and liver and intestinal pathophysiology. To determine the lipoproteins in the serum sample, the amplitudes of a plurality of NMR spectra were derived via deconvolution of the composite methyl signal envelope to yield HDL-C subclass concentrations. The changes in intestinal flora were detected via 16 S rRNA gene sequencing. In addition, the gut-liver axis HDL/LPS signaling pathway was validated using immunohistochemistry, immunofluorescence, and western blot. RESULTS: The findings established that BZEPWR and BZEP improved animal signs, serum levels of liver enzymes (ALT and AST), lipid metabolism (TC, TG, HDL-C, and LDL-C), and antioxidant indexes (GSH, SOD, and ROS). In addition, pathological damage to the liver, colon, and ileum was ameliorated, and the intestinal barrier function of the model rats was restored. At the genus level, BZEPWR and BZEP exerted positive effects on beneficial bacteria, such as Lactobacillus and norank_f__Muribaculaceae, and inhibitory effects on harmful bacteria, such as unclassified_f__Lachnospiraceae and Blautia. Twenty HDL-C subspecies were detected, and their levels were differentially increased in both BZEPWR and BZEP groups, with BZEPWR exhibiting a stronger elevating effect on specific HDL-C subspecies. Also, the gut-liver axis HDL/LPS signaling pathway was studied, which indicated that BZEPWR and BZEP significantly increased the expressions of ABCA1, LXR, occludin, and claudin-1 proteins in the gut and serum levels of HDL-C. Concomitantly, the levels of LPS in the serum and TLR4, Myd88, and NF-κB proteins in the liver were decreased. CONCLUSION: BZEPWR and BZEP exert restorative and reversal effects on the pathophysiological damage to the gut-liver axis in MAFLD rats, and the therapeutic mechanism may be related to the regulation of the intestinal flora and the HDL/LPS signaling pathway.


Asunto(s)
Atractylodes , Emulsiones , Microbioma Gastrointestinal , Lipopolisacáridos , Hígado , Extractos Vegetales , Ratas Sprague-Dawley , Transducción de Señal , Animales , Transducción de Señal/efectos de los fármacos , Masculino , Ratas , Hígado/efectos de los fármacos , Hígado/metabolismo , Atractylodes/química , Extractos Vegetales/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Lipoproteínas HDL/sangre , Modelos Animales de Enfermedad , Metabolismo de los Lípidos/efectos de los fármacos , Hígado Graso/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Antioxidantes/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA