Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biochem Biophys Rep ; 13: 93-98, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29387814

RESUMEN

Intestinal homeostasis and the coordinated actions of digestion, absorption and excretion are tightly regulated by a number of gastrointestinal hormones. Most of them exert their actions through G-protein-coupled receptors. Recently, we showed that the absence of Gαq/Gα11 signaling impaired the maturation of Paneth cells, induced their differentiation toward goblet cells, and affected the regeneration of the colonic mucosa in an experimental model of colitis. Although an immunohistochemical study showed that Gαq/Gα11 were highly expressed in enterocytes, it seemed that enterocytes were not affected in Int-Gq/G11 double knock-out intestine. Thus, we used an intestinal epithelial cell line to examine the role of signaling through Gαq/Gα11 in enterocytes and manipulated the expression level of Gαq and/or Gα11. The proliferation was inhibited in IEC-6 cells that overexpressed Gαq/Gα11 and enhanced in IEC-6 cells in which Gαq/Gα11 was downregulated. The expression of T-cell factor 1 was increased according to the overexpression of Gαq/Gα11. The expression of Notch1 intracellular cytoplasmic domain was decreased by the overexpression of Gαq/Gα11 and increased by the downregulation of Gαq/Gα11. The relative mRNA expression of Muc2, a goblet cell marker, was elevated in a Gαq/Gα11 knock-down experiment. Our findings suggest that Gαq/Gα11-mediated signaling inhibits proliferation and may support a physiological function, such as absorption or secretion, in terminally differentiated enterocytes.

2.
Cell Mol Gastroenterol Hepatol ; 3(1): 51-71, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28174757

RESUMEN

BACKGROUND & AIMS: The transcription factor atonal homolog 1 (ATOH1) controls the fate of intestinal progenitors downstream of the Notch signaling pathway. Intestinal progenitors that escape Notch activation express high levels of ATOH1 and commit to a secretory lineage fate, implicating ATOH1 as a gatekeeper for differentiation of intestinal epithelial cells. Although some transcription factors downstream of ATOH1, such as SPDEF, have been identified to specify differentiation and maturation of specific cell types, the bona fide transcriptional targets of ATOH1 still largely are unknown. Here, we aimed to identify ATOH1 targets and to identify transcription factors that are likely to co-regulate gene expression with ATOH1. METHODS: We used a combination of chromatin immunoprecipitation and messenger RNA-based high-throughput sequencing (ChIP-seq and RNA-seq), together with cell sorting and transgenic mice, to identify direct targets of ATOH1, and establish the epistatic relationship between ATOH1 and SPDEF. RESULTS: By using unbiased genome-wide approaches, we identified more than 700 genes as ATOH1 transcriptional targets in adult small intestine and colon. Ontology analysis indicated that ATOH1 directly regulates genes involved in specification and function of secretory cells. De novo motif analysis of ATOH1 targets identified SPDEF as a putative transcriptional co-regulator of ATOH1. Functional epistasis experiments in transgenic mice show that SPDEF amplifies ATOH1-dependent transcription but cannot independently initiate transcription of ATOH1 target genes. CONCLUSIONS: This study unveils the direct targets of ATOH1 in the adult intestines and illuminates the transcriptional events that initiate the specification and function of intestinal secretory lineages.

3.
J Cancer Res Clin Oncol ; 143(1): 43-49, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27624714

RESUMEN

BACKGROUND: It has recently been reported that atonal homolog 1 (ATOH1) gene is down-regulated in Merkel cell carcinoma (MCC) and thus may represent a tumor suppressor gene. OBJECTIVES: We aimed to test for ATOH1 gene mutations and expression levels in MCC tissues and cell lines. METHODS: Genomic DNA isolation and amplification via PCR was successfully performed in 33 MCCs on formalin-fixed paraffin-embedded tissue and three MCC cell lines, followed by Sanger sequencing of the whole ATOH1 gene to detect genomic aberrations. ATOH1 mRNA levels were determined by RT-PCR. Immunohistochemistry of ATOH1 was performed to quantify protein expression in tumor samples and cell lines. RESULTS: Neither in any of the 33 MCC tissue samples nor in the three cell lines ATOH1 mutations were present. ATOH1 was expressed in all lesions, albeit at different expression levels. Univariate analysis revealed that the total immunohistology score significantly correlated with the occurrence of tumor relapse (r = 0.57; P = 0.0008). This notion was confirmed in multivariate analysis suggesting that ATOH1 expression is a potential independent predictor for tumor relapse in MCC patients (P = 0.028). MCC-related death also correlated with ATOH1 expression (r = 0.4; P = 0.025); however, ATOH1 expression did not retain its predictive value in the regression model. CONCLUSIONS: In contrast to anecdotal reports ATOH1 expression is not lost by genetic alterations in MCC. However, protein expression of ATOH1 is increased in advanced MCC indicating that ATOH1 is involved in MCC progression.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Biomarcadores de Tumor/metabolismo , Carcinoma de Células de Merkel/metabolismo , Recurrencia Local de Neoplasia/metabolismo , Neoplasias Cutáneas/metabolismo , Anciano , Anciano de 80 o más Años , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Biomarcadores de Tumor/genética , Carcinoma de Células de Merkel/virología , Línea Celular Tumoral , Análisis Mutacional de ADN , Femenino , Humanos , Masculino , Poliomavirus de Células de Merkel/genética , Pronóstico , Neoplasias Cutáneas/virología
4.
Cell Mol Gastroenterol Hepatol ; 2(6): 767-782.e6, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28174748

RESUMEN

BACKGROUND & AIMS: Proliferation, differentiation, and morphogenesis of the intestinal epithelium are tightly regulated by a number of molecular pathways. Coordinated action of intestine is achieved by gastrointestinal hormones, most of which exert these actions through G-protein-coupled receptors. We herein investigated the role of Gαq/11-mediated signaling in intestinal homeostasis. METHODS: Intestinal tissues from control (Gnaqflox/floxGna11+/+ ), Int-Gq knock-out (KO) (VilCre+/-Gnaqflox/floxGna11+/+ ), G11 KO (Gnaqflox/floxGna11-/- ), and Int-Gq/G11 double knock-out (DKO) (VilCre+/-Gnaqflox/floxGna11-/- ) mice were examined by microscopy, transmission electron microscopy, and immunohistochemistry. The effect of Gαq/11-mediated signaling was studied in the cell lineage, proliferation, and apoptosis. Dextran sodium sulfate (DSS) colitis was induced to study the role of Gαq/11 in colon. RESULTS: Paneth cells were enlarged, increased in number, and mislocalized in Int-Gq/G11 DKO small intestine. Paneth cells also reacted with PAS and Muc2 antibody, indicating an intermediate character of Paneth and goblet cells. The nuclear ß-catenin, T-cell factor 1, and Sox9 expression were reduced severely in the crypt base of Int-Gq/G11 DKO intestine. Proliferation was activated in the crypt base and apoptosis was enhanced along the crypt. Int-Gq/G11 DKO mice were susceptible to DSS colitis. Proliferation was inhibited in the crypt of unaffected and regenerative areas. Cystic crypts, periodic acid-Schiff-positive cells, and Muc2-positive cells were unusually observed in the ulcerative region. CONCLUSIONS: The Gαq/11-mediated pathway plays a pivotal role in the preservation of intestinal homeostasis, especially in Paneth cell maturation and positioning. Wnt/ß-catenin signaling was reduced significantly in the crypt base in Gαq/G11-deficient mice, resulting in the defective maturation of Paneth cells, induction of differentiation toward goblet cells, and susceptibility to DSS colitis.

5.
Cancer Sci ; 106(8): 1000-7, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26017781

RESUMEN

Patients with inflammatory bowel disease (IBD) have an increased risk of developing colitis-associated colorectal cancer (CAC). CAC cells often develop chemoresistance, resulting in a poorer prognosis than that of sporadic colorectal cancer (CRC). The mechanism by which CAC enhances malignant potential remains unknown. We have previously reported that the proteasomal degradation of the transcription factor Atonal homolog 1 (Atoh1) protein results in the non-mucinous form of CRC. It also remains unknown whether Atoh1 protein is expressed in CAC. Therefore, in the present study, we investigated whether Atoh1 protein stabilizes in CAC. Consequently, the treatment with TNF-α stabilized Atoh1 protein through the inactivation of GSK-3ß via Akt, resulting in the mucinous form of CRC cell lines. Atoh1 protein also enriched cancer stem cells with upregulated Lgr5 expression and cells in G0/G1 cell cycle phase, resulting in both the chemoresistance to 5-fluorouracil and oxaliplatin and the promotion of cell migration. Immunofluorescence of the human mucinous CAC specimens showed the accumulation of NF-κB p65 at nuclei with the expression of Atoh1 in mucinous cancer. In conclusion, the inflammation associated with carcinogenesis may preserve the differentiation system of intestinal epithelial cell (IEC), resulting in the acquisition of both the mucinous phenotype and high malignant potential associated with the enrichment of cancer stem cell.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Neoplasias Colorrectales/patología , Células Madre Neoplásicas/patología , Factor de Necrosis Tumoral alfa/metabolismo , Adulto , Western Blotting , Línea Celular Tumoral , Neoplasias Colorrectales/metabolismo , Femenino , Humanos , Enfermedades Inflamatorias del Intestino/complicaciones , Mucosa Intestinal/patología , Masculino , Persona de Mediana Edad , Reacción en Cadena en Tiempo Real de la Polimerasa
6.
Regul Pept ; 186: 123-30, 2013 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-23994577

RESUMEN

Neuropeptide Y (NPY) is a peptide found in the brain and autonomic nervous system, which is associated with anxiety, depression, epilepsy, learning and memory, sleep, obesity and circadian rhythms. NPY has recently gained much attention as an endogenous antiepileptic and antidepressant agent, as drugs with antiepileptic and/or mood-stabilizing properties may exert their action by increasing NPY concentrations, which in turn can reduce anxiety and depression levels, dampen seizures or increase seizure threshold. We have used human neuroblastoma SH-SY5Y cells to investigate the effect of valproate (VPA) and amitriptyline (AMI) on NPY expression at therapeutic plasma concentrations of 0.6mM and 630nM, respectively. In addition, 12-O-tetradecanoylphorbol-13-acetate (TPA) known to differentiate SH-SY5Y cells into a neuronal phenotype and to increase NPY expression through activation of protein kinase C (PKC) was applied as a positive control (16nM). Cell viability after drug treatment was tested with a 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. NPY expression was measured using immunofluorescence and quantitative RT-PCR (qRT-PCR). Results from immunocytochemistry have shown NPY levels to be significantly increased following a 72h but not 24h VPA treatment. A further increase in expression was observed with simultaneous VPA and TPA treatment, suggesting that the two agents may increase NPY expression through different mechanisms. The increase in NPY mRNA by VPA and TPA was confirmed with qRT-PCR after 72h. In contrast, AMI had no effect on NPY expression in SH-SY5Y cells. Together, the data point to an elevation of human NPY mRNA and peptide levels by therapeutic concentrations of VPA following chronic treatment. Thus, upregulation of NPY may have an impact in anti-cancer treatment of neuroblastomas with VPA, and antagonizing hypothalamic NPY effects may help to ameliorate VPA-induced weight gain and obesity without interfering with the desired central effects of VPA.


Asunto(s)
Amitriptilina/farmacología , Anticonvulsivantes/farmacología , Expresión Génica/efectos de los fármacos , Neuropéptido Y/metabolismo , Ácido Valproico/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Neuroblastoma , Neuropéptido Y/genética , Acetato de Tetradecanoilforbol/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA