Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 323
Filtrar
1.
Cancer Immunol Immunother ; 73(11): 218, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39235510

RESUMEN

Epigenetic modifications to DNA and chromatin control oncogenic and tumor-suppressive mechanisms in melanoma. Ezh2, the catalytic component of the Polycomb Repressive Complex 2 (PRC2), which mediates methylation of lysine 27 on histone 3 (H3K27me3), can regulate both melanoma initiation and progression. We previously found that mutant Ezh2Y641F interacts with the immune regulator Stat3 and together they affect anti-tumor immunity. However, given the numerous downstream targets and pathways affected by Ezh2, many mechanisms that determine its oncogenic activity remain largely unexplored. Using genetically engineered mouse models, we further investigated the role of pathways downstream of Ezh2 in melanoma carcinogenesis and identified significant enrichment in several autophagy signatures, along with increased expression of autophagy regulators, such as Atg7. In this study, we investigated the effect of Atg7 on melanoma growth and tumor immunity within the context of a wild-type or Ezh2Y641F epigenetic state. We found that the Atg7 locus is controlled by multiple Ezh2 and Stat3 binding sites, Atg7 expression is dependent on Stat3 expression, and that deletion of Atg7 slows down melanoma cell growth in vivo, but not in vitro. Atg7 deletion also results in increased CD8 + T cells in Ezh2Y641F melanomas and reduced myelosuppressive cell infiltration in the tumor microenvironment, particularly in Ezh2WT melanomas, suggesting a strong immune system contribution in the role of Atg7 in melanoma progression. These findings highlight the complex interplay between genetic mutations, epigenetic regulators, and autophagy in shaping tumor immunity in melanoma.


Asunto(s)
Proteína 7 Relacionada con la Autofagia , Proteína Potenciadora del Homólogo Zeste 2 , Factor de Transcripción STAT3 , Animales , Factor de Transcripción STAT3/metabolismo , Ratones , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína 7 Relacionada con la Autofagia/genética , Proteína 7 Relacionada con la Autofagia/metabolismo , Melanoma Experimental/inmunología , Melanoma Experimental/patología , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Microambiente Tumoral/inmunología , Ratones Endogámicos C57BL , Regulación Neoplásica de la Expresión Génica , Melanoma/inmunología , Melanoma/metabolismo , Melanoma/genética , Melanoma/patología , Epigénesis Genética , Línea Celular Tumoral , Humanos , Autofagia/inmunología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo
2.
BMC Musculoskelet Disord ; 25(1): 665, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39182017

RESUMEN

BACKGROUND: Glucocorticoid-induced osteoporosis (GIOP) is the most common type of secondary osteoporosis. Recently, autophagy has been found to be related with the development of various diseases, including osteoporosis and osteoblast differentiation regulations. BTB and CNC homology 1 (BACH1) was a previously confirmed regulator for osteoblast differentiation, but whether it's could involve in glucocorticoid-induced human bone mesenchymal stem cells (hBMSCs) differentiation and autophagy regulation remain not been elucidated. METHODS: hBMSCs were identified by flow cytometry method, and its differentiation ability were measured by ARS staining, oil O red, and Alcian blue staining assays. Gene and proteins were quantified via qRT-PCR and western blot assays, respectively. Autophagy activity was determined using immunofluorescence. ChIP and dual luciferase assay validated the molecular interactions. RESULTS: The data revealed that isolated hBMSCs exhibited positive of CD29/CD44 and negative CD45/CD34. Moreover, BACH1 was abated gradually during osteoblast differentiation of hBMSCs, while dexamethasone (Dex) treatment led to BACH1 upregulation. Loss of BACH1 improved osteoblast differentiation and activated autophagy activity in Dex-challenged hBMSCs. Autophagy-related proteins (ATG3, ATG4, ATG5, ATG7, ATG12) were repressed after Dex treatment, while ATG3, ATG7 and BECN1 could be elevated by BACH1 knockdown, especially ATG7. Moreover, BACH1 could interact ATG7 promoter region to inhibit its transcription. Co-inhibition of ATG7 greatly overturned the protective roles of BACH1 loss on osteoblast differentiation and autophagy in Dex-induced hBMSCs. CONCLUSION: Taken together, our results demonstrated that silencing of BACH1 mitigated Dex-triggered osteogenic differentiation inhibition by transcriptionally activating ATG7-mediated autophagy, suggesting that BACH1 may be a therapeutic target for GIOP treatment.


Asunto(s)
Autofagia , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Diferenciación Celular , Dexametasona , Glucocorticoides , Células Madre Mesenquimatosas , Osteoblastos , Osteogénesis , Humanos , Autofagia/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Glucocorticoides/farmacología , Glucocorticoides/efectos adversos , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Dexametasona/farmacología , Células Cultivadas , Osteoporosis/inducido químicamente , Osteoporosis/genética , Osteoporosis/patología
3.
Poult Sci ; 103(11): 104209, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39214053

RESUMEN

The development and maturation of follicles are intricately linked to egg production and reproductive performance of chickens. Granulosa cells death directly affects the development and maturation of follicles, thereby impacting the reproductive performance of hens. Ferroptosis is a new type of cell death, it is unknown how it affects the growth and development of chicken follicles. In this study, RNA-seq analysis revealed significant differences in the expression of ferroptosis-related genes between normal follicles and atretic follicles, suggesting a potential role for ferroptosis in follicle growth and development. In addition, we found that ubiquitin-specific protease 13 (USP13) was significantly upregulated in atrophic follicles. Overexpression of USP13 results in depletion of glutathione (GSH), peroxidation of lipids, accumulation of iron, and activation of ferroptosis in chicken granulosa cells. In contrast, USP13 knockdown significantly inhibited ferroptosis events. Mechanistically, USP13 prevents the degradation of autophagy related 7 (ATG7) by deubiquitinating it, thereby enhancing the stability of ATG7 protein and ultimately promoting ferroptosis. In conclusion, this study elucidates the crucial role of the USP13-ATG7 axis in regulating ferroptosis in chicken follicle granulosa cells, thereby presenting a novel avenue for molecular breeding research in chickens.

4.
J Mol Cell Cardiol ; 195: 83-96, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39117176

RESUMEN

Aging is a critical risk factor for heart disease, including ischemic heart disease and heart failure. Cellular senescence, characterized by DNA damage, resistance to apoptosis and the senescence-associated secretory phenotype (SASP), occurs in many cell types, including cardiomyocytes. Senescence precipitates the aging process in surrounding cells and the organ through paracrine mechanisms. Generalized autophagy, which degrades cytosolic materials in a non-selective manner, is decreased during aging in the heart. This decrease causes deterioration of cellular quality control mechanisms, facilitates aging and negatively affects lifespan in animals, including mice. Although suppression of generalized autophagy could promote senescence, it remains unclear whether the suppression of autophagy directly stimulates senescence in cardiomyocytes, which, in turn, promotes myocardial dysfunction in the heart. We addressed this question using mouse models with a loss of autophagy function. Suppression of general autophagy in cardiac-specific Atg7 knockout (Atg7cKO) mice caused accumulation of senescent cardiomyocytes. Induction of senescence via downregulation of Atg7 was also observed in chimeric Atg7 cardiac-specific KO mice and cultured cardiomyocytes in vitro, suggesting that the effect of autophagy suppression upon induction of senescence is cell autonomous. ABT-263, a senolytic agent, reduced the number of senescent myocytes and improved cardiac function in Atg7cKO mice. Suppression of autophagy and induction of senescence were also observed in doxorubicin-treated hearts, where reactivation of autophagy alleviated senescence in cardiomyocytes and cardiac dysfunction. These results suggest that suppression of general autophagy directly induces senescence in cardiomyocytes, which in turn promotes cardiac dysfunction.


Asunto(s)
Proteína 7 Relacionada con la Autofagia , Autofagia , Senescencia Celular , Ratones Noqueados , Miocitos Cardíacos , Animales , Autofagia/genética , Senescencia Celular/efectos de los fármacos , Senescencia Celular/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Ratones , Proteína 7 Relacionada con la Autofagia/genética , Proteína 7 Relacionada con la Autofagia/metabolismo , Miocardio/metabolismo , Miocardio/patología , Sulfonamidas/farmacología , Doxorrubicina/farmacología , Envejecimiento/metabolismo , Compuestos de Anilina
5.
Cells ; 13(14)2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39056807

RESUMEN

Recycling of unnecessary or dysfunctional cellular structures through autophagy plays a critical role in cellular homeostasis and environmental resilience. Therefore, the autophagy trait may have been unintentionally selected in wheat breeding programs for higher yields in arid climates. This hypothesis was tested by measuring the response of three common autophagy markers, ATG7, ATG8, and NBR1, to a heat wave under reduced soil moisture content in 16 genetically diverse spring wheat landraces originating from different geographical locations. We observed in the greenhouse trials that ATG8 and NBR1 exhibited genotype-specific responses to a 1 h, 40 °C heat wave, while ATG7 did not show a consistent response. Three genotypes from Uruguay, Mozambique, and Afghanistan showed a pattern consistent with higher autophagic activity: decreased or stable abundance of both ATG8 and NBR1 proteins, coupled with increased transcription of ATG8 and NBR1. In contrast, three genotypes from Pakistan, Ethiopia, and Egypt exhibited elevated ATG8 protein levels alongside reduced or unaltered ATG8 transcript levels, indicating a potential suppression or no change in autophagic activity. Principal component analysis demonstrated a correlation between lower abundance of ATG8 and NBR1 proteins and higher yield in the field trials. We found that (i) the combination of heat and drought activated autophagy only in several genotypes, suggesting that despite being a resilience mechanism, autophagy is a heat-sensitive process; (ii) higher autophagic activity correlates positively with greater yield; (iii) the lack of autophagic activity in some high-yielding genotypes suggests contribution of alternative stress-resilient mechanisms; and (iv) enhanced autophagic activity in response to heat and drought was independently selected by wheat breeding programs in different geographic locations.


Asunto(s)
Autofagia , Genotipo , Calor , Proteínas de Plantas , Triticum , Triticum/genética , Triticum/metabolismo , Triticum/fisiología , Autofagia/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
6.
Mucosal Immunol ; 17(4): 739-751, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38838816

RESUMEN

The complement system is an evolutionarily conserved arm of innate immunity, which forms one of the first lines of host response to pathogens and assists in the clearance of debris. A deficiency in key activators/amplifiers of the cascade results in recurrent infection, whereas a deficiency in regulating the cascade predisposes to accelerated organ failure, as observed in colitis and transplant rejection. Given that there are over 60 proteins in this system, it has become an attractive target for immunotherapeutics, many of which are United States Food and Drug Administration-approved or in multiple phase 2/3 clinical trials. Moreover, there have been key advances in the last few years in the understanding of how the complement system operates locally in tissues, independent of its activities in circulation. In this review, we will put into perspective the abovementioned discoveries to optimally modulate the spatiotemporal nature of complement activation and regulation at mucosal surfaces.


Asunto(s)
Activación de Complemento , Proteínas del Sistema Complemento , Inmunidad Mucosa , Humanos , Animales , Proteínas del Sistema Complemento/inmunología , Proteínas del Sistema Complemento/metabolismo , Inmunomodulación , Inmunidad Innata
7.
bioRxiv ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38915518

RESUMEN

Epigenetic modifications to DNA and chromatin control oncogenic and tumor suppressive mechanisms in melanoma. EZH2, the catalytic component of the Polycomb repressive complex 2 (PRC2), which mediates methylation of lysine 27 on histone 3 (H3K27me3), can regulate both melanoma initiation and progression. We previously found that mutant Ezh2 Y641F interacts with the immune regulator Stat3 and together they affect anti-tumor immunity. However, given the numerous downstream targets and pathways affected by EZH2, many mechanisms that determine its oncogenic activity remain largely unexplored. Using genetically engineered mouse models we further investigated the role of pathways downstream of EZH2 in melanoma carcinogenesis and identified significant enrichment in several autophagy signatures, along with increased expression of autophagy regulators, such as Atg7. In this study, we investigated the effect of Atg7 on melanoma growth and tumor immunity within the context of an Ezh2 Y641F epigenetic state. We found that expression of Atg7 is largely dependent on Stat3 expression and that deletion of Atg7 slows down melanoma cell growth in vivo, but not in vitro. Atg7 deletion also results in increased CD8+ T cells and reduced myelosuppressive cell infiltration in the tumor microenvironment, suggesting a strong immune system contribution in the role of Atg7 in melanoma progression. These findings highlight the complex interplay between genetic mutations, epigenetic regulators, and autophagy in shaping tumor immunity in melanoma.

8.
Gene ; 925: 148572, 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-38759738

RESUMEN

Circular RNA (circRNA) has emerged as a pivotal regulatory factor in cancer biology, yet its exact role in cervical cancer remains incompletely understood. In this study, we investigated the functional role of circCUL3 in cervical cancer and explored its potential as a therapeutic target. Functional gain and loss experiments were conducted in Hela and Siha cell lines to elucidate the biological functions of circCUL3 in cervical cancer. The results revealed that circCUL3 overexpression significantly enhanced cell viability, migration, and invasion while suppressing apoptosis, while circCUL3 knockout displayed the opposite effects. Mechanistically, we identified hsa-miR-223-3p as a target of circCUL3, with its expression being negatively regulated by circCUL3. Furthermore, we discovered that circCUL3 could sequester miR-223-3p, leading to the upregulation of ATG7 expression, and this was linked to the regulation of autophagy in cervical cancer cells. In vivo validation using a xenograft mouse model further supported our in vitro findings. Notably, we found that chloroquine (CQ), an autophagy inhibitor, restored miR-223-3p expression and counteracted the oncogenic effect of circCUL3 overexpression. In conclusion, circCUL3 potentially contributes to the malignant progression of cervical cancer by acting as a sponge for miR-223-3p, resulting in the upregulation of ATG7 and the activation of autophagy.


Asunto(s)
Proteína 7 Relacionada con la Autofagia , Autofagia , Regulación Neoplásica de la Expresión Génica , MicroARNs , ARN Circular , Regulación hacia Arriba , Neoplasias del Cuello Uterino , Animales , Femenino , Humanos , Ratones , Apoptosis/genética , Autofagia/genética , Proteína 7 Relacionada con la Autofagia/genética , Proteína 7 Relacionada con la Autofagia/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Progresión de la Enfermedad , Células HeLa , Ratones Desnudos , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/metabolismo
9.
Animal Model Exp Med ; 7(4): 408-418, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38807299

RESUMEN

BACKGROUND: Myocardial infarction (MI) is an acute condition in which the heart muscle dies due to the lack of blood supply. Previous research has suggested that autophagy and angiogenesis play vital roles in the prevention of heart failure after MI, and miR-106a is considered to be an important regulatory factor in MI. But the specific mechanism remains unknown. In this study, using cultured venous endothelial cells and a rat model of MI, we aimed to identify the potential target genes of miR-106a and discover the mechanisms of inhibiting autophagy and angiogenesis. METHODS: We first explored the biological functions of miR-106a on autophagy and angiogenesis on endothelial cells. Then we identified ATG7, which was the downstream target gene of miR-106a. The expression of miR-106a and ATG7 was investigated in the rat model of MI. RESULTS: We found that miR-106a inhibits the proliferation, cell cycle, autophagy and angiogenesis, but promoted the apoptosis of vein endothelial cells. Moreover, ATG7 was identified as the target of miR-106a, and ATG7 rescued the inhibition of autophagy and angiogenesis by miR-106a. The expression of miR-106a in the rat model of MI was decreased but the expression of ATG7 was increased in the infarction areas. CONCLUSION: Our results indicate that miR-106a may inhibit autophagy and angiogenesis by targeting ATG7. This mechanism may be a potential therapeutic treatment for MI.


Asunto(s)
Proteína 7 Relacionada con la Autofagia , Autofagia , MicroARNs , Infarto del Miocardio , Animales , MicroARNs/genética , MicroARNs/metabolismo , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Proteína 7 Relacionada con la Autofagia/genética , Proteína 7 Relacionada con la Autofagia/metabolismo , Ratas , Masculino , Neovascularización Fisiológica , Ratas Sprague-Dawley , Humanos , Células Endoteliales de la Vena Umbilical Humana , Proliferación Celular , Células Endoteliales/metabolismo , Apoptosis , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Modelos Animales de Enfermedad , Células Cultivadas , Angiogénesis
10.
Chem Pharm Bull (Tokyo) ; 72(4): 365-373, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38569867

RESUMEN

Obesity is known to be associated with increased inflammation and dysregulated autophagy, both of which contribute to insulin resistance. Saikosaponin-A (SSA) has been reported to exhibit anti-inflammatory and lipid-lowering properties. In this research, we employed a combination of computational modeling and animal experiments to explore the effects of SSA. Male C57BL/6 mice were categorized into four groups: normal diet, high-fat diet (HFD), HFD + atorvastatin 10 mg/kg, and HFD + SSA 10 mg/kg. We conducted oral glucose and fat tolerance tests to assess metabolic parameters and histological changes. Furthermore, we evaluated the population of Kupffer cells (KCs) and examined gene expressions related to inflammation and autophagy. Computational analysis revealed that SSA displayed high binding affinity to tumor necrosis factor (TNF)-α, nuclear factor (NF)-κB, fibroblast growth factor 21 (FGF21), and autophagy-related 7 (ATG7). Animal study demonstrated that SSA administration improved fasting and postprandial glucose levels, homeostatic model assessment of insulin resistance (HOMA-IR) index, as well as triglyceride, free fatty acid, total cholesterol, low-density lipoprotein cholesterol (LDL-C)-cholesterol, and high-density lipoprotein cholesterol (HDL-C)-cholesterol levels in HFD-fed mice. Moreover, SSA significantly reduced liver weight and fat accumulation, while inhibiting the infiltration and M1 activation of KCs. At the mRNA level, SSA downregulated TNF-α and NF-κB expression, while upregulating FGF21 and ATG7 expression. In conclusion, our study suggests that SSA may serve as a therapeutic agent for addressing the metabolic complications associated with obesity. This potential therapeutic effect is attributed to the suppression of inflammatory cytokines and the upregulation of FGF21 and ATG7.


Asunto(s)
Experimentación Animal , Resistencia a la Insulina , Ácido Oleanólico/análogos & derivados , Saponinas , Ratones , Masculino , Animales , Resistencia a la Insulina/fisiología , Ratones Endogámicos C57BL , Obesidad/tratamiento farmacológico , Hígado , Inflamación/metabolismo , Glucosa/metabolismo , Colesterol , Dieta Alta en Grasa/efectos adversos , Factor de Necrosis Tumoral alfa/metabolismo , Insulina/metabolismo
11.
Traffic ; 25(4): e12933, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38600522

RESUMEN

Macroautophagy/autophagy is an essential catabolic process that targets a wide variety of cellular components including proteins, organelles, and pathogens. ATG7, a protein involved in the autophagy process, plays a crucial role in maintaining cellular homeostasis and can contribute to the development of diseases such as cancer. ATG7 initiates autophagy by facilitating the lipidation of the ATG8 proteins in the growing autophagosome membrane. The noncanonical isoform ATG7(2) is unable to perform ATG8 lipidation; however, its cellular regulation and function are unknown. Here, we uncovered a distinct regulation and function of ATG7(2) in contrast with ATG7(1), the canonical isoform. First, affinity-purification mass spectrometry analysis revealed that ATG7(2) establishes direct protein-protein interactions (PPIs) with metabolic proteins, whereas ATG7(1) primarily interacts with autophagy machinery proteins. Furthermore, we identified that ATG7(2) mediates a decrease in metabolic activity, highlighting a novel splice-dependent function of this important autophagy protein. Then, we found a divergent expression pattern of ATG7(1) and ATG7(2) across human tissues. Conclusively, our work uncovers the divergent patterns of expression, protein interactions, and function of ATG7(2) in contrast to ATG7(1). These findings suggest a molecular switch between main catabolic processes through isoform-dependent expression of a key autophagy gene.


Asunto(s)
Autofagia , Metabolismo Energético , Humanos , Autofagosomas/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Isoformas de Proteínas/metabolismo
12.
Biomolecules ; 14(4)2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38672517

RESUMEN

Obesity stands as a significant risk factor for type 2 diabetes, hyperlipidemia, and cardiovascular diseases, intertwining increased inflammation and decreased adipogenesis with metabolic disorders. Studies have highlighted the correlation between Caspase-1 and inflammation in obesity, elucidating its essential role in the biological functions of adipose tissue. However, the impact of Caspase-1 on adipogenesis and the underlying mechanisms remain largely elusive. In our study, we observed a positive correlation between Caspase-1 expression and obesity and its association with adipogenesis. In vivo experiments revealed that, under normal diet conditions, Caspase-1 deficiency improved glucose homeostasis, stimulated subcutaneous adipose tissue expansion, and enhanced adipogenesis. Furthermore, our findings indicate that Caspase-1 deficiency promotes the expression of autophagy-related proteins and inhibits autophagy with 3-MA or CQ blocked Caspase-1 deficiency-induced adipogenesis in vitro. Notably, Caspase-1 deficiency promotes adipogenesis via Atg7-mediated autophagy activation. In addition, Caspase-1 deficiency resisted against high-fat diet-induced obesity and glucose intolerance. Our study proposes the downregulation of Caspase-1 as a promising strategy for mitigating obesity and its associated metabolic disorders.


Asunto(s)
Adipogénesis , Proteína 7 Relacionada con la Autofagia , Autofagia , Caspasa 1 , Inflamación , Obesidad , Adipogénesis/genética , Animales , Proteína 7 Relacionada con la Autofagia/genética , Proteína 7 Relacionada con la Autofagia/metabolismo , Ratones , Caspasa 1/metabolismo , Caspasa 1/genética , Caspasa 1/deficiencia , Obesidad/metabolismo , Obesidad/patología , Obesidad/genética , Inflamación/metabolismo , Inflamación/patología , Inflamación/genética , Masculino , Dieta Alta en Grasa/efectos adversos , Ratones Endogámicos C57BL , Células 3T3-L1 , Ratones Noqueados
13.
Clin Med Insights Oncol ; 18: 11795549241244783, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38628842

RESUMEN

Background: Liver cancer has a high incidence and mortality rate worldwide, and there is an urgent need to identify new therapeutic strategies and predictive targets to improve the clinical outcomes of advanced liver cancer. Ferroptosis holds promise as a novel strategy for cancer therapy. Epigenetic dysregulation is a hallmark of cancer, and noncoding RNAs are tightly involved in cell fate determination. Therefore, we aimed to identify a novel ferroptosis regulator from aberrantly expressed microRNAs that may serve as a novel biomarker and therapeutic target for liver cancer. Methods: The expression signature and prognostic value of miR-339 was assessed using TCGA data set. The role of miR-339/ATG7/FTH1 axis in liver cancer cells were evaluated through growth curve, colony formation, 7-AAD staining. The role of miR-339 in regulation of ferroptosis was determined by immunofluorescence staining, flow cytometry, and Elisa kits. Results: Here, we showed that miR-339 is aberrantly overexpressed in patients with liver cancer. In addition, miR-339 inhibition dramatically suppresses liver cancer progression. Furthermore, miR-339 silencing drives cell death and inhibits liver cancer progression, indicating that miR-339 may serve as a novel ferroptosis suppressor. Mechanistically, we demonstrated that miR-339 targets ATG7 to facilitate the autophagic degradation of FTH1 and prevent ferroptosis in liver cancer cells. Conclusions: We provide important evidence that the miR-339 inhibition activates of the autophagy pathway to promote ferroptosis by degrading FTH1 in liver cancer cells. We found that miR-339 regulates the balance between ferroptosis and autophagy in liver cancer cells.

14.
Brain Behav Immun ; 119: 621-636, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38670239

RESUMEN

Rac1 is a key regulator of the cytoskeleton and neuronal plasticity, and is known to play a critical role in psychological and cognitive brain disorders. To elucidate the engram specific Rac1 signaling in fear memory, a doxycycline (Dox)-dependent robust activity marking (RAM) system was used to label dorsal dentate gyrus (DG) engram cells in mice during contextual fear conditioning. Rac1 mRNA and protein levels in DG engram cells were peaked at 24 h (day 1) after fear conditioning and were more abundant in the fear engram cells than in the non-engram cells. Optogenetic activation of Rac1 in a temporal manner in DG engram cells before memory retrieval decreased the freezing level in the fear context. Optogenetic activation of Rac1 increased autophagy protein 7 (ATG7) expression in the DG engram cells and activated DG microglia. Microglia-specific transcriptomics and fluorescence in situ hybridization revealed that overexpression of ATG7 in the fear engram cells upregulated the mRNA of Toll-like receptor TLR2/4 in DG microglia. Knockdown of microglial TLR2/4 rescued fear memory destabilization induced by ATG7 overexpression or Rac1 activation in DG engram cells. These results indicate that Rac1-driven communications between engram cells and microglia contributes to contextual fear memory destabilization, and is mediated by ATG7 and TLR2/4, and suggest a novel mechanistic framework for the cytoskeletal regulator in fear memory interference.


Asunto(s)
Giro Dentado , Miedo , Hipocampo , Memoria , Microglía , Optogenética , Proteína de Unión al GTP rac1 , Animales , Miedo/fisiología , Ratones , Proteína de Unión al GTP rac1/metabolismo , Memoria/fisiología , Microglía/metabolismo , Hipocampo/metabolismo , Giro Dentado/metabolismo , Masculino , Ratones Endogámicos C57BL , Proteína 7 Relacionada con la Autofagia/metabolismo , Proteína 7 Relacionada con la Autofagia/genética , Neuropéptidos/metabolismo , Plasticidad Neuronal/fisiología , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 2/genética , Receptor Toll-Like 4/metabolismo , Condicionamiento Clásico/fisiología
15.
J Exp Clin Cancer Res ; 43(1): 114, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627815

RESUMEN

BACKGROUND: The efficacy of anti-PD-1 therapy is primarily hindered by the limited T-cell immune response rate and immune evasion capacity of tumor cells. Autophagy-related protein 7 (ATG7) plays an important role in autophagy and it has been linked to cancer. However, the role of ATG7 in the effect of immune checkpoint blockade (ICB) treatment on high microsatellite instability (MSI-H)/mismatch repair deficiency (dMMR) CRC is still poorly understood. METHODS: In this study, patients from the cancer genome altas (TCGA) COAD/READ cohorts were used to investigate the biological mechanism driving ATG7 development. Several assays were conducted including the colony formation, cell viability, qRT-PCR, western blot, immunofluorescence, flow cytometry, ELISA, immunohistochemistry staining and in vivo tumorigenicity tests. RESULTS: We found that ATG7 plays a crucial role in MSI-H CRC. Its knockdown decreased tumor growth and caused an infiltration of CD8+ T effector cells in vivo. ATG7 inhibition restored surface major histocompatibility complex I (MHC-I) levels, causing improved antigen presentation and anti-tumor T cell response by activating reactive oxygen species (ROS)/NF-κB pathway. Meanwhile, ATG7 inhibition also suppressed cholesterol accumulation and augmentation of anti-tumor immune responses. Combining ATG7 inhibition and statins improved the therapeutic benefit of anti-PD-1 in MSI-H CRC. Importantly, CRC patients with high expression of both ATG7 and recombinant 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) experienced worse prognosis compared to those with low ATG7 and HMGCR expression. CONCLUSIONS: Inhibition of ATG7 leads to upregulation of MHC-I expression, augments immune response and suppresses cholesterol accumulation. These findings demonstrate that ATG7 inhibition has therapeutic potential and application of statins can increase the sensitivity to immune checkpoint inhibitors.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Colorrectales , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Síndromes Neoplásicos Hereditarios , Humanos , Proteína 7 Relacionada con la Autofagia/genética , Colesterol , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Reparación de la Incompatibilidad de ADN , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Inmunidad , Inestabilidad de Microsatélites
16.
Exp Parasitol ; 260: 108745, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38521196

RESUMEN

Autophagy is a key step involved in many unicellular eukaryotic diseases, including leishmaniasis, for cellular remodelling and differentiation during parasite's lifecycle. Lipids play a significant role in the infection process that begins with Leishmania major invading host cells. MicroRNAs (miRNAs), a family of small, 22-24 nucleotide noncoding regulatory RNAs, target mRNAs to modify gene expression and, subsequently, proteome output may have a regulatory role in altering the host cell processes. We observed miR-146a-3p expression increases in a time-dependent manner post Leishmania major infection. Transfecting miR-146a-3p mimic increases the expression of ATG7, an autophagy gene that encodes an E1-like enzyme in two ubiquitin-like conjugation systems required for autophagosome progression. HPGD (15-hydroxyprostaglandin dehydrogenase) operates as an enzyme, converting prostaglandin to its non-active form. Microarray data and western studies reveal that miR-146a-3p targets and inhibits HPGD, thereby increasing prostaglandin activity in lipid droplets. Herein, our research focuses on miR-146a-3p, which boosts ATG7 expression while reducing HPGD post Leishmania major infections helping us comprehend the intricate network of microRNA, autophagy, and lipid metabolism in leishmaniasis.


Asunto(s)
Autofagia , Leishmania major , Leishmaniasis Cutánea , Metabolismo de los Lípidos , MicroARNs , MicroARNs/metabolismo , MicroARNs/genética , Leishmania major/genética , Leishmania major/fisiología , Leishmania major/metabolismo , Leishmaniasis Cutánea/parasitología , Animales , Ratones , Proteína 7 Relacionada con la Autofagia/metabolismo , Proteína 7 Relacionada con la Autofagia/genética , Ratones Endogámicos BALB C , Macrófagos/parasitología , Macrófagos/metabolismo , Humanos , Transfección , Western Blotting
17.
Cell Mol Gastroenterol Hepatol ; 18(1): 15-40, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38452871

RESUMEN

BACKGROUND & AIMS: Autophagy plays roles in esophageal pathologies both benign and malignant. Here, we aim to define the role of autophagy in esophageal epithelial homeostasis. METHODS: We generated tamoxifen-inducible, squamous epithelial-specific Atg7 (autophagy related 7) conditional knockout mice to evaluate effects on esophageal homeostasis and response to the carcinogen 4-nitroquinoline 1-oxide (4NQO) using histologic and biochemical analyses. We fluorescence-activated cell sorted esophageal basal cells based on fluorescence of the autophagic vesicle (AV)-identifying dye Cyto-ID and then subjected these cells to transmission electron microscopy, image flow cytometry, three-dimensional organoid assays, RNA sequencing, and cell cycle analysis. Three-dimensional organoids were subjected to passaging, single-cell RNA sequencing, cell cycle analysis, and immunostaining. RESULTS: Genetic autophagy inhibition in squamous epithelium resulted in increased proliferation of esophageal basal cells under homeostatic conditions and also was associated with significant weight loss in mice treated with 4NQO that further displayed perturbed epithelial tissue architecture. Esophageal basal cells with high AV level (Cyto-IDHigh) displayed limited organoid formation capability on initial plating but passaged more efficiently than their counterparts with low AV level (Cyto-IDLow). RNA sequencing suggested increased autophagy in Cyto-IDHigh esophageal basal cells along with decreased cell cycle progression, the latter of which was confirmed by cell cycle analysis. Single-cell RNA sequencing of three-dimensional organoids generated by Cyto-IDLow and Cyto-IDHigh cells identified expansion of 3 cell populations and enrichment of G2/M-associated genes in the Cyto-IDHigh group. Ki67 expression was also increased in organoids generated by Cyto-IDHigh cells, including in basal cells localized beyond the outermost cell layer. CONCLUSIONS: Autophagy contributes to maintenance of the esophageal proliferation-differentiation gradient. Esophageal basal cells with high AV level exhibit limited proliferation and generate three-dimensional organoids with enhanced self-renewal capacity.


Asunto(s)
Autofagia , Proliferación Celular , Homeostasis , Ratones Noqueados , Organoides , Animales , Ratones , Organoides/metabolismo , Esófago/patología , Esófago/citología , Esófago/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Proteína 7 Relacionada con la Autofagia/metabolismo , Proteína 7 Relacionada con la Autofagia/genética , 4-Nitroquinolina-1-Óxido , Autorrenovación de las Células , Mucosa Esofágica/patología , Mucosa Esofágica/metabolismo , Mucosa Esofágica/citología , Análisis de la Célula Individual
18.
Mol Metab ; 81: 101892, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38331318

RESUMEN

BACKGROUND: Myoprotein degradation accelerates in obese individuals, resulting in a decline in muscular mass. Atg7 plays a crucial role in regulating protein stability and function through both autophagy-dependent and independent pathways. As obesity progresses, the expression of Atg7 gradually rises in muscle tissue. Nonetheless, the precise impact and mechanism of Atg7 in promoting muscle mass decline in obesity remain uncertain. The study aimed to elucidate the role and underly mechanism of Atg7 action in the context of obesity-induced muscle mass decline. METHODS: In this study, we established a murine model of high-fat diet-induced obesity (DIO) and introduced adeno-associated virus delivery of short hairpin RNA to knock down Atg7 (shAtg7) into the gastrocnemius muscle. We then examined the expressions of Atg7 and myoprotein degradation markers in the gastrocnemius tissues of obese patients and mice using immunofluorescence and western blotting techniques. To further investigate the effects of Atg7, we assessed skeletal muscle cell diameter and the myoprotein degradation pathway in C2C12 and HSkMC cells in the presence or absence of Atg7. Immunofluorescence staining for MyHC and western blotting were utilized for this purpose. To understand the transcriptional regulation of Atg7 in response to myoprotein degradation, we conducted luciferase reporter assays and chromatin immunoprecipitation experiments to examine whether FoxO3a enhances the transcription of Atg7. Moreover, we explored the role of Akt in Atg7-mediated regulation and its relevance to obesity-induced muscle mass decline. This was accomplished by Akt knockdown, treatment with MK2206, and GST pulldown assays to assess the interaction between Atg7 and Akt. RESULTS: After 20 weeks of being on a high-fat diet, obesity was induced, leading to a significant decrease in the gastrocnemius muscle area and a decline in muscle performance. This was accompanied by a notable increase in Atg7 protein expression (p < 0.01). Similarly, in gastrocnemius tissues of obese patients when compared to nonobese individuals, there was a significant increase in both Atg7 (p < 0.01) and TRIM63 (p < 0.01) levels. When palmitic acid was administered to C2C12 cells, it resulted in increased Atg7 (p < 0.01), LC3Ⅱ/Ⅰ (p < 0.01), and p62 levels (p < 0.01). Additionally, it promoted FoxO3a-mediated transcription of Atg7. The knockdown of Atg7 in the gastrocnemius partially reversed DIO-induced muscle mass decline. Furthermore, when Atg7 was knocked down in C2C12 and HSkMC cells, it mitigated palmitic acid-induced insulin resistance, increased the p-Akt/Akt ratio (p < 0.01), and reduced TRIM63 (p < 0.01). Muscular atrophy mediated by Atg7 was reversed by genetic knockdown of Akt and treatment with the p-Akt inhibitor MK2206. Palmitic acid administration increased the binding between Atg7 and Akt (p < 0.01) while weakening the binding of PDK1 (p < 0.01) and PDK2 (p < 0.01) to Akt. GST pulldown assays demonstrated that Atg7 directly interacted with the C-terminal domain of Akt. CONCLUSION: The consumption of a high-fat diet, along with lipid-induced effects, led to the inhibition of Akt signaling, which, in turn, promoted FoxO3a-mediated transcription, increasing Atg7 levels in muscle cells. The excess Atg7 inhibited the phosphorylation of Akt, leading to a cyclic activation of FoxO3a and exacerbating the decline in muscle mass regulated by obesity. Consequently, Atg7 serves as a regulatory point in determining the decline in muscle mass induced by obesity.


Asunto(s)
Ácido Palmítico , Proteínas Proto-Oncogénicas c-akt , Humanos , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ácido Palmítico/metabolismo , Ácido Palmítico/farmacología , Transducción de Señal , Fibras Musculares Esqueléticas/metabolismo , Obesidad/metabolismo , Proteína 7 Relacionada con la Autofagia/genética , Proteína 7 Relacionada con la Autofagia/metabolismo
20.
Int J Biol Sci ; 20(4): 1180-1193, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38385083

RESUMEN

Chemoresistance is an obstacle of improving pancreatic cancer (PC) prognosis. However, the biological function of ISG15 in PC and whether it correlates with the resistance to chemotherapy are still unknown. Here, we aimed to reveal the clinical significance of ISG15 in PC and its regulatory mechanism in cancer progression and resistance to therapy. The level of ISG15, a protein involved in post-translational modifications, is elevated in PC tissues. Clinically, higher ISG15 expression correlates with higher PC grades, stronger resistance to treatment and poorer prognosis. Moreover, ISG15 promotes the proliferation, migration, invasion, colony formation of PC cells and resistance to Gemcitabine, a classic chemotherapeutics for PC, both in vitro and in vivo. ISG15 promotes progression and resistance to therapy in PC cells by binding to ATG7, reducing its degradation, and thereby leading to enhanced autophagy in PC cells. ISG15 may be used as both a potential diagnosis marker and sensitizer for chemotherapeutics such as Gemcitabine during PC intervention.


Asunto(s)
Gemcitabina , Neoplasias Pancreáticas , Humanos , Antimetabolitos Antineoplásicos/farmacología , Antimetabolitos Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Citocinas/genética , Desoxicitidina/farmacología , Desoxicitidina/uso terapéutico , Resistencia a Antineoplásicos/genética , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Ubiquitinas/genética , Ubiquitinas/farmacología , Ubiquitinas/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA