Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 705
Filtrar
1.
Curr Ther Res Clin Exp ; 101: 100756, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39257480

RESUMEN

Managing pediatric Crohn's disease (PCD) presents challenges due to severe complications and higher biologic therapy needs. Transitioning from anti-tumor necrosis factor agents to off-label therapies adds complexity. Although upadacitinib has demonstrated efficacy and tolerability in adult inflammatory bowel disease and pediatric atopic dermatitis, there are limited data for its application in PCD. This case report delineates successful remission with upadacitinib in a child with CD refractory to infliximab, ustekinumab, adalimumab, thalidomide, and prednisone. Notably, the patient carried an ataxia telangiectasia mutated (ATM) gene mutation. These findings provide valuable evidence for PCD management and highlight the potential benefits of upadacitinib in this population.

2.
Front Immunol ; 15: 1444130, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39224604

RESUMEN

Introduction: Ataxia telangiectasia (AT) is a rare disorder characterized by neurodegeneration, combined immunodeficiency, a predisposition to malignancies, and high clinical variability. Profiling of microRNAs (miRNAs) may offer insights into the underlying mechanisms of complex rare human diseases, as miRNAs play a role in various biological functions including proliferation, differentiation, and DNA repair. In this study, we investigate the differential expression of miRNAs in samples from AT patients to identify miRNA patterns and analyze how these patterns are related to the disease. Methods: We enrolled 20 AT patients (mean age 17.7 ± 9.6 years old) and collected clinical and genetic data. We performed short non-coding RNA-seq analysis on peripheral blood mononuclear cells (PBMCs) and fibroblasts to compare the miRNA expression profile between AT patients and controls. Results: We observed 42 differentially expressed (DE)-miRNAs in blood samples and 26 in fibroblast samples. Among these, three DE-miRNAs, miR-342-3p, miR-30a-5p, and miR-195-5p, were further validated in additional AT samples, confirming their dysregulation. Discussion: We identified an AT-related miRNA signature in blood cells and fibroblast samples collected from a group of AT patients. We also predicted several dysregulated pathways, primarily related to cancer, immune system control, or inflammatory processes. The findings suggest that miRNAs may provide insights into the pathophysiology and tumorigenesis of AT and have the potential to serve as useful biomarkers in cancer research.


Asunto(s)
Ataxia Telangiectasia , Leucocitos Mononucleares , MicroARNs , Humanos , Ataxia Telangiectasia/genética , MicroARNs/genética , MicroARNs/sangre , Masculino , Femenino , Adulto , Adolescente , Niño , Adulto Joven , Leucocitos Mononucleares/metabolismo , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica
3.
Front Immunol ; 15: 1377955, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39165363

RESUMEN

Ataxia telangiectasia (AT) is a rare autosomal-recessive disorder characterized by profound neurodegeneration, combined immunodeficiency, and an increased risk for malignant diseases. Treatment options for AT are limited, and the long-term survival prognosis for patients remains grim, primarily due to the emergence of chronic respiratory pathologies, malignancies, and neurological complications. Understanding the dysregulation of the immune system in AT is fundamental for the development of novel treatment strategies. In this context, we performed a retrospective longitudinal immunemonitoring of lymphocyte subset distribution in a cohort of AT patients (n = 65). Furthermore, we performed FACS analyses of peripheral blood mononuclear cells from a subgroup of 12 AT patients to examine NK and T cells for the expression of activating and functional markers. We observed reduced levels of peripheral blood CD3+CD8+ cytotoxic T cells, CD3+CD4+ T helper cells, and CD19+ B cells, whereas the amount of CD3--CD56+ NK cells and CD3+CD56+ NKT-like cells was similar compared with age-matched controls. Notably, there was no association between the age-dependent kinetic of T-, B-, or NK-cell counts and the occurrence of malignancy in AT patients. Additionally, our results indicate an altered NK- and T-cell response to cytokine stimulation in AT with increased levels of TRAIL, FasL, and CD16 expression in NK cells, as well as an elevated activation level of T cells in AT with notably higher expression levels of IFN-γ, CD107a, TRAIL, and FasL. Together, these findings imply function alterations in AT lymphocytes, specifically in T and NK cells, shedding light on potential pathways for innovative therapies.


Asunto(s)
Ataxia Telangiectasia , Células Asesinas Naturales , Humanos , Ataxia Telangiectasia/inmunología , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Masculino , Femenino , Niño , Adolescente , Adulto , Estudios Retrospectivos , Preescolar , Adulto Joven , Linfocitos T/inmunología , Linfocitos T/metabolismo , Inmunofenotipificación
4.
Int J Biol Macromol ; 278(Pt 1): 134444, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39098699

RESUMEN

Ataxia Telangiectasia (AT) is a rare multisystemic neurodegenerative disease caused by biallelic mutations in the ATM gene. Few clinical studies on AT disease have been conducted in Tunisia, however, the mutational landscape is still undefined. Our aim is to determine the clinical and genetic spectrum of AT Tunisian patients and to explore the potential underlying mechanism of variant pathogenicity. Sanger sequencing was performed for nine AT patients. A comprehensive computational analysis was conducted to evaluate the possible pathogenic effect of ATM identified variants. Genetic screening of ATM gene has identified nine different variants from which six have not been previously reported. In silico analysis has predicted a pathogenic effect of identified mutations. This was corroborated by a structural bioinformatics study based on molecular modeling and docking for novel missense mutations. Our findings suggest a profound impact of identified mutations not only on the ATM protein stability, but also on the ATM-ligand interactions. Our study characterizes the mutational landscape of AT Tunisian patients which will allow to set up genetic counseling and prenatal diagnosis for families at risk and expand the spectrum of ATM variants worldwide. Furthermore, understanding the mechanism that underpin variant pathogenicity could provide further insights into disease pathogenesis.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada , Ataxia Telangiectasia , Biología Computacional , Humanos , Proteínas de la Ataxia Telangiectasia Mutada/genética , Ataxia Telangiectasia/genética , Túnez , Biología Computacional/métodos , Femenino , Masculino , Mutación , Niño , Simulación del Acoplamiento Molecular , Adolescente , Predisposición Genética a la Enfermedad , Mutación Missense , Adulto , Preescolar , Modelos Moleculares
5.
Eur J Med Chem ; 277: 116781, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-39173286

RESUMEN

Ataxia-telangiectasia mutated (ATM) was first discovered in patients with AT (ataxia telangiectasia), which is characteristic with cerebellar degeneration, immunodeficiency, being susceptible to malignant tumors and sensitive to radiation. ATM kinase could detect DNA double-strand breaks and play a vital role in the DNA damage response. Inhibiting the function of ATM could sensitize tumor cells to both ionizing radiation (IR) and chemotherapy, as well as improve the chemoresistance and radioresistance observed in some patients. As such, ATM is a novel and important target for the cancer therapy. We reviewed ATM inhibitors reported in the last two decades, focusing on their development process, structure-activity relationships, inhibitory efficacy, pharmacokinetics and pharmacodynamics characteristics in the preclinical and clinical studies. We summarized the clinical value of ATM inhibitors in tumors and some neurodegenerative diseases, as well as the main challenges to the development of the drugs, providing directions and references for the future development of ATM inhibitors.


Asunto(s)
Antineoplásicos , Proteínas de la Ataxia Telangiectasia Mutada , Inhibidores de Proteínas Quinasas , Humanos , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Antineoplásicos/farmacología , Antineoplásicos/química , Relación Estructura-Actividad , Animales , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Estructura Molecular
6.
Biomed Environ Sci ; 37(8): 834-849, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39198249

RESUMEN

Objective: Vasculogenic mimicry (VM) is a novel vasculogenic process integral to glioma stem cells (GSCs) in glioblastoma (GBM). However, the relationship between VM and ataxia-telangiectasia mutated (ATM) serine/threonine kinase activation, which confers chemoradiotherapy resistance, remains unclear. Methods: We investigated VM formation and phosphorylated ATM (pATM) levels by CD31/GFAP-periodic acid-Schiff dual staining and immunohistochemical staining in 145 GBM specimens. Glioma stem-like cells (GSLCs) derived from the formatted spheres of U87 and U251 cell lines and their pATM level and VM formation ability were examined using western blot and three-dimensional culture. For the examination of the function of pATM in VM formation by GSLCs, ATM knockdown by shRNAs and deactivated via ATM phosphorylation inhibitor KU55933 were studied. Results: VM and high pATM expression occurred in 38.5% and 41.8% of tumors, respectively, and were significantly associated with reduced progression-free and overall survival. Patients with VM-positive GBMs exhibited higher pATM levels ( r s = 0.425, P = 0.01). The multivariate analysis established VM as an independent negative prognostic factor ( P = 0.002). Furthermore, GSLCs expressed high levels of pATM and formed vascular-like networks in vitro. ATM inactivation or knockdown hindered VM-like network formation concomitant with the downregulation of pVEGFR-2, VE-cadherin, and laminin B2. Conclusion: VM may predict a poor GBM prognosis and is associated with pATM expression. We propose that pATM promotes VM through extracellular matrix modulation and VE-Cadherin / pVEGFR-2 activation, thereby highlighting ATM activation as a potential target for enhancing anti-angiogenesis therapies for GBM.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada , Glioma , Células Madre Neoplásicas , Humanos , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , Células Madre Neoplásicas/metabolismo , Glioma/metabolismo , Glioma/patología , Glioma/irrigación sanguínea , Línea Celular Tumoral , Masculino , Femenino , Persona de Mediana Edad , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/irrigación sanguínea , Neovascularización Patológica/metabolismo , Glioblastoma/metabolismo , Glioblastoma/patología , Glioblastoma/irrigación sanguínea , Adulto , Anciano
7.
Expert Rev Neurother ; 24(9): 897-912, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38980086

RESUMEN

INTRODUCTION: The last decade has witnessed major breakthroughs in identifying novel genetic causes of hereditary ataxias, deepening our understanding of disease mechanisms, and developing therapies for these debilitating disorders. AREAS COVERED: This article reviews the currently approved and most promising candidate pharmacotherapies in relation to the known disease mechanisms of the most prevalent autosomal recessive ataxias. Omaveloxolone is an Nrf2 activator that increases antioxidant defense and was recently approved for treatment of Friedreich ataxia. Its therapeutic effect is modest, and further research is needed to find synergistic treatments that would halt or reverse disease progression. Promising approaches include upregulation of frataxin expression by epigenetic mechanisms, direct protein replacement, and gene replacement therapy. For ataxia-telangiectasia, promising approaches include splice-switching antisense oligonucleotides and small molecules targeting oxidative stress, inflammation, and mitochondrial function. Rare recessive ataxias for which disease-modifying therapies exist are also reviewed, emphasizing recently approved therapies. Evidence supporting the use of riluzole and acetyl-leucine in recessive ataxias is discussed. EXPERT OPINION: Advances in genetic therapies for other neurogenetic conditions have paved the way to implement feasible approaches with potential dramatic benefits. Particularly, as we develop effective treatments for these conditions, we may need to combine therapies, consider newborn testing for pre-symptomatic treatment, and optimize non-pharmacological approaches.


Asunto(s)
Ataxia Cerebelosa , Humanos , Ataxia Cerebelosa/tratamiento farmacológico , Ataxia Cerebelosa/genética , Terapia Genética/métodos , Ataxia de Friedreich/tratamiento farmacológico , Ataxia de Friedreich/genética , Ataxia de Friedreich/terapia
8.
Pathol Res Pract ; 260: 155447, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38981349

RESUMEN

Cancer is a multifaceted disease driven by abnormal cell growth and poses a significant global health threat. The multifactorial causes, differences in individual susceptibility to therapeutic drugs, and induced drug resistance pose major challenges in addressing cancers effectively. One of the most important aspects in making cancers highly heterogeneous in their physiology lies in the genes involved and the changes occurring to some of these genes in malignant conditions. The Genetic factors have been implicated in the oncogenesis, progression, responses to treatment, and metastasis. One such gene that plays a key role in human cancers is the mutated form of the Ataxia-telangiectasia gene (ATM). ATM gene located on chromosome 11q23, plays a vital role in maintaining genomic stability. Understanding the genetic basis of A-T is crucial for diagnosis, management, and treatment. Breast cancer, lung cancer, prostate cancer, and gastric cancer exhibit varying relationships with the ATM gene and influence their pathways. Targeting the ATM pathway proves promising for enhancing treatment effectiveness, especially in conjunction with DNA damage response pathways. Analyzing the therapeutic consequences of ATM mutations, especially in these cancer types facilitates the approaches for early detection, intervention, development of personalized treatment approaches, and improved patient outcomes. This review emphasizes the role of the ATM gene in various cancers, highlighting its impact on DNA repair pathways and therapeutic responses.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada , Neoplasias , Transducción de Señal , Humanos , Proteínas de la Ataxia Telangiectasia Mutada/genética , Neoplasias/genética , Neoplasias/terapia , Neoplasias/patología , Transducción de Señal/genética , Mutación , Reparación del ADN/genética , Daño del ADN/genética
9.
Cancer Genet ; 286-287: 43-47, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39067332

RESUMEN

ATM gene is implicated in the development of breast cancer in the heterozygous state, and Ataxia-telangiectasia (A-T) in a homozygous or compound heterozygous state. Ataxia-telangiectasia (A-T) is a rare cerebellar ataxia syndrome presenting with progressive neurologic impairment, telangiectasia, and an increased risk of leukemia and lymphoma. Although the role of ATM, separately, in association with A-T and breast cancer is well documented, there is a limited number of studies investigating ATM variants when segregating with both phenotypes in the same family. Here, using joint analysis and whole genome sequencing, we investigated ATM c.1564_1565del in a family with one homozygous member presenting with A-T (OMIM # 208900) and three heterozygous members, of whom one had breast cancer (OMIM #114480). To our knowledge, this is the first study of ATM c.1564_1565del segregation with both A-T and breast cancer phenotypes within the same kindred. This study highlights the need for a comprehensive genomic approach in the appropriate cancer risk management of heterozygote carriers of ATM in families with A-T.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada , Ataxia Telangiectasia , Neoplasias de la Mama , Linaje , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Ataxia Telangiectasia/genética , Proteínas de la Ataxia Telangiectasia Mutada/genética , Neoplasias de la Mama/genética , Predisposición Genética a la Enfermedad , Heterocigoto , Secuenciación Completa del Genoma
10.
Cancer Med ; 13(14): e70049, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39056567

RESUMEN

BACKGROUND/OBJECTIVES: Ataxia telangiectasia (A-T) is an inherited multisystem disorder with increased sensitivity to ionising radiation and elevated cancer risk. Although other cancer predisposition syndromes have established cancer screening protocols, evidence-based guidelines for cancer screening in A-T are lacking. This study sought to assess feasibility of a cancer screening protocol based on whole-body MRI (WB-MRI) in children and young people with A-T. DESIGN/METHODS: Children and young people with A-T were invited to undergo a one-off non-sedated 3-Tesla WB-MRI. Completion rate of WB-MRI was recorded and diagnostic image quality assessed by two experienced radiologists, with pre-specified success thresholds for scan completion of >50% participants and image quality between acceptable to excellent in 65% participants. Positive imaging findings were classified according to the ONCO-RADS system. Post-participation interviews were performed with recruited families to assess the experience of participating and feelings about waiting for, and communication of, the findings of the scan. RESULTS: Forty-six children and young people with A-T were identified, of which 36 were eligible to participate, 18 were recruited and 16 underwent WB-MRI. Nineteen parents participated in interviews. Fifteen participants (83%) completed the full WB-MRI scan protocol. The pre-specified image quality criterion was achieved with diagnostic images obtained in at least 93% of each MRI sequence. Non-malignant scan findings were present in 4 (25%) participants. Six themes were identified from the interviews: (1) anxiety is a familiar feeling, (2) the process of MRI scanning is challenging for some children and families, (3) preparation is essential to reduce stress, (4) WB-MRI provides the reassurance about the physical health that families need, (5) WB-MRI experience turned out to be a positive experience and (6) WB-MRI allows families to be proactive. CONCLUSION: This study shows that WB-MRI for cancer screening is feasible and well-accepted by children and young people with A-T and their families.


Asunto(s)
Ataxia Telangiectasia , Detección Precoz del Cáncer , Estudios de Factibilidad , Imagen por Resonancia Magnética , Imagen de Cuerpo Entero , Humanos , Ataxia Telangiectasia/diagnóstico por imagen , Niño , Femenino , Masculino , Adolescente , Imagen por Resonancia Magnética/métodos , Estudios Transversales , Detección Precoz del Cáncer/métodos , Detección Precoz del Cáncer/psicología , Imagen de Cuerpo Entero/métodos , Adulto Joven , Preescolar , Neoplasias/diagnóstico por imagen , Neoplasias/psicología , Adulto
11.
Cell Signal ; 122: 111322, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39067835

RESUMEN

Atrial fibrillation (AF) emerges as a critical complication following acute myocardial infarction (AMI) and is associated with a significant increased risk of heart failure, stroke and mortality. Ataxia telangiectasia mutated (ATM), a key player in DNA damage repair (DDR), has been implicated in multiple cardiovascular conditions, however, its involvement in the development of AF following AMI remains unexplored. This study seeks to clarify the contribution of the ATM/p53 pathway in the onset of AF post-AMI and to investigate the underlying mechanisms. The rat model of AMI was established by ligating left anterior descending coronary artery in the presence or absence of Ku55933 (an ATM kinase inhibitor, 5 mg/kg/d) treatment. Rats receiving Ku55933 were further divided into the early administration group (administered on days 1, 2, 4, and 7 post-AMI) and the late administration group (administered on days 8, 9, 11 and 14 post-AMI). RNA-sequencing was performed 14 days post-operation. In vitro, H2O2-challenged HL-1 atrial muscle cells were utilized to evaluate the potential effects of different ATM inhibition schemes, including earlier, middle, and late periods of intervention. Fourteen days post-AMI injury, the animals exhibited significantly increased AF inducibility, exacerbated atrial electrical/structural remodeling, reduced ventricular function and exacerbated atrial DNA damage, as evidenced by enhanced ATM/p53 signaling as well as γH2AX level. These effects were partially consistent with the enrichment results of bioinformatics analysis. Notably, the deleterious effects were ameliorated by early, but not late, administration of Ku55933. Mechanistically, inhibition of ATM signaling successfully suppressed atrial NLRP3 inflammasome-mediated pyroptotic pathway. Additionally, the results were validated in the in vitro experiments demonstrating that early inhibition of Ku55933 not only attenuated cellular ATM/p53 signaling, but also mitigated inflammatory response by reducing NLRP3 activation. Collectively, hyperactivation of ATM/p53 contributed to the pathogenesis of AF following AMI. Early intervention with ATM inhibitors substantially mitigated AF susceptibility and atrial electrical/structural remodeling, highlighting a novel therapeutic avenue against cardiac arrhythmia following AMI.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada , Fibrilación Atrial , Remodelación Atrial , Infarto del Miocardio , Transducción de Señal , Proteína p53 Supresora de Tumor , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Infarto del Miocardio/metabolismo , Infarto del Miocardio/complicaciones , Proteína p53 Supresora de Tumor/metabolismo , Fibrilación Atrial/metabolismo , Fibrilación Atrial/etiología , Ratas , Remodelación Atrial/efectos de los fármacos , Masculino , Transducción de Señal/efectos de los fármacos , Ratas Sprague-Dawley , Morfolinas/farmacología , Tioxantenos
12.
Immunol Res ; 72(4): 864-873, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38834764

RESUMEN

Ataxia-telangiectasia (AT) is a rare genetic disorder leading to neurological defects, telangiectasias, and immunodeficiency. We aimed to study the clinical and immunological features of Latin American patients with AT and analyze factors associated with mortality. Referral centers from 9 Latin American countries participated in this retrospective cohort study, and 218 patients were included. Median (IQR) ages at symptom onset and diagnosis were 1.0 (1.0-2.0)  and 5.0 (3.0-8.0) years, respectively. Most patients presented recurrent airway infections, which was significantly associated with IgA deficiency. IgA deficiency was observed in 60.8% of patients and IgG deficiency in 28.6%. T- and B-lymphopenias were also present in most cases. Mean survival was 24.2 years, and Kaplan-Meier 20-year-survival rate was 52.6%, with higher mortality associated with female gender and low IgG levels. These findings suggest that immunologic status should be investigated in all patients with AT.


Asunto(s)
Ataxia Telangiectasia , Humanos , Femenino , Masculino , América Latina/epidemiología , Ataxia Telangiectasia/mortalidad , Ataxia Telangiectasia/inmunología , Ataxia Telangiectasia/diagnóstico , Estudios Retrospectivos , Niño , Preescolar , Adulto , Adolescente , Lactante , Síndromes de Inmunodeficiencia/mortalidad , Síndromes de Inmunodeficiencia/epidemiología , Síndromes de Inmunodeficiencia/inmunología , Adulto Joven
13.
Oncol Res ; 32(6): 1021-1030, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38827321

RESUMEN

Background: Apolipoprotein B mRNA editing catalytic polypeptide (APOBEC), an endogenous mutator, induces DNA damage and activates the ataxia telangiectasia and Rad3-related (ATR)-checkpoint kinase 1 (Chk1) pathway. Although cisplatin-based therapy is the mainstay for muscle-invasive bladder cancer (MIBC), it has a poor survival rate. Therefore, this study aimed to evaluate the efficacy of an ATR inhibitor combined with cisplatin in the treatment of APOBEC catalytic subunit 3B (APOBEC3B) expressing MIBC. Methods: Immunohistochemical staining was performed to analyze an association between APOBEC3B and ATR in patients with MIBC. The APOBEC3B expression in MIBC cell lines was assessed using real-time polymerase chain reaction and western blot analysis. Western blot analysis was performed to confirm differences in phosphorylated Chk1 (pChk1) expression according to the APOBEC3B expression. Cell viability and apoptosis analyses were performed to examine the anti-tumor activity of ATR inhibitors combined with cisplatin. Conclusion: There was a significant association between APOBEC3B and ATR expression in the tumor tissues obtained from patients with MIBC. Cells with higher APOBEC3B expression showed higher pChk1 expression than cells expressing low APOBEC3B levels. Combination treatment of ATR inhibitor and cisplatin inhibited cell growth in MIBC cells with a higher APOBEC3B expression. Compared to cisplatin single treatment, combination treatment induced more apoptotic cell death in the cells with higher APOBEC3B expression. Conclusion: Our study shows that APOBEC3B's higher expression status can enhance the sensitivity of MIBC to cisplatin upon ATR inhibition. This result provides new insight into appropriate patient selection for the effective application of ATR inhibitors in MIBC.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada , Citidina Desaminasa , Antígenos de Histocompatibilidad Menor , Neoplasias de la Vejiga Urinaria , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Apoptosis/efectos de los fármacos , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular/efectos de los fármacos , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/antagonistas & inhibidores , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Cisplatino/farmacología , Cisplatino/uso terapéutico , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , Antígenos de Histocompatibilidad Menor/metabolismo , Antígenos de Histocompatibilidad Menor/genética , Invasividad Neoplásica , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/metabolismo
15.
Neurobiol Dis ; 199: 106562, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38876322

RESUMEN

Ataxia Telangiectasia (AT) is a rare disorder caused by mutations in the ATM gene and results in progressive neurodegeneration for reasons that remain poorly understood. In addition to its central role in nuclear DNA repair, ATM operates outside the nucleus to regulate metabolism, redox homeostasis and mitochondrial function. However, a systematic investigation into how and when loss of ATM affects these parameters in relevant human neuronal models of AT was lacking. We therefore used cortical neurons and brain organoids from AT-patient iPSC and gene corrected isogenic controls to reveal levels of mitochondrial dysfunction, oxidative stress, and senescence that vary with developmental maturity. Transcriptome analyses identified disruptions in regulatory networks related to mitochondrial function and maintenance, including alterations in the PARP/SIRT signalling axis and dysregulation of key mitophagy and mitochondrial fission-fusion processes. We further show that antioxidants reduce ROS and restore neurite branching in AT neuronal cultures, and ameliorate impaired neuronal activity in AT brain organoids. We conclude that progressive mitochondrial dysfunction and aberrant ROS production are important contributors to neurodegeneration in AT and are strongly linked to ATM's role in mitochondrial homeostasis regulation.


Asunto(s)
Ataxia Telangiectasia , Encéfalo , Células Madre Pluripotentes Inducidas , Mitocondrias , Neuronas , Organoides , Estrés Oxidativo , Estrés Oxidativo/fisiología , Humanos , Organoides/metabolismo , Ataxia Telangiectasia/metabolismo , Ataxia Telangiectasia/patología , Ataxia Telangiectasia/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Neuronas/metabolismo , Neuronas/patología , Encéfalo/metabolismo , Encéfalo/patología , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , Especies Reactivas de Oxígeno/metabolismo
16.
Front Neurol ; 15: 1344018, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38882696

RESUMEN

Ataxia-telangiectasia (A-T) is an autosomal recessive primary immunodeficiency disorder (PID) caused by biallelic mutations occurring in the serine/threonine protein kinase (ATM) gene. The major role of nuclear ATM is the coordination of cell signaling pathways in response to DNA double-strand breaks, oxidative stress, and cell cycle checkpoints. Defects in ATM functions lead to A-T syndrome with phenotypic heterogeneity. Our study reports the case of a Tunisian girl with A-T syndrome carrying a compound heterozygous mutation c.[3894dupT]; p.(Ala1299Cysfs3;rs587781823), with a splice acceptor variant: c.[5763-2A>C;rs876659489] in the ATM gene that was identified by next-generation sequencing (NGS). Further genetic analysis of the family showed that the mother carried the c.[5763-2A>C] splice acceptor variant, while the father harbored the c.[3894dupT] variant in the heterozygous state. Molecular analysis provides the opportunity for accurate diagnosis and timely management in A-T patients with chronic progressive disease, especially infections and the risk of malignancies. This study characterizes for the first time the identification of compound heterozygous ATM pathogenic variants by NGS in a Tunisian A-T patient. Our study outlines the importance of molecular genetic testing for A-T patients, which is required for earlier detection and reducing the burden of disease in the future, using the patients' families.

17.
Hum Mol Genet ; 33(18): 1605-1617, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-38888340

RESUMEN

The MRE11/RAD50/NBS1 (MRN) complex plays critical roles in cellular responses to DNA double-strand breaks. MRN is involved in end binding and processing, and it also induces cell cycle checkpoints by activating the ataxia-telangiectasia mutated (ATM) protein kinase. Hypomorphic pathogenic variants in the MRE11, RAD50, or NBS1 genes cause autosomal recessive genome instability syndromes featuring variable degrees of dwarfism, neurological defects, anemia, and cancer predisposition. Disease-associated MRN alleles include missense and nonsense variants, and many cause reduced protein levels of the entire MRN complex. However, the dramatic variability in the disease manifestation of MRN pathogenic variants is not understood. We sought to determine if low protein levels are a significant contributor to disease sequelae and therefore generated a transgenic murine model expressing MRE11 at low levels. These mice display dramatic phenotypes including small body size, severe anemia, and impaired DNA repair. We demonstrate that, distinct from ataxia telangiectasia-like disorder caused by MRE11 pathogenic missense or nonsense variants, mice and cultured cells expressing low MRE11 levels do not display the anticipated defects in ATM activation. Our findings indicate that ATM signaling can be supported by very low levels of the MRN complex and imply that defective ATM activation results from perturbation of MRN function caused by specific hypomorphic disease mutations. These distinct phenotypic outcomes underline the importance of understanding the impact of specific pathogenic MRE11 variants, which may help direct appropriate early surveillance for patients with these complicated disorders in a clinical setting.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada , Ataxia Telangiectasia , Reparación del ADN , Proteínas de Unión al ADN , Proteína Homóloga de MRE11 , Ratones Transgénicos , Fenotipo , Animales , Proteína Homóloga de MRE11/genética , Proteína Homóloga de MRE11/metabolismo , Ratones , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/metabolismo , Ataxia Telangiectasia/patología , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Humanos , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Reparación del ADN/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Modelos Animales de Enfermedad , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Roturas del ADN de Doble Cadena
18.
Clin Immunol ; 263: 110233, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38697554

RESUMEN

Ataxia-telangiectasia (A-T) is a rare disorder caused by genetic defects of A-T mutated (ATM) kinase, a key regulator of stress response, and characterized by neurodegeneration, immunodeficiency, and high incidence of cancer. Here we investigated NK cells in a mouse model of A-T (Atm-/-) showing that they are strongly impaired at killing tumor cells due to a block of early signaling events. On the other hand, in Atm-/- littermates with thymic lymphoma NK cell cytotoxicity is enhanced as compared with ATM-proficient mice, possibly via tumor-produced TNF-α. Results also suggest that expansion of exhausted NKG2D+ NK cells in Atm-/- mice is driven by low-level expression of stress-inducible NKG2D ligands, whereas development of thymoma expressing the high-affinity MULT1 ligand is associated with NKG2D down-regulation on NK cells. These results expand our understanding of immunodeficiency in A-T and encourage exploring NK cell biology in A-T patients in the attempt to identify cancer predictive biomarkers and novel therapeutic targets.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada , Células Asesinas Naturales , Subfamilia K de Receptores Similares a Lectina de Células NK , Animales , Células Asesinas Naturales/inmunología , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Subfamilia K de Receptores Similares a Lectina de Células NK/genética , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Ratones , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/inmunología , Ratones Noqueados , Ratones Endogámicos C57BL , Timoma/inmunología , Timoma/genética , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/inmunología , Citotoxicidad Inmunológica , Neoplasias del Timo/inmunología , Neoplasias del Timo/genética , Transducción de Señal , Proteínas de la Membrana , Antígenos de Histocompatibilidad Clase I
19.
Pediatr Neurol ; 156: 85-90, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38733859

RESUMEN

BACKGROUND: Ataxia telangiectasia (AT) is a genetic multisystemic disorder affecting the nervous system. Data on neurocognitive functioning in AT are limited and focused on patients at various stages of disease. Because of the genetic nature of the disorder, parents of patients may also display subtle neurological problems. This study aimed to evaluate neurocognitive functioning in patients with AT and their unaffected parents. METHODS: The study included 26 patients with AT and 41 parents among which 13 patients and 18 parents were evaluated with neurocognitive tests. Clinical and radiological data were reviewed retrospectively. Data were analyzed with descriptive statistics. RESULTS: The median ages of patients and parents were 12.5 years (interquartile range [IQR] = 9.5) and 38.0 years (IQR = 12.0), respectively. Median intelligence quotients were 62.0 (IQR = 21.3) and 82.5 (IQR = 16.8), respectively, for patients and parents. Rates of intellectual disability for patients and parents were 100.0% and 83.3%, respectively. Areas of impairment in patients in decreasing order of frequency were motor skills, visual perception/memory, visual-manual coordination, spontaneous/focused and sustained attention (100.0% for each), social judgment, as well as vocabulary and arithmetic skills (75.0% for each). Areas of impairment in unaffected parents in decreasing order of frequency were visual-manual coordination (77.8%), working memory (76.5%), and visual perception and motor skills (66.7% for each). CONCLUSION: Intellectual disabilities, visual-spatial disabilities, and reduced visual-motor coordination seem to be similar in patients with AT and their parents. These results should be replicated with larger samples from multiple centers and may form putative cognitive endophenotypes for the disorder.


Asunto(s)
Ataxia Telangiectasia , Padres , Humanos , Ataxia Telangiectasia/fisiopatología , Ataxia Telangiectasia/complicaciones , Ataxia Telangiectasia/genética , Masculino , Femenino , Niño , Adulto , Adolescente , Estudios Retrospectivos , Disfunción Cognitiva/etiología , Disfunción Cognitiva/fisiopatología , Pruebas Neuropsicológicas , Persona de Mediana Edad , Discapacidad Intelectual/fisiopatología , Adulto Joven
20.
Biochem Pharmacol ; 225: 116310, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38788960

RESUMEN

Targeting the DNA damage response (DDR) is a promising strategy in oncotherapy, as most tumor cells are sensitive to excess damage due to their repair defects. Ataxia telangiectasia mutated and RAD3-related protein (ATR) is a damage response signal transduction sensor, and its therapeutic potential in tumor cells needs to be precisely investigated. Herein, we identified a new axis that could be targeted by ATR inhibitors to decrease the DNA-dependent protein kinase catalytic subunit (DNAPKcs), downregulate the expression of the retinoblastoma (RB), and drive G1/S-phase transition. Four-way DNA Holliday junctions (FJs) assembled in this process could trigger S-phase arrest and induce lethal chromosome damage in RB-positive triple-negative breast cancer (TNBC) cells. Furthermore, these unrepaired junctions also exerted toxic effects to RB-deficient TNBC cells when the homologous recombination repair (HRR) was inhibited. This study proposes a precise strategy for treating TNBC by targeting the DDR and extends our understanding of ATR and HJ in tumor treatment.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada , ADN Cruciforme , Neoplasias de la Mama Triple Negativas , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Proteínas de la Ataxia Telangiectasia Mutada/genética , Humanos , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Línea Celular Tumoral , ADN Cruciforme/metabolismo , ADN Cruciforme/genética , Proteína de Retinoblastoma/metabolismo , Proteína de Retinoblastoma/genética , Femenino , Fase S/efectos de los fármacos , Fase S/fisiología , Animales , Antineoplásicos/farmacología , Daño del ADN/fisiología , Daño del ADN/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA