Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int Immunopharmacol ; 142(Pt A): 113094, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39276460

RESUMEN

PURPOSE: Myosin 1f (Myo1f), an unconventional long-tailed class Ⅰ myosin, plays significant roles in immune cell motility and innate antifungal immunity. This study was aimed to assess the expression and role of Myo1f in Aspergillus fumigatus (AF) keratitis. METHODS: Myo1f expression in the corneas of mice afflicted with AF keratitis and in AF keratitis-related cells was assessed using protein mass spectrometry, quantitative real-time polymerase chain reaction (qRT-PCR), western blotting, and immunofluorescence. Myo1f expression following pre-treatment with inhibitors of dendritic cell-associated C-type lectin-1 (Dectin-1), Toll-like receptor 4 (TLR-4), and lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) was also examined. In AF keratitis mouse models, Myo1f small interfering RNA (siRNA) was administered via subconjunctival injection to observe disease progression, inflammatory cell recruitment, and protein production using slit lamp examination, immunofluorescence, hematoxylin-eosin (HE) staining, and western blotting. RESULTS: Myo1f expression was upregulated in both AF keratitis mouse models and AF keratitis-related cells. Dectin-1, TLR-4, and LOX-1 were found to be essential for the production of Myo1f in response to the infection with AF. In mice with AF keratitis, knockdown of Myo1f reduced disease severity, decreased the recruitment of neutrophils alongside macrophages to inflammatory areas, suppressed the myeloid differentiation factor 88 (MyD88)/ nuclear factor-kappaB (NF-κB) signaling pathway, and decreased the production of interleukin (IL)-1ß, tumor necrosis factor (TNF)-α, along with IL-6. Additionally, Myo1f was associated with apoptosis and pyroptosis in mice with AF keratitis. CONCLUSIONS: These findings demonstrated that Myo1f contributed to the recruitment of neutrophils and macrophages, the production of pro-inflammatory cytokines, and was associated with apoptosis and pyroptosis during AF keratitis.

2.
Front Microbiol ; 15: 1383509, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38655086

RESUMEN

To investigate the anti-inflammatory and antifungal effects of plumbagin (PL) in Aspergillus fumigatus (A. fumigatus) keratitis, the minimum inhibitory concentration (MIC), time-killing curve, spore adhesion, crystal violet staining, calcium fluoride white staining, and Propidium Iodide (PI) staining were employed to assess the antifungal activity of PL in vitro against A. fumigatus. The cytotoxicity of PL was assessed using the Cell Counting Kit-8 (CCK8). The impact of PL on the expression of HMGB1, LOX-1, TNF-α, IL-1ß, IL-6, IL-10 and ROS in A. fumigatus keratitis was investigated using RT-PCR, ELISA, Western blot, and Reactive oxygen species (ROS) assay. The therapeutic efficacy of PL against A. fumigatus keratitis was assessed through clinical scoring, plate counting, Immunofluorescence and Hematoxylin-Eosin (HE) staining. Finally, we found that PL inhibited the growth, spore adhesion, and biofilm formation of A. fumigatus and disrupted the integrity of its cell membrane and cell wall. PL decreased IL-6, TNF-α, and IL-1ß levels while increasing IL-10 expression in fungi-infected mice corneas and peritoneal macrophages. Additionally, PL significantly attenuated the HMGB1/LOX-1 pathway while reversing the promoting effect of Boxb (an HMGB1 agonist) on HMGB1/LOX-1. Moreover, PL decreased the level of ROS. In vivo, clinical scores, neutrophil recruitment, and fungal burden were all significantly reduced in infected corneas treated with PL. In summary, the inflammatory process can be inhibited by PL through the regulation of the HMGB-1/LOX-1 pathway. Simultaneously, PL can exert antifungal effects by limiting fungal spore adhesion and biofilm formation, as well as causing destruction of cell membranes and walls.

3.
Int J Ophthalmol ; 17(4): 616-624, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638265

RESUMEN

AIM: To explore whether CD3ε is involved in the adaptive immunity of Aspergillus fumigatus (A. fumigatus) keratitis in mice and the role of innate and adaptive immunity in it. METHODS: Mice models of A. fumigatus keratitis were established by intra-stromal injection and corneal epithelial scratching. Subconjunctival injections of natamycin, wedelolactone, LOX-1 inhibitor (poly I) or Dectin-1 inhibitor (laminarin) were used to treat mice with A. fumigatus keratitis. Mice were pretreated by intraperitoneal injection of anti-mouse CD3ε. We observed the corneal infection of mice under the slit lamp microscope and made a clinical score. The protein expression of CD3ε and interleukin-10 (IL-10) was determined by Western blotting. RESULTS: With the disease progresses, the degree of corneal opacity and edema augmented. In the intra-stromal injection models, CD3ε protein expression began to increase significantly on the 2nd day. However, in the scraping epithelial method models, CD3ε only began to increase on the 3rd day. After natamycin treatment, the degree of corneal inflammation in mice was significantly attenuated on the 3rd day. After wedelolactone treatment, the severity of keratitis worsened. And the amount of CD3ε protein was also reduced, compared with the control group. By inhibiting LOX-1 and Dectin-1, there was no significant difference in CD3ε production compared with the control group. After inhibiting CD3ε, corneal ulcer area and clinical score increased, and IL-10 expression was downregulated. CONCLUSION: As a pan T cell marker, CD3ε participate in the adaptive immunity of A. fumigatus keratitis in mice. In our mice models, the corneas will enter the adaptive immune stage faster. By regulating IL-10, CD3ε exerts anti-inflammatory and repairs effects in the adaptive immune stage.

4.
Infect Immun ; 92(4): e0048323, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38501672

RESUMEN

Aspergillus fumigatus (A. fumigatus) is one of the common pathogens of fungal keratitis. Fungal growth and invasion cause excessive inflammation and corneal damage, leading to severe vision loss. Neutrophils are the primary infiltrating cells critical for fungal clearance. Cathelicidin [LL-37 in humans and cathelicidin-related antimicrobial peptide (CRAMP) in mice], a natural antimicrobial peptide, can directly inhibit the growth of many pathogens and regulate immune responses. However, the role of cathelicidin and its effect on neutrophils in A. fumigatus keratitis remain unclear. By establishing A. fumigatus keratitis mouse models, we found that cathelicidin was increased in A. fumigatus keratitis. It could reduce fungal loads, lower clinical scores, and improve corneal transparency. Restriction of CRAMP on fungal proliferation was largely counteracted in CD18-/- mice, in which neutrophils cannot migrate into infected sites. When WT neutrophils were transferred into CD18-/- mice, corneal fungal loads were distinctly reduced, indicating that neutrophils are vital for CRAMP-mediated resistance. Furthermore, cathelicidin promoted neutrophils to phagocytose and degrade conidia both in vitro and in vivo. CXC chemokine receptor 2 (CXCR2) was reported to be a functional receptor of LL-37 on neutrophils. CXCR2 antagonist SB225002 or phospholipase C (PLC) inhibitor U73122 weakened LL-37-induced phagocytosis. Meanwhile, LL-37 induced PLC γ phosphorylation, which was attenuated by SB225002. SB225002 or the autophagy inhibitors Bafilomycin-A1 and 3-Methyladenine weakened LL-37-induced degradation of conidia. Transmission electron microscopy (TEM) observed that LL-37 increased autophagosomes in Aspergillus-infected neutrophils. Consistently, LL-37 elevated autophagy-associated protein expressions (Beclin-1 and LC3-II), but this effect was weakened by SB225002. Collectively, cathelicidin reduces fungal loads and improves the prognosis of A. fumigatus keratitis. Both in vitro and in vivo, cathelicidin promotes neutrophils to phagocytose and degrade conidia. LL-37/CXCR2 activates PLC γ to amplify neutrophils' phagocytosis and induces autophagy to eliminate intracellular conidia.


Asunto(s)
Aspergillus fumigatus , Queratitis , Compuestos de Fenilurea , Humanos , Animales , Ratones , Neutrófilos , Antifúngicos/metabolismo , Catelicidinas , Fosfolipasa C gamma/metabolismo , Queratitis/microbiología , Pronóstico , Ratones Endogámicos C57BL
5.
Exp Eye Res ; 240: 109830, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38364932

RESUMEN

Fungal keratitis (FK) is a refractory keratitis caused by excessive inflammation and fungal damage. Excessive inflammation can lead to tissue damage and corneal opacity, resulting in a poor prognosis for FK. Oxymatrine (OMT) is a natural alkaloid, which has rich pharmacological effects, such as antioxidant and anti-inflammation. However, its antifungal activity and the mechanism of action in FK have not been elucidated. This study confirmed that OMT suppressed Aspergillus fumigatus growth, biofilm formation, the integrity of fungal cell and conidial adherence. OMT not only effectively reduced corneal fungal load but also inflammation responses. OMT lessened the recruitment of neutrophils and macrophages in FK. In addition, OMT up-regulated the expression of Nrf2 and down-regulated the expression of IL-18, IL-1ß, caspase-1, NLRP3 and GSDMD. Pre-treatment with Nrf2 inhibitor up-regulated the expression of IL-1ß, IL-18, caspase-1, NLRP3 and GSDMD supressed by OMT. In conclusion, OMT has efficient anti-inflammatory and antifungal effects by suppressing fungal activity and restricting pyroptosis via Nrf2 pathway. OMT is considered as a potential option for the treatment of FK.


Asunto(s)
Aspergilosis , Úlcera de la Córnea , Infecciones Fúngicas del Ojo , Queratitis , Matrinas , Animales , Ratones , Aspergillus fumigatus/fisiología , Proteína con Dominio Pirina 3 de la Familia NLR , Interleucina-18 , Aspergilosis/tratamiento farmacológico , Aspergilosis/metabolismo , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Piroptosis , Factor 2 Relacionado con NF-E2 , Queratitis/microbiología , Inflamación , Infecciones Fúngicas del Ojo/tratamiento farmacológico , Infecciones Fúngicas del Ojo/metabolismo , Caspasa 1/metabolismo , Ratones Endogámicos C57BL
6.
Cytokine ; 175: 156483, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38159472

RESUMEN

PURPOSE: The purpose of this research study was to investigate the impact of schaftoside on Aspergillus fumigatus (A. fumigatus) keratitis and elucidate its underlying mechanisms. METHODS: In order to establish safe experimental concentrations of schaftoside in human corneal epithelial cells (HCECs), RAW264.7 cells, and mouse models, various techniques were employed including cytotoxicity assay (CCK-8) assay, cell scratch assay, and Draize test. The therapeutic effect of schaftoside was assessed using slit-lamp biomicroscopy, clinical scores, as well as determination of neutrophil infiltration through hematoxylin and eosin (HE) staining, immunofluorescence (IF) staining, and myeloperoxidase (MPO) assay. The levels of Toll-like receptor 4 (TLR4), myeloid differentiation primary response 88 (MyD88), pro-inflammatory mediators interleukin (IL)-1ß, tumor necrosis factor (TNF)-α, and IL-6 were determined using quantitative real-time polymerase chain reaction (qRT-PCR), western blotting, and IF techniques. RESULTS: Schaftoside at a concentration of 160 µM displayed no harmful side effects on HCECs, RAW cells, and mouse corneas, rendering it suitable for further experiments. In a murine fungal keratitis model, schaftoside mitigated the severity of fungal keratitis by inhibiting neutrophil infiltration and reducing MPO activity. Both in vitro and in vivo experiments demonstrated that schaftoside treatment suppressed the upregulation of IL-1ß, TNF-α, and IL-6 expression, while also downregulating the expressions of TLR4 as well as MyD88 at both mRNA and protein levels. CONCLUSIONS: Schaftoside demonstrated a protective effect against A. fumigatus keratitis by reducing corneal damage through inhibition of neutrophil recruitment and downstream inflammatory cytokines. The anti-inflammatory properties of schaftoside in A. fumigatus keratitis may involve modulation of the TLR4/MyD88 pathway.


Asunto(s)
Aspergilosis , Glicósidos , Queratitis , Animales , Ratones , Humanos , Aspergillus fumigatus , Factor 88 de Diferenciación Mieloide/metabolismo , Receptor Toll-Like 4/metabolismo , Aspergilosis/tratamiento farmacológico , Interleucina-6/metabolismo , Queratitis/tratamiento farmacológico , Queratitis/metabolismo , Queratitis/microbiología , Inflamación/tratamiento farmacológico , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Ratones Endogámicos C57BL
7.
Front Microbiol ; 14: 1119568, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36876115

RESUMEN

Aspergillus fumigatus keratitis is a potential blinding disease associated with A. fumigatus invasion and excessive inflammatory response. Benzyl isothiocyanate (BITC) is a secondary metabolite with broad antibacterial and anti-inflammatory activity extracted from cruciferous species. However, the role of BITC in A. fumigatus keratitis has not been discovered yet. This study aims to explore the antifungal and anti-inflammatory effects and mechanisms of BITC in A. fumigatus keratitis. Our results provided evidences that BITC exerted antifungal effects against A. fumigatus by damaging cell membranes, mitochondria, adhesion, and biofilms in a concentration-dependent manner. In vivo, fungal load and inflammatory response including inflammatory cell infiltration and pro-inflammatory cytokine expression were reduced in BITC-treated A. fumigatus keratitis. Additionally, BITC significantly decreased Mincle, IL-1ß, TNF-α, and IL-6 expression in RAW264.7 cells that stimulated by A. fumigatus or Mincle ligand trehalose-6,6-dibehenate. In summary, BITC possessed fungicidal activities and could improve the prognosis of A. fumigatus keratitis by reducing fungal load and inhibiting the inflammatory response mediated by Mincle.

8.
Int Immunopharmacol ; 118: 109849, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36933490

RESUMEN

PURPOSE: To screen and identify the mechanism of honokiol on anti-fungi and anti-inflammation in fungal keratitis (FK) through bioinformatic analysis and biological experiments. METHODS: Transcriptome profile demonstrated differential expression genes (DEGs) of Aspergillus fumigatus keratitis between PBS-treated and honokiol-treated groups via bioinformatics analyses. Inflammatory substances were quantified by qRT-PCR, Western blot and ELISA, and macrophage polarization was examined by flow cytometry. Periodic acid Schiff staining and morphological interference assay were used to detect hyphal distribution in vivo and fungal germination in vitro, respectively. Electron microscopy was to illustrate hyphal microstructure. RESULTS: Illumina sequencing demonstrated that compared with the honokiol group, 1175 up-regulated and 383 down-regulated genes were induced in C57BL/6 mice Aspergillus fumigatus keratitis with PBS treatment. Through GO analysis, some differential expression proteins (DEPs) played major roles in biological processes, especially fungal defense and immune activation. KEGG analysis provided fungus-related signaling pathways. PPI analysis demonstrated that DEPs from multiple pathways form a close-knit network, providing a broader context for FK treatment. In biological experiments, Dectin-2, NLRP3 and IL-1ß were upregulated by Aspergillus fumigatus to evaluate immune response. Honokiol could reverse the trend, comparable to Dectin-2 siRNA interference. Meanwhile, honokiol could also play an anti-inflammatory role via promoting M2 phenotype polarization. Moreover, honokiol reduced hyphal distribution in the stroma, delayed germination, and destroyed the hyphal cell membrane in-vitro. CONCLUSIONS: Honokiol possesses anti-fungal and anti-inflammatory effects in Aspergillus fumigatus keratitis and may develop a potential and safe therapeutic modality for FK.


Asunto(s)
Aspergilosis , Infecciones Fúngicas del Ojo , Queratitis , Animales , Ratones , Aspergillus fumigatus , Regulación hacia Abajo , Ratones Endogámicos C57BL , Inflamación/tratamiento farmacológico , Infecciones Fúngicas del Ojo/tratamiento farmacológico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico
9.
Exp Eye Res ; 216: 108941, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35077754

RESUMEN

Fungal keratitis (FK) is one of the main causes of blindness in China. People with diabetes are susceptible to corneal epithelial disease, even fungal keratitis. At present, there are few studies on this disease. Resolvins (Rv) has been reported as a mediators that exert crucial anti-inflammatory and immune regulation roles in serval diseases. In order to investigate the roles and underlying mechanism of Resolvins D1 (RvD1) on the Aspergillus fumigatus (A. fumigatus) keratitis in diabetes, we established in vivo and in vitro models of A. fumigatus keratitis, which were then exposed to high glucose. The expression levels of RvD1, 5-lipoxygenase (5-LOX), and 15-lipoxygenase (15-LOX) in A. fumigatus keratitis patients with diabetes were determined through Enzyme Linked Immunosorbent Assay (ELISA), Western blot and immunohistochemistry. Reactive Oxygen Species (ROS) production, ELISA, flow cytometry, Hematoxylin-Eosin (HE) staining and fungal loading determination were conducted to evaluate the severity of A. fumigatus infection. Lymphangiogenesis and angiogenesis were examined by immunofluorescence assay. Western blot was applied to detect the proteins of the MAPK-NF-κB pathway. The results showed that RvD1 diminished the high glucose-induced oxidative stress and inflammatory response, as evidenced by the reduction of ROS production, Interleukin-6 (IL-6), Interleukin-8 (IL-8), Heme Oxygenase-1 (HMOX-1), and the elevation of Cyclooxygenase-2 (COX2), Superoxide Dismutase (SOD-1), and Glutathione Peroxidase-2 (GPX2) levels in A. fumigatus-infected Human Corneal Endothelial Cells (HCECs). Additionally, lymphangiogenesis and angiogenesis prominently decreased after intervention with RvD1. Furthermore, RvD1 significantly reduced the levels of p-MEK1/2 and p-ERK1/2, and restrained the NF-κB and GPR32 activation. The above results showed that RvD1 protects against A. fumigatus keratitis in diabetes by suppressing oxidative stress, inflammatory response, fungal growth, and immunoreaction via modulating MAPK-NF-κB pathway. RvD1 provides clues for the therapeutic targets of Fungal keratitis complicated with diabetes.


Asunto(s)
Aspergilosis/prevención & control , Úlcera de la Córnea/prevención & control , Complicaciones de la Diabetes/microbiología , Ácidos Docosahexaenoicos/fisiología , Infecciones Fúngicas del Ojo/prevención & control , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Animales , Araquidonato 15-Lipooxigenasa/metabolismo , Araquidonato 5-Lipooxigenasa/metabolismo , Aspergilosis/metabolismo , Aspergilosis/microbiología , Aspergillus fumigatus/fisiología , Western Blotting , Células Cultivadas , Úlcera de la Córnea/metabolismo , Úlcera de la Córnea/microbiología , Complicaciones de la Diabetes/metabolismo , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Epitelio Corneal/efectos de los fármacos , Epitelio Corneal/microbiología , Infecciones Fúngicas del Ojo/metabolismo , Infecciones Fúngicas del Ojo/microbiología , Citometría de Flujo , Glucosa/farmacología , Humanos , Inmunohistoquímica , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos , Oxidorreductasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
10.
Exp Eye Res ; 216: 108960, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35085580

RESUMEN

Fungal keratitis is one of leading reasons for blindness in the world, which causes corneal blindness mainly due to excessive inflammatory responses. Kaempferol (KAE) is a natural flavonoid which has potent anti-inflammatory effects. However, whether KAE plays protective roles in fungal keratitis and the potentially protective mechanisms are unrevealed. Here we first investigated the anti-inflammatory and antifungal effects of KAE on Aspergillus fumigatus (A. fumigatus) keratitis in C57BL/6 mice. We found that treatment of KAE ameliorated the severity of keratitis, inhibited macrophages and neutrophils recruitment, depressed corneal fungal load, and declined the expression of TLR4 and Dectin-1 in A. fumigatus infected mice corneas. And in activated hyphae or Curdlan stimulated macrophages, pretreatment of KAE also significantly decreased the mRNA and protein expression of IL-1ß, TNF-α, MIP-2 and the phosphorylated-p38 (p-p38)/p38 MAPK ratio. In summary, KAE ameliorated the prognosis of fungal keratitis in C57BL/6 mice by reducing corneal fungal load, depressing the inflammatory cells recruitment, and downregulating the expression of inflammatory factors, and those effects depended on the inhibition of Dectin-1 and p38 MAPK pathway.


Asunto(s)
Aspergilosis/tratamiento farmacológico , Aspergillus fumigatus/efectos de los fármacos , Úlcera de la Córnea/tratamiento farmacológico , Infecciones Fúngicas del Ojo/tratamiento farmacológico , Quempferoles/uso terapéutico , Lectinas Tipo C/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Aspergilosis/metabolismo , Aspergilosis/microbiología , Aspergillus fumigatus/fisiología , Recuento de Colonia Microbiana , Úlcera de la Córnea/metabolismo , Úlcera de la Córnea/microbiología , Modelos Animales de Enfermedad , Infecciones Fúngicas del Ojo/metabolismo , Infecciones Fúngicas del Ojo/microbiología , Femenino , Macrófagos/fisiología , Ratones , Ratones Endogámicos C57BL , Neutrófilos/fisiología , Pronóstico
11.
Int J Ophthalmol ; 12(6): 898-903, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31236343

RESUMEN

AIM: To investigate the inflammatory amplification effect of high-mobility group box 1 (HMGB1) in Aspergillus fumigatus (A. fumigatus) keratitis and the relationship between lectin-like oxidized low-density lipoprotein receptor 1 (LOX-1) and HMGB1 in keratitis immune responses. METHODS: Phosphate buffer saline (PBS), and Boxb were injected into BALB/c mice subconjunctivally before the corneas were infected with A. fumigatus. RAW264.7 macrophages and neutrophils were pretreated with PBS and Boxb to determine the HMGB1 inflammatory amplification effects. Abdominal cavity extracted macrophages were pretreated with Boxb and Poly (I) (a LOX-1 inhibitor) before A. fumigatus hyphae stimulation to prove the the relationship between the two molecules. LOX-1, interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α), macrophage inflammatory protein-2 (MIP-2) and IL-10 were assessed by polymerase chain reaction and Western blot. RESULTS: Pretreatment with Boxb exacerbated corneal inflammation. In macrophages and neutrophils, A. fumigatus induced LOX-1, IL-1ß, TNF-α and MIP-2 expression in Boxb group was higher than those in PBS group. Poly (I) treatments before infection alleviated the proinflammatory effects of Boxb in abdominal cavity extracted macrophages. Pretreatment with Boxb did not influence Dectin-1 mRNA levels in macrophages and neutrophils. CONCLUSION: In fungal keratitis, HMGB1 is a proinflammatory factor in the first line of immune response. HMGB1 mainly stimulates neutrophils and macrophages to produce inflammatory cytokines and chemokines during the immune response. LOX-1 participates in HMGB1 induced inflammatory exacerbation in A. fumigatus keratitis.

12.
Int J Ophthalmol ; 11(4): 548-552, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29675369

RESUMEN

AIM: To investigate whether high-mobility group box 1 (HMGB1) Boxb exacerbates BALB/c mice corneal immune responses and inflammatory through the Toll-like receptor 4 (TLR4)/myeloid differentiation primary response 88 (MyD88)-dependent signaling pathway in Aspergillus fumigatus (A. fumigatus) keratitis. METHODS: The mice corneas were pretreated with phosphate buffer saline (PBS), Boxb before A. fumigatus infection. The abdominal cavity extracted macrophages were pretreated with PBS, Boxb, TLR4 inhibitor (CLI-095), Dimethyl sulfoxide (DMSO) separately before A. fumigatus hyphae stimulation. HMGB1 was detected in normal and infected mice corneas and macrophages by real-time reverse transcriptase polymerase chain reaction (RT-PCR), the TLR4, MyD88, interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α) were detected by Western blot and PCR. RESULTS: In BALB/c mice corneas, the expressions of TLR4, HMGB1, IL-1ß, TNF-α were increased after A. fumigatus infection. While pretreatment with Boxb significantly increased the expressions of TLR4, HMGB1, MyD88, IL-1ß, TNF-α compared with PBS control after infection. In BALB/c mice abdominal cavity extracted macrophages, pretreatment with Boxb increased the expressions of TLR4, HMGB1, MyD88, IL-1ß, TNF-α, while pretreatment with CLI-095 and Boxb significantly decreased the expressions of TLR4, HMGB1, MyD88, IL-1ß, TNF-α. CONCLUSION: In A. fumigatus keratitis, Boxb play a pro-inflammatory role in corneal anti-fungi immune response through the HMGB1-TLR4-MyD88 signal pathway.

13.
Artículo en Coreano | WPRIM (Pacífico Occidental) | ID: wpr-208057

RESUMEN

In order to help define the possible role of adhesion molecules in corneal inflammation, we investigated the distribution of adhesion molecules in normal and Aspergillus fumigatus keratitis-induced corneas of rabbits in process if time. Each 4 corneas were resected at 3, 12, 24, and 72 hours after intracorneal injection with A. fumigatus. Normal corneas (4 eyes) were used as a control. Monoclonal antibodies to beta 1 subunit of VLAs, alpha 1 subunit of VLA-1, LFA-1, ICAM-1,and ELAM-1 were used for immunohistochemical staining of 20 corneas.The results were as follows: In normal cornea, beta 1 subunit of VLAs was expressed on all parts of the cornea, and ICAM-1 was expressed on corneal stroma and endothelium. Vascular endothelium showed expression of beta 1 subunit of VLAs and ICAM-1 after 12 hours of intracorneal injection, and alpha1 subunit of VLA-1 and ELAM-1 at 72 hours after injection. In inflamed cornea, beta 1 subunit of VLAs was expressed strongly at 72 hours after injection. Alpha1 subunit of VLA-1 was detected on corneal stroma after 12 hours of injection, and on corneal endothelium at 72hours after injection. Expression of beta 2 subunit of LFA-1 was weak on corneal stroma after 3 hours injection, and on corneal endothelium at 72 hours after injection. ICAM-1 expression was detected weakly on corneal epithelium, and increased on corneal stroma and endothelium at 72 hours after injection. ELAM-1 was expressed weakly on corneal stroma after 3 hours of injection, and on corneal endothelium at 72 hours after injection.In this study, it was found that the invasion of A. fumigatusinto the cornea causes localized inflammatory reaction that results in activation of corneal cells (keratocytes, corneal endothelial cells and epithelial cells), and subsequent expression of adhesion molecules in the cornea. Expression of adhesion molecules facilitates the inflammatory cells to be migrated into the cornea with inflammmation.


Asunto(s)
Conejos , Anticuerpos Monoclonales , Aspergillus fumigatus , Aspergillus , Córnea , Sustancia Propia , Selectina E , Células Endoteliales , Endotelio , Endotelio Corneal , Endotelio Vascular , Epitelio Corneal , Inflamación , Integrina alfa1beta1 , Molécula 1 de Adhesión Intercelular , Queratitis , Antígeno-1 Asociado a Función de Linfocito
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA