Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Brain Behav ; 12(10): e2775, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36128729

RESUMEN

Over the long run, STEM fields had been perceived as dominant by males, despite that numerous studies have shown that female students do not underperform their male classmates in mathematics and science. In this review, we discuss whether and how sex/gender shows specificity in arithmetic processing using a cognitive neuroscience approach not only to capture contemporary differences in brain and behavior but also to provide exclusive brain bases knowledge that is unseen in behavioral outcomes alone. We begin by summarizing studies that had examined sex differences/similarities in behavioral performance of mathematical learning, with a specific focus on large-scale meta-analytical data. We then discuss how the magnetic resonance imaging (MRI) approach can contribute to understanding neural mechanisms underlying sex-specific effects of mathematical learning by reviewing structural and functional data. Finally, we close this review by proposing potential research issues for further exploration of the sex effect using neuroimaging technology. Through the lens of advancement in the neuroimaging technique, we seek to provide insights into uncovering sex-specific neural mechanisms of learning to inform and achieve genuine gender equality in education.


Asunto(s)
Imagen por Resonancia Magnética , Solución de Problemas , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Matemática , Factores Sexuales
2.
J Clin Med ; 11(8)2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35456176

RESUMEN

Atypical development of numerical cognition (dyscalculia) may increase the onset of neuropsychiatric symptoms, especially when untreated, and it may have long-term detrimental social consequences. However, evidence-based treatments are still lacking. Despite plenty of studies investigating the effects of transcranial electrical stimulation (tES) on numerical cognition, a systematized synthesis of results is still lacking. In the present systematic review (PROSPERO ID: CRD42021271139), we found that the majority of reports (20 out of 26) showed the effectiveness of tES in improving both number (80%) and arithmetic (76%) processing. In particular, anodal tDCS (regardless of lateralization) over parietal regions, bilateral tDCS (regardless of polarity/lateralization) over frontal regions, and tRNS (regardless of brain regions) strongly enhance number processing. While bilateral tDCS and tRNS over parietal and frontal regions and left anodal tDCS over frontal regions consistently improve arithmetic skills. In addition, tACS seems to be more effective than tDCS at ameliorating arithmetic learning. Despite the variability of methods and paucity of clinical studies, tES seems to be a promising brain-based treatment to enhance numerical cognition. Recommendations for clinical translation, future directions, and limitations are outlined.

3.
Eur J Neurosci ; 50(2): 1878-1891, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30706598

RESUMEN

Interindividual differences in the numerical ability of healthy adults have been previously demonstrated, mainly with tasks involving mental number line or size representation. However, electrophysiological correlates of superior versus poor arithmetic ability (in the healthy population) have been scarcely investigated. We correlated electric potentials with math performance in 13 skilled and 13 poor calculators selected from a sample of 41 graduate students on the basis of their poor or superior math abilities assessed through a timed test. EEG was recorded from 128 channels while participants solved 352 arithmetical operations (additions, subtractions, multiplications, divisions) and decided whether the provided solution was correct or incorrect. Overall skilled individuals correctly solved a higher number of operations than poor calculators and had faster response times. Consistently, the latency of fronto-central P300 component of event-related potentials (ERPs) peaked earlier in the skilled than poor group. The P300 was larger in amplitude to correct than incorrect solutions, but just in the skilled group, with a tendency found in poor calculators. Spearman's ρ correlation coefficient analyses showed that the larger P300 response was to correct arithmetic solutions, the better the performance; conversely, the larger the P300 amplitude was to incorrect solutions, the worse the performance. The results suggest that poor calculators had a less clear representation of arithmetic solutions and difficulty in quickly accessing it. This study provides a standard method for directly investigating math abilities throughout ERP recordings that could be useful for assessing acalculia/dyscalculia in the clinical population (children, elderly, brain-damaged patients).


Asunto(s)
Aptitud/fisiología , Corteza Cerebral/fisiología , Potenciales Relacionados con Evento P300/fisiología , Conceptos Matemáticos , Análisis y Desempeño de Tareas , Adulto , Electroencefalografía , Femenino , Humanos , Masculino , Factores de Tiempo , Adulto Joven
4.
World Neurosurg ; 114: e1016-e1030, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29597021

RESUMEN

BACKGROUND: Preserving functionality is important during neurosurgical resection of brain tumors. Specialized centers also map further brain functions apart from motor and language functions, such as arithmetic processing (AP). The mapping of AP by navigated repetitive transcranial magnetic stimulation (nrTMS) in healthy volunteers has been reported. OBJECTIVE: The present study aimed to correlate the results of mapping AP with functional patient outcomes. METHODS: We included 26 patients with parietal brain tumors. Because of preoperative impairment of AP, mapping was not possible in 8 patients (31%). We stimulated 52 cortical sites by nrTMS while patients performed a calculation task. Preoperatively and postoperatively, patients underwent a standardized number-processing and calculation test (NPCT). Tumor resection was blinded to nrTMS results, and the change in NPCT performance was correlated to resected AP-positive spots as identified by nrTMS. RESULTS: The resection of AP-positive sites correlated with a worsening of the postoperative NPCT result in 12 cases. In 3 cases, no AP-positive sites were resected and the postoperative NPCT result was similar to or better than preoperatively. Also, in 3 cases, the postoperative NPCT result was better than preoperatively, although AP-positive sites were resected. CONCLUSIONS: Despite presenting only a few cases, nrTMS might be a useful tool for preoperative mapping of AP. However, the reliability of the present results has to be evaluated in a larger series and by intraoperative mapping data.


Asunto(s)
Mapeo Encefálico/métodos , Neoplasias Encefálicas/cirugía , Monitorización Neurofisiológica Intraoperatoria/métodos , Neuronavegación/métodos , Lóbulo Parietal/cirugía , Estimulación Magnética Transcraneal/métodos , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/fisiopatología , Femenino , Humanos , Masculino , Conceptos Matemáticos , Persona de Mediana Edad , Lóbulo Parietal/diagnóstico por imagen , Lóbulo Parietal/fisiología , Cuidados Posoperatorios/tendencias , Resultado del Tratamiento
5.
Hum Brain Mapp ; 38(6): 3210-3225, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28345153

RESUMEN

The neuronal mechanisms underlying arithmetic calculations are not well understood but the differences between mental addition and subtraction could be particularly revealing. Using fMRI and dynamic causal modeling (DCM), this study aimed to identify the distinct neuronal architectures engaged by the cognitive processes of simple addition and subtraction. Our results revealed significantly greater activation during subtraction in regions along the dorsal pathway, including the left inferior frontal gyrus (IFG), middle portion of dorsolateral prefrontal cortex (mDLPFC), and supplementary motor area (SMA), compared with addition. Subsequent analysis of the underlying changes in connectivity - with DCM - revealed a common circuit processing basic (numeric) attributes and the retrieval of arithmetic facts. However, DCM showed that addition was more likely to engage (numeric) retrieval-based circuits in the left hemisphere, while subtraction tended to draw on (magnitude) processing in bilateral parietal cortex, especially the right intraparietal sulcus (IPS). Our findings endorse previous hypotheses about the differences in strategic implementation, dominant hemisphere, and the neuronal circuits underlying addition and subtraction. Moreover, for simple arithmetic, our connectivity results suggest that subtraction calls on more complex processing than addition: auxiliary phonological, visual, and motor processes, for representing numbers, were engaged by subtraction, relative to addition. Hum Brain Mapp 38:3210-3225, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Mapeo Encefálico , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Matemática , Modelos Neurológicos , Vías Nerviosas/diagnóstico por imagen , Adulto , Encéfalo/fisiología , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Vías Nerviosas/fisiología , Oxígeno/sangre , Solución de Problemas/fisiología , Tiempo de Reacción/fisiología , Adulto Joven
6.
Front Hum Neurosci ; 10: 275, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27375466

RESUMEN

When comparing between the values of different choices, human beings can rely on either more cognitive processes, such as using mathematical computation, or more affective processes, such as using emotion. However, the neural correlates of how these two types of processes operate during value-based decision-making remain unclear. In this study, we investigated the extent to which neural regions engaged during value-based decision-making overlap with those engaged during mathematical and emotional processing in a within-subject manner. In a functional magnetic resonance imaging experiment, participants viewed stimuli that always consisted of numbers and emotional faces that depicted two choices. Across tasks, participants decided between the two choices based on the expected value of the numbers, a mathematical result of the numbers, or the emotional face stimuli. We found that all three tasks commonly involved various cortical areas including frontal, parietal, motor, somatosensory, and visual regions. Critically, the mathematical task shared common areas with the value but not emotion task in bilateral striatum. Although the emotion task overlapped with the value task in parietal, motor, and sensory areas, the mathematical task also evoked responses in other areas within these same cortical structures. Minimal areas were uniquely engaged for the value task apart from the other two tasks. The emotion task elicited a more expansive area of neural activity whereas value and mathematical task responses were in more focal regions. Whole-brain spatial correlation analysis showed that valuative processing engaged functional brain responses more similarly to mathematical processing than emotional processing. While decisions on expected value entail both mathematical and emotional processing regions, mathematical processes have a more prominent contribution particularly in subcortical processes.

7.
Front Psychol ; 6: 1268, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26347705

RESUMEN

We investigated the time course of neural processing of multi-digit additions in high- (HMA) and low-math anxious (LMA) individuals. Seventeen HMA and 17 LMA individuals were presented with two-digit additions and were asked to perform a verification task. Behavioral data showed that HMA individuals were slower and more error prone than their LMA peers, and that incorrect solutions were solved more slowly and less accurately than correct ones. Moreover, HMA individuals tended to need more time and commit more errors when having to verify incorrect solutions than correct ones. ERPs time-locked to the presentation of the addends (calculation phase) and to the presentation of the proposed solution (verification phase) were also analyzed. In both phases, a P2 component of larger amplitude was found for HMA individuals than for their LMA peers. Because the P2 component is considered to be a biomarker of the mobilization of attentional resources toward emotionally negative stimuli, these results suggest that HMA individuals may have invested more attentional resources both when processing the addends (calculation phase) and when they had to report whether the proposed solution was correct or not (verification phase), as compared to their LMA peers. Moreover, in the verification phase, LMA individuals showed a larger late positive component (LPC) for incorrect solutions at parietal electrodes than their HMA counterparts. The smaller LPC shown by HMA individuals when verifying incorrect solutions suggests that these solutions may have been appeared more plausible to them than to their LMA counterparts.

8.
Cereb Cortex ; 23(9): 2127-35, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22784605

RESUMEN

The parietal cortex is central to numerical cognition. The right parietal region is primarily involved in basic quantity processing, while the left parietal region is additionally involved in precise number processing and numerical operations. Little is known about how the 2 regions interact during numerical cognition. We hypothesized that functional connectivity between the right and left parietal cortex is critical for numerical processing that engages both basic number representation and learned numerical operations. To test this hypothesis, we estimated neural activity using functional magnetic resonance imaging in participants performing numerical and arithmetic processing on dot arrays. We first found task-based functional connectivity between a right parietal seed and the left sensorimotor cortex in all task conditions. As we hypothesized, we found enhanced functional connectivity between this right parietal seed and both the left parietal cortex and neighboring right parietal cortex, particularly during subtraction. The degree of functional connectivity also correlated with behavioral performance across individual participants, while activity within each region did not. These results highlight the role of parietal functional connectivity in numerical processing. They suggest that arithmetic processing depends on crosstalk between and within the parietal cortex and that this crosstalk contributes to one's numerical competence.


Asunto(s)
Cognición , Conceptos Matemáticos , Lóbulo Parietal/fisiología , Adolescente , Adulto , Mapeo Encefálico , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA