Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1407064, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39119295

RESUMEN

Background & aims: HBV infection initiates autoimmune responses, leading to autoantibody generation. This research explores the role of autoantibodies in HBV-related Acute-on-Chronic Liver Failure (ACLF), offering novel perspectives for clinical management. Method: We applied immunoprecipitation and iTRAQ techniques to screen for autoantibodies in serum from HBV-related cirrhosis patients and conducted detection with conformation- stabilizing ELISA in a cohort of 238 HBV-infected individuals and 49 health controls. Our results were validated in a retrospective cohort comprising 106 ACLF patients and further assessed through immunohistochemical analysis in liver tissues from an additional 10 ACLF cases. Results: Utilizing iTRAQ, we identified Argonaute1-3 autoantibodies (AGO-Abs) in this research. AGO2-Abs notably increased in cirrhosis, decompensation, and further in ACLF, unlike AGO1-Abs and AGO3-Abs. This reflects disease severity correlation. Logistic regression and COX models confirmed AGO2-Abs as independent prognostic indicators for decompensated liver cirrhosis (DLC) and ACLF. In the ROC analysis, AGO2-Abs showed significant diagnostic value for predicting 28- and 90-day mortality (AUROC = 0.853 and 0.854, respectively). Furthermore, combining AGO2-Abs with the Child-Pugh, MELD, and AARC scores significantly improved their predictive accuracy (P < 0.05). Kaplan-Meier analysis showed poorer survival for AGO2-Abs levels above 99.14µg/ml. These findings were supported by a retrospective validation cohort. Additionally, immunohistochemistry revealed band-like AGO2 expression in periportal liver areas, with AGO2-Abs levels correlating with total bilirubin, indicating a potential role in exacerbating liver damage through periportal functions. Conclusions: AGO2-Abs is a robust biomarker for predicting the mortality of patients with HBV-related ACLF.


Asunto(s)
Insuficiencia Hepática Crónica Agudizada , Proteínas Argonautas , Autoanticuerpos , Biomarcadores , Cirrosis Hepática , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Insuficiencia Hepática Crónica Agudizada/mortalidad , Insuficiencia Hepática Crónica Agudizada/inmunología , Autoanticuerpos/sangre , Autoanticuerpos/inmunología , Biomarcadores/sangre , Hepatitis B Crónica/complicaciones , Hepatitis B Crónica/mortalidad , Hepatitis B Crónica/inmunología , Hígado/patología , Cirrosis Hepática/mortalidad , Cirrosis Hepática/inmunología , Pronóstico , Estudios Retrospectivos , Curva ROC
2.
Genes (Basel) ; 15(8)2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39202383

RESUMEN

MicroRNAs (miRNAs) are a class of small regulatory RNA that are generated via core protein machinery. The miRNAs direct gene-silencing mechanisms to mediate an essential role in gene expression regulation. In mollusks, miRNAs have been demonstrated to be required to regulate gene expression in various biological processes, including normal development, immune responses, reproduction, and stress adaptation. In this study, we aimed to establishment the requirement of the miRNA pathway as part of the molecular response of exposure of Biomphalaria glabrata (snail host) to Schistosoma mansoni (trematode parasite). Initially, the core pieces of miRNA pathway protein machinery, i.e., Drosha, DGCR8, Exportin-5, Ran, and Dicer, together with the central RNA-induced silencing complex (RISC) effector protein Argonaute2 (Ago2) were elucidated from the B. glabrata genome. Following exposure of B. glabrata to S. mansoni miracidia, we identified significant expression up-regulation of all identified pieces of miRNA pathway protein machinery, except for Exportin-5, at 16 h post exposure. For Ago2, we went on to show that the Bgl-Ago2 protein was localized to regions surrounding the sporocysts in the digestive gland of infected snails 20 days post parasite exposure. In addition to documenting elevated miRNA pathway protein machinery expression at the early post-exposure time point, a total of 13 known B. glabrata miRNAs were significantly differentially expressed. Of these thirteen B. glabrata miRNAs responsive to S. mansoni miracidia exposure, five were significantly reduced in their abundance, and correspondingly, these five miRNAs were determined to putatively target six genes with significantly elevated expression and that have been previously associated with immune responses in other animal species, including humans. In conclusion, this study demonstrates the central importance of a functional miRNA pathway in snails, which potentially forms a critical component of the immune response of snails to parasite exposure. Further, the data reported in this study provide additional evidence of the complexity of the molecular response of B. glabrata to S. mansoni infection: a molecular response that could be targeted in the future to overcome parasite infection and, in turn, human schistosomiasis.


Asunto(s)
Proteínas Argonautas , Biomphalaria , MicroARNs , Schistosoma mansoni , Animales , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Biomphalaria/parasitología , Biomphalaria/genética , Biomphalaria/metabolismo , Biomphalaria/inmunología , MicroARNs/genética , MicroARNs/metabolismo , Schistosoma mansoni/genética , Oocistos/metabolismo , Interacciones Huésped-Parásitos/genética
3.
MedComm (2020) ; 5(4): e543, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38585233

RESUMEN

High metastatic propensity of osteosarcoma leads to its therapeutic failure and poor prognosis. Although nuclear activation miRNAs (NamiRNAs) are reported to activate gene transcription via targeting enhancer and further promote tumor metastasis, it remains uncertain whether NamiRNAs regulate osteosarcoma metastasis and their exact mechanism. Here, we found that extracellular vesicles of the malignant osteosarcoma cells (143B) remarkably increased the migratory abilities of MNNG cells representing the benign osteosarcoma cells by two folds, which attributed to their high miR-1246 levels. Specially, miR-1246 located in nucleus could activate the migration gene expression (such as MMP1) to accelerate MNNG cell migration through elevating the enhancer activities via increasing H3K27ac enrichment. Instead, MMP1 expression was dramatically inhibited after Argonaute 2 (AGO2) knockdown. Notably, in vitro assays demonstrated that AGO2 recognized the hybrids of miR-1246 and its enhancer DNA via PAZ domains to prevent their degradation from RNase H and these protective roles of AGO2 may favor the gene activation by miR-1246 in vivo. Collectively, our findings suggest that miR-1246 could facilitate osteosarcoma metastasis through interacting with enhancer to activate gene expression dependent on AGO2, highlighting the nuclear AGO2 as a guardian for NamiRNA-targeted gene activation and the potential of miR-1246 for osteosarcoma metastasis therapy.

4.
EMBO Rep ; 25(5): 2441-2478, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38649663

RESUMEN

Ago2 differentially regulates oncogenic and tumor-suppressive miRNAs in cancer cells. This discrepancy suggests a secondary event regulating Ago2/miRNA action in a context-dependent manner. We show here that a positive charge of Ago2 K212, that is preserved by SIR2-mediated Ago2 deacetylation in cancer cells, is responsible for the direct interaction between Ago2 and Caveolin-1 (CAV1). Through this interaction, CAV1 sequesters Ago2 on the plasma membranes and regulates miRNA-mediated translational repression in a compartment-dependent manner. Ago2/CAV1 interaction plays a role in miRNA-mediated mRNA suppression and in miRNA release via extracellular vesicles (EVs) from tumors into the circulation, which can be used as a biomarker of tumor progression. Increased Ago2/CAV1 interaction with tumor progression promotes aggressive cancer behaviors, including metastasis. Ago2/CAV1 interaction acts as a secondary event in miRNA-mediated suppression and increases the complexity of miRNA actions in cancer.


Asunto(s)
Proteínas Argonautas , Caveolina 1 , MicroARNs , Metástasis de la Neoplasia , Animales , Humanos , Ratones , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Caveolina 1/metabolismo , Caveolina 1/genética , Línea Celular Tumoral , Vesículas Extracelulares/metabolismo , Regulación Neoplásica de la Expresión Génica , MicroARNs/metabolismo , MicroARNs/genética , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patología , Unión Proteica , Sirtuina 2/metabolismo , Sirtuina 2/genética
5.
Phytopathology ; 114(6): 1253-1262, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38170667

RESUMEN

Sclerotinia sclerotiorum, the causal agent of white mold infection, is a cosmopolitan fungal pathogen that causes major yield losses in many economically important crops. Spray-induced gene silencing has recently been shown to be a promising alternative method for controlling plant diseases. Based on our prior research, we focused on developing a spray-induced gene silencing approach to control white mold by silencing S. sclerotiorum argonaute 2 (SsAgo2), a crucial part of the fungal small RNA pathway. We compared the lesion size as a result of targeting each ∼500-bp segment of SsAgo2 from the 5' to the 3' end and found that targeting the PIWI/RNaseH domain of SsAgo2 is most effective. External application of double-stranded RNA (dsRNA)-suppressed white mold infection using either in vitro or in vivo transcripts was determined at the rate of 800 ng/0.2 cm2 area with a downregulation of SsAgo2 from infected leaf tissue confirmed by RT-qPCR. Furthermore, magnesium/iron-layered double hydroxide nanosheets loaded with in vitro- and in vivo-transcribed dsRNA segments significantly reduced the rate of S. sclerotiorum lesion expansion. In vivo-produced dsRNA targeting the PIWI/RNaseH domain of the SsAgo2 transcript showed increased efficacy in reducing the white mold symptoms of S. sclerotiorum when combined with layered double hydroxide nanosheets. This approach is promising to produce a large scale of dsRNA that can be deployed as an environmentally friendly fungicide to manage white mold infections in the field.


Asunto(s)
Proteínas Argonautas , Ascomicetos , Silenciador del Gen , Enfermedades de las Plantas , ARN Bicatenario , Ascomicetos/genética , Ascomicetos/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , ARN Bicatenario/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hojas de la Planta/microbiología , Blanco
6.
Nucleic Acid Ther ; 33(5): 329-337, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37797162

RESUMEN

Post-transcriptional regulation of transcript abundances by RNA interference (RNAi) is a widely conserved regulatory mechanism to control cellular processes. We previously introduced an alternative siRNA structure called asymmetric siRNA (asiRNA), and showed that asiRNA exhibits comparable gene-silencing efficiency with reduced off-target effects compared with conventional siRNAs. However, to what extent the length of the guide strand affects the gene-silencing efficiency of asiRNAs is still elusive. In this study, we analyzed in detail the gene-silencing ability of asiRNAs along the guide strand length and immunostimulatory capacity of asiRNAs. We generated asiRNAs containing various guide strand lengths ranging from 25 to 29 nt, called long asiRNA (lasiRNA). We found that the gene-silencing activity of lasiRNAs decreased as the length of the guide strand increased. Nonetheless, the 3'-end overhangs that are complementary to the target gene have higher efficiency for gene silencing compared with mismatched overhangs. In addition, we found that the silencing efficiency of lasiRNAs correlates with their Ago2-binding affinity. Finally, replacing the mismatched overhang with a TLR7- or TLR9-associated immune response motif induced a toll-like receptor (TLR)-specific immune response and retained gene-silencing activity. Our findings demonstrate that lasiRNA structures can be tailored to function as bifunctional siRNA, which trigger a specific immune response combined with target gene silencing. Taken together, we anticipate that our findings provide a road map for the subsequent development of immune-stimulating lasiRNA, which bear the potential to be applied for therapeutic benefits.


Asunto(s)
Silenciador del Gen , ARN Bicatenario , Animales , Humanos , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/química , Células HeLa , Interferencia de ARN , Mamíferos/genética
7.
J Extracell Vesicles ; 12(11): e12366, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37885043

RESUMEN

Extracellular vesicle (EV)-carried miRNAs can influence gene expression and functional phenotypes in recipient cells. Argonaute 2 (Ago2) is a key miRNA-binding protein that has been identified in EVs and could influence RNA silencing. However, Ago2 is in a non-vesicular form in serum and can be an EV contaminant. In addition, RNA-binding proteins (RBPs), including Ago2, and RNAs are often minor EV components whose sorting into EVs may be regulated by cell signaling state. To determine the conditions that influence detection of RBPs and RNAs in EVs, we evaluated the effect of growth factors, oncogene signaling, serum, and cell density on the vesicular and nonvesicular content of Ago2, other RBPs, and RNA in small EV (SEV) preparations. Media components affected both the intravesicular and extravesicular levels of RBPs and miRNAs in EVs, with serum contributing strongly to extravesicular miRNA contamination. Furthermore, isolation of EVs from hollow fiber bioreactors revealed complex preparations, with multiple EV-containing peaks and a large amount of extravesicular Ago2/RBPs. Finally, KRAS mutation impacts the detection of intra- and extra-vesicular Ago2. These data indicate that multiple cell culture conditions and cell states impact the presence of RBPs in EV preparations, some of which can be attributed to serum contamination.


Asunto(s)
Proteínas Argonautas , Vesículas Extracelulares , MicroARNs , Vesículas Extracelulares/metabolismo , MicroARNs/metabolismo , Proteínas Argonautas/metabolismo
8.
Microbiol Spectr ; 11(4): e0493822, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37341621

RESUMEN

Some insect viruses encode suppressors of RNA interference (RNAi) to counteract the antiviral RNAi pathway. However, it is unknown whether Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) encodes an RNAi suppressor. In this study, the presence of viral small interfering RNA (vsiRNA) in BmN cells infected with BmCPV was confirmed by small RNA sequencing. The Dual-Luciferase reporter test demonstrated that BmCPV infection may prevent firefly luciferase (Luc) gene silencing caused by particular short RNA. It was also established that the inhibition relied on the nonstructural protein NSP8, which suggests that NSP8 was a possible RNAi suppressor. In cultured BmN cells, the expressions of viral structural protein 1 (vp1) and NSP9 were triggered by overexpression of nsp8, suggesting that BmCPV proliferation was enhanced by NSP8. A pulldown assay was conducted with BmCPV genomic double-stranded RNA (dsRNA) labeled with biotin. The mass spectral detection of NSP8 in the pulldown complex suggests that NSP8 is capable of direct binding to BmCPV genomic dsRNA. The colocalization of NSP8 and B. mori Argonaute 2 (BmAgo2) was detected by an immunofluorescence assay, leading to the hypothesis that NSP8 interacts with BmAgo2. Coimmunoprecipitation further supported the present investigation. Moreover, vasa intronic protein, a component of RNA-induced silencing complex (RISC), could be detected in the coprecipitation complex of NSP8 by mass spectrum analysis. NSP8 and the mRNA decapping protein (Dcp2) were also discovered to colocalize to processing bodies (P bodies) for RNAi-mediated gene silencing in Saccharomyces cerevisiae. These findings revealed that by interacting with BmAgo2 and suppressing RNAi, NSP8 promoted BmCPV growth. IMPORTANCE It has been reported that the RNAi pathway is inhibited by binding RNAi suppressors encoded by some insect-specific viruses belonging to Dicistroviridae, Nodaviridae, or Birnaviridae to dsRNAs to protect dsRNAs from being cut by Dicer-2. However, it is unknown whether BmCPV, belonging to Spinareoviridae, encodes an RNAi suppressor. In this study, we found that nonstructural protein NSP8 encoded by BmCPV inhibits small interfering RNA (siRNA)-induced RNAi and that NSP8, as an RNAi suppressor, can bind to viral dsRNAs and interact with BmAgo2. Moreover, vasa intronic protein, a component of RISC, was found to interact with NSP8. Heterologously expressed NSP8 and Dcp2 were colocalized to P bodies in yeast. These results indicated that NSP8 promoted BmCPV proliferation by binding itself to BmCPV genomic dsRNAs and interacting with BmAgo2 through suppression of siRNA-induced RNAi. Our findings deepen our understanding of the game between BmCPV and silkworm in regulating viral infection.


Asunto(s)
Reoviridae , Interferencia de ARN , ARN Interferente Pequeño/genética , Reoviridae/metabolismo , ARN Bicatenario/metabolismo , Proliferación Celular
9.
Glia ; 71(9): 2196-2209, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37178056

RESUMEN

Schwann cells (SCs) form myelin and provide metabolic support for axons, and are essential for normal nerve function. Identification of key molecules specific to SCs and nerve fibers may provide new therapeutic targets for diabetic peripheral neuropathy (DPN). Argonaute2 (Ago2) is a key molecular player that mediates the activity of miRNA-guided mRNA cleavage and miRNA stability. Our study found that Ago2 knockout (Ago2-KO) in proteolipid protein (PLP) lineage SCs in mice resulted in a significant reduction of nerve conduction velocities and impairments of thermal and mechanical sensitivities. Histopathological data revealed that Ago2-KO significantly induced demyelination and neurodegeneration. When DPN was induced in both wild-type and Ago2-KO mice, Ago2-KO mice exhibited further decreased myelin thickness and exacerbated neurological outcomes compared with wild-type mice. Deep sequencing analysis of Ago2 immunoprecipitated complexes showed that deregulated miR-206 in Ago2-KO mice is highly related to mitochondrial function. In vitro data showed that knockdown of miR-200 induced mitochondrial dysfunction and apoptosis in SCs. Together, our data suggest that Ago2 in SCs is essential to maintain peripheral nerve function while ablation of Ago2 in SCs exacerbates SC dysfunction and neuronal degeneration in DPN. These findings provide new insight into the molecular mechanisms of DPN.


Asunto(s)
Diabetes Mellitus , Neuropatías Diabéticas , MicroARNs , Ratones , Animales , Neuropatías Diabéticas/genética , Neuropatías Diabéticas/tratamiento farmacológico , Neuropatías Diabéticas/patología , Células de Schwann/metabolismo , Vaina de Mielina/metabolismo , Axones/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patología
10.
Funct Integr Genomics ; 23(2): 78, 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36881338

RESUMEN

This paper was to uncover the mechanism of circular RNA Argonaute 2 (circAGO2) in colorectal cancer (CRC) progression. The expression of circAGO2 was detected in CRC cells and tissues, and the relationship between clinicopathological features of CRC and circAGO2 level was evaluated. The growth and invasion of CRC cells and subcutaneous xenograft of nude mice were measured to evaluate the effect of circAGO2 on CRC development. Bioinformatics databases were applied to analyze levels of retinoblastoma binding protein 4 (RBBP4) and heat shock protein family B 8 (HSPB8) in cancer tissues. The relevance of circAGO2 and RBBP4 expression and the relationship between RBBP4 and HSPB8 during histone acetylation were assessed. The targeting relationship between miR-1-3p and circAGO2 or RBBP4 was predicted and confirmed. The effects of miR-1-3p and RBBP4 on biological functions of CRC cells were also verified. CircAGO2 was upregulated in CRC. CircAGO2 promoted the growth and invasion of CRC cells. CircAGO2 competitively bound to miR-1-3p and regulated RBBP4 expression, thus inhibiting HSPB8 transcription by promoting histone deacetylation. Silencing circAGO2 enhanced miR-1-3p expression and reduced RBBP4 expression, while suppression of miR-1-3p downgraded levels of miR-1-3p, up-regulated RBBP4, and facilitated cell proliferation and invasion in the presence of silencing circAGO2. RBBP4 silencing decreased RBBP4 expression and reduced proliferation and invasion of cells where circAGO2 and miR-1-3p were silenced. CircAGO2 overexpression decoyed miR-1-3p to increase RBBP4 expression, which inhibited HSPB8 transcription via histone deacetylation in HSPB8 promoter region, promoting proliferation and invasion of CRC cells.


Asunto(s)
Neoplasias Colorrectales , Proteínas de Choque Térmico , MicroARNs , ARN Circular , Animales , Humanos , Ratones , Neoplasias Colorrectales/genética , Proteínas de Choque Térmico/genética , Histonas , Ratones Desnudos , MicroARNs/genética , Proteína 4 de Unión a Retinoblastoma/genética , ARN Circular/genética , Chaperonas Moleculares/genética
11.
J Neurotrauma ; 40(7-8): 758-771, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36394949

RESUMEN

Mesenchymal stem/stromal cells (MSC)-derived small extracellular vesicles (sEVs) possess therapeutic potential for treatment of traumatic brain injury (TBI). The essential role of micro ribonucleic acids (miRNAs) underlying the beneficial effects of MSC-derived sEVs for treatment of TBI remains elusive. The present study was designed to investigate the role of microRNAs in sEVs from MSCs with Argonaute 2 knockdown (Ago2-KD) in neurological recovery, neuroinflammation, and neurovascular remodeling in TBI rats. Therapeutic effects of sEVs derived from naïve MSCs (naïve-sEV), MSCs transfected with a vector carrying scramble control short hairpin RNA (shRNA; vector-sEV), and MSCs transfected with a lentiviral vector-based shRNA against Ago2 to knock down Ago2 (Ago2-KD-sEV) were determined in adult male rats subjected to a moderate TBI induced by controlled cortical impact (CCI). sEVs (naïve-sEV, vector-sEV, and Ago2-KD-sEV) or vehicle (phosphate-buffered solution [PBS]) were given intravenously 1 day post-injury (PI). Multiple neurological functional tests were performed weekly PI for 5 weeks. The Morris water maze (MWM) test was performed for spatial learning and memory 31-35 days PI. All animals were euthanized 5 weeks PI and the brains were collected for analyses of lesion volume, cell loss, neurovascular remodeling, and neuroinflammation. Ago2-KD reduced global sEV miRNA levels. Compared with the vehicle treatment, both naïve-sEV and vector-sEV treatments significantly improved functional recovery, reduced hippocampal neuronal cell loss, inhibited neuroinflammation, and promoted neurovascular remodeling (angiogenesis and neurogenesis). However, Ago2-KD-sEV treatment had a significantly less therapeutic effect on all the parameters measured above than did naïve-sEV and vector-sEV treatments. The therapeutic effects of Ago2-KD-sEV were comparable to that of vehicle treatment. Our findings demonstrate that attenuation of Ago2 protein in MSCs reduces miRNAs in MSC-derived sEVs and abolishes exosome treatment-induced beneficial effects in TBI recovery, suggesting that miRNAs in MSC-derived sEVs play an essential role in reducing neuronal cell loss, inhibiting neuroinflammation, and augmenting angiogenesis and neurogenesis, as well as improving functional recovery in TBI. The findings underscore the important role of miRNAs in MSC-derived sEVs in the treatment of TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Vesículas Extracelulares , Células Madre Mesenquimatosas , MicroARNs , Adulto , Humanos , Ratas , Masculino , Animales , MicroARNs/genética , MicroARNs/metabolismo , Enfermedades Neuroinflamatorias , Lesiones Traumáticas del Encéfalo/genética , Lesiones Traumáticas del Encéfalo/terapia , Lesiones Traumáticas del Encéfalo/metabolismo , Vesículas Extracelulares/metabolismo , Células Madre Mesenquimatosas/metabolismo , ARN Interferente Pequeño
12.
Methods Protoc ; 5(6)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36548138

RESUMEN

Transcriptome-wide analysis of RNA-binding partners is commonly achieved using UV crosslinking and immunoprecipitation (CLIP). Individual-nucleotide-resolution CLIP (iCLIP)enables identification of the specific position of the protein-RNA interaction. In addition to RNA-binding proteins (RBPs), microRNA (miRNA)-mRNA interactions also play a crucial role in the regulation of gene expression. Argonaute-2 (Ago2) mediates miRNA binding to a multitude of mRNA target sites, enabling the identification of miRNA-mRNA interactions by employing modified Ago2-CLIP protocols. Here, we describe an Ago2-specific CLIP protocol optimized for the use of small quantities of cell material, targeting endogenous Ago2 while avoiding possible methodological biases such as metabolic labeling or Ago2 overexpression and applying the latest advances in CLIP library preparation, the iCLIP2 protocol. In particular, we focus on the optimization of lysis conditions and improved radioactive labeling of the 5' end of the miRNA.

13.
J Nanobiotechnology ; 20(1): 458, 2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36303212

RESUMEN

BACKGROUND: Although protein-based methods using cell-penetrating peptides such as TAT have been expected to provide an alternative approach to siRNA delivery, the low efficiency of endosomal escape of siRNA/protein complexes taken up into cells by endocytosis remains a problem. Here, to overcome this problem, we adopted the membrane penetration-enhancing peptide S19 from human syncytin 1 previously identified in our laboratory. RESULTS: We prepared fusion proteins in which the S19 and TAT peptides were fused to the viral RNA-binding domains (RBDs) as carrier proteins, added the RBD-S19-TAT/siRNA complex to human cultured cells, and investigated the cytoplasmic delivery of the complex and the knockdown efficiency of target genes. We found that the intracellular uptake of the RBD-S19-TAT/siRNA complex was increased compared to that of the RBD-TAT/siRNA complex, and the expression level of the target mRNA was decreased. Because siRNA must dissociate from RBD and bind to Argonaute 2 (Ago2) to form the RNA-induced silencing complex (RISC) after the protein/siRNA complex is delivered into the cytoplasm, a dilemma arises: stronger binding between RBD and siRNA increases intracellular uptake but makes RISC formation more difficult. Thus, we next prepared fusion proteins in which the S19 and TAT peptides were fused with Ago2 instead of RBD and found that the efficiencies of siRNA delivery and knockdown obtained using TAT-S19-Ago2 were higher than those using TAT-Ago2. In addition, we found that the smallest RISC delivery induced faster knockdown than traditional siRNA lipofection, probably due to the decreased time required for RISC formation in the cytoplasm. CONCLUSION: These results indicated that S19 and TAT-fused siRNA-binding proteins, especially Ago2, should be useful for the rapid and efficient delivery of siRNA without the addition of any endosome-disrupting agent.


Asunto(s)
Péptidos de Penetración Celular , Humanos , ARN Interferente Pequeño/genética , Péptidos de Penetración Celular/química , Endosomas/metabolismo , Endocitosis , Línea Celular
14.
Regen Ther ; 21: 322-330, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36110972

RESUMEN

Introduction: Partial necrosis of skin flaps is still a substantial problem in plastic and reconstructive surgery. In this study, the role of miR-590-3p in adipose-derived stem cells (ADSCs) transplantation in improving the survival of skin flap in a mouse model was delved into. Method: An abdominal perforator flap model was established in mice. The histopathological examination of mice skin tissues after ADSCs transplantation was implemented using Hematoxylin & eosin (H&E) staining. Immunohistochemistry (IHC) or immunofluorescence (IF) staining was utilized to assess the PCNA or CD31 levels. The concentrations of VEGFA in the culture medium were quantified using a VEGFA ELISA kit. Result: The damage of tissue in the skin flap was dramatically relieved by ADSCs transplantation. MiR-590-3p overexpression notably suppressed, while miR-590-3p knockdown facilitated skin flap survival by regulating PCNA, VCAM-1, and VEGFA levels. MiR-590-3p targeted VEGFA to regulate its expression. The knockdown of VEGFA significantly inhibited, while overexpression of VEGFA notably promoted the survival of skin flap. Conclusion: ADSCs transplantation promotes skin flap survival by boosting angiogenesis. The miR-590-3p/VEGFA axis modulates skin flap angiogenesis and survival in ADSCs. These results reveal that interfering with miR-590-3p in ADSCs could potentially be a novel therapeutic target for the improvement of skin flap survival.

15.
Cell Mol Life Sci ; 79(9): 475, 2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-35943635

RESUMEN

In malignant melanoma, a highly aggressive form of skin cancer, many microRNAs are aberrantly expressed contributing to tumorigenesis and progression. Further, deregulation of microRNA processing enzymes, like the miRNA-binding protein Argonaute 2, significantly impacts microRNA function. This study characterizes a novel splice variant of Argonaut 2, AGO2-ex1/3. AGO2-ex1/3 is substantially expressed in different melanoma cell lines and patient-derived tissue samples. It is a mature mRNA, which is translated into an N-terminally truncated Argonaute 2 protein form. Molecular dynamics simulations show that the PAZ, MID, and PIWI domain largely retain their structure in AGO2-ex1/3 and that the truncation of the N-terminus leads to an increased interdomain flexibility. Expression of AGO2-ex1/3 provides a survival advantage for melanoma cells while the knockdown causes significantly reduced proliferation and increases apoptosis. RNA-sequencing revealed that in cells lacking AGO2-ex1/3 expression many miRNA target genes are deregulated, implicating a considerable role of AGO2-ex1/3 for miRNA function. This study inaugurates insights into an important role of a so far unknown splice variant of Argonaute 2 for the miRNA pathway as well as the mechanisms which drive growth and survival of melanoma cells. This knowledge provides the basis for potential new promising therapeutic targets focusing on small RNA-mediated gene regulation in melanoma.


Asunto(s)
Melanoma , MicroARNs , Neoplasias Cutáneas , Apoptosis/genética , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Humanos , Melanoma/genética , MicroARNs/genética , MicroARNs/metabolismo , Interferencia de ARN , Neoplasias Cutáneas/genética
16.
PNAS Nexus ; 1(3): pgac084, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35923912

RESUMEN

Activating mutations in RAS GTPases drive nearly 30% of all human cancers. Our prior work described an essential role for Argonaute 2 (AGO2), of the RNA-induced silencing complex, in mutant KRAS-driven cancers. Here, we identified a novel endogenous interaction between AGO2 and RAS in both wild-type (WT) and mutant HRAS/NRAS cells. This interaction was regulated through EGFR-mediated phosphorylation of Y393-AGO2, and utilizing molecular dynamic simulation, we identified a conformational change in pY393-AGO2 protein structure leading to disruption of the RAS binding site. Knockdown of AGO2 led to a profound decrease in proliferation of mutant HRAS/NRAS-driven cell lines but not WT RAS cells. These cells demonstrated oncogene-induced senescence (OIS) as evidenced by ß-galactosidase staining and induction of multiple downstream senescence effectors. Mechanistically, we discovered that the senescent phenotype was mediated via induction of reactive oxygen species. Intriguingly, we further identified that loss of AGO2 promoted a novel feed forward pathway leading to inhibition of the PTP1B phosphatase and activation of EGFR-MAPK signaling, consequently resulting in OIS. Taken together, our study demonstrates that the EGFR-AGO2-RAS signaling axis is essential for maintaining mutant HRAS and NRAS-driven malignancies.

17.
Viruses ; 14(8)2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35893693

RESUMEN

Acutely infectious new world alphaviruses such as Venezuelan Equine Encephalitis Virus (VEEV) pose important challenges to the human population due to a lack of effective therapeutic intervention strategies. Small interfering RNAs that can selectively target the viral genome (vsiRNAs) has been observed to offer survival advantages in several in vitro and in vivo models of acute virus infections, including alphaviruses such as Chikungunya virus and filoviruses such as Ebola virus. In this study, novel vsiRNAs that targeted conserved regions in the nonstructural and structural genes of the VEEV genome were designed and evaluated for antiviral activity in mammalian cells in the context of VEEV infection. The data demonstrate that vsiRNAs were able to effectively decrease the infectious virus titer at earlier time points post infection in the context of the attenuated TC-83 strain and the virulent Trinidad Donkey strain, while the inhibition was overcome at later time points. Depletion of Argonaute 2 protein (Ago2), the catalytic component of the RISC complex, negated the inhibitory effect of the vsiRNAs, underscoring the involvement of the siRNA pathway in the inhibition process. Depletion of the RNAi pathway proteins Dicer, MOV10, TRBP2 and Matrin 3 decreased viral load in infected cells, alluding to an impact of the RNAi pathway in the establishment of a productive infection. Additional studies focused on rational combinations of effective vsiRNAs and delivery strategies to confer better in vivo bioavailability and distribution to key target tissues such as the brain can provide effective solutions to treat encephalitic diseases resulting from alphavirus infections.


Asunto(s)
Virus de la Encefalitis Equina Venezolana , ARN Interferente Pequeño , Animales , Línea Celular , Virus de la Encefalitis Equina Venezolana/fisiología , Caballos , Humanos , ARN Helicasas , ARN Interferente Pequeño/farmacología , Replicación Viral
18.
Cancers (Basel) ; 14(11)2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35681567

RESUMEN

As the most prominent member of the miR-17-92 cluster, miR-17-5p is well associated with tumorigenesis and cancer progression. It can exert both oncogenic and tumor-suppressive functions by inducing translational repression and/or mRNA decay. The complexity of the tissue-specific expression of the targeted transcripts seems to contribute to the differential functions of miR-17-5p in different types of cancers. In this study, we selected 12 reported miR-17-5p targeting genes with mRNA levels unaffected by miR-17-5p expression and analyzed their expression in 31 organ tissues in transgenic mice by real-time PCR. Surprisingly, miR-17-5p expressing transgenic mice showed a positive correlation in these tissues between miR-17-5p expression levels and the selected miR-17-5p targeted transcripts; with high expression of the miRNA in organs with high selected miRNA-targeted mRNA levels. In cancer cell lines, overexpression of 7 reported miR-17-5p targeted genes' 3'-UTRs promoted miR-17-5p expression; meanwhile, transfection of 3'-UTRs with mutations had no significant effect. Moreover, an increase in AGO2 mRNA was associated with 3'-UTR expression as confirmed by real-time PCR. Hence, miR-17-5p regulation by these target genes might be an alternative mechanism to maintain miR-17-5p expression at tissue-specific levels.

19.
Front Cell Infect Microbiol ; 12: 802149, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35531344

RESUMEN

microRNAs (miRNAs), non-coding RNAs about 22 nt long, regulate the post-transcription expression of genes to influence many cellular processes. The expression of host miRNAs is affected by virus invasion, which also affects virus replication. Increasing evidence has demonstrated that miRNA influences RNA virus multiplication by binding directly to the RNA virus genome. Here, the knowledge relating to miRNAs' relationships between host miRNAs and RNA viruses are discussed.


Asunto(s)
MicroARNs , Virus ARN , Virus , MicroARNs/genética , MicroARNs/metabolismo , Virus ARN/genética , ARN Viral/genética , ARN Viral/metabolismo , Replicación Viral , Virus/genética
20.
Int J Mol Med ; 50(1)2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35593304

RESUMEN

MicroRNAs (miRNAs/miRs) are a type of endogenous non­coding small RNA that regulates gene expression. miRNAs regulate gene expression at the post­transcriptional level by targeting the 3'­untranslated region (3'UTR) of cytoplasmic messenger RNAs (mRNAs). Recent research has confirmed the presence of mature miRNAs in the nucleus, which bind nascent RNA transcripts, gene promoter or enhancer regions, and regulate gene expression via epigenetic pathways. Some miRNAs have been shown to function as oncogenes or tumor suppressor genes by modulating molecular pathways involved in human cancers. Notably, a novel molecular mechanism underlying the dysregulation of miRNA expression in cancer has recently been discovered, indicating that miRNAs may be involved in tumorigenesis via a nuclear function that influences gene transcription and epigenetic states, elucidating their potential therapeutic implications. The present review article discusses the import of nuclear miRNAs, nucleus­cytoplasm transport mechanisms and the nuclear functions of miRNAs in cancer. In addition, some software tools for predicting miRNA binding sites are also discussed. Nuclear miRNAs supplement miRNA regulatory networks in cancer as a non­canonical aspect of miRNA action. Further research into this aspect may be critical for understanding the role of nuclear miRNAs in the development of human cancers.


Asunto(s)
MicroARNs , Neoplasias , Regiones no Traducidas 3' , Carcinogénesis/genética , Transformación Celular Neoplásica/genética , Regulación de la Expresión Génica , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias/genética , Neoplasias/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA