Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Plants (Basel) ; 13(15)2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39124209

RESUMEN

The Arabian Peninsula, with its rugged mountains, wadis, alluvial plains, sand dune deserts, and diverse coastlines, spans over 3 million km2. The Peninsula is situated at the crossroads of Africa and Asia and is a meeting point for diverse biogeographic realms, including the Palearctic, Afrotropical, and Indomalayan regions. This convergence of biogeographic zones has resulted in a remarkably diverse flora and fauna, which is adapted to the harsh and varied climates found throughout the Peninsula. Each of the countries of the Arabian Peninsula are biologically diverse and unique in their own right, but Yemen, Saudi Arabia, and Oman are the most diverse in terms of their landforms and biological diversity. The mountainous regions support a cooler and more moderate climate compared to the surrounding lowlands, thus forming unique ecosystems that function as refugia for plant and animal species, and have a high endemism of plant species. The desert ecosystems support a variety of lifeforms that are specially adapted to an extreme arid climate. Due to its long history of human habitation and subsistence agriculture, particularly in the mountainous areas, the Arabian Peninsula possesses unique crop varieties adapted to extreme arid climates, making them important genetic resources for the future in the face of climate change. The Arabian Peninsula, though rich and diverse in its biological diversity, has been greatly affected by human activities, especially in the last 50 years, including urbanization, habitat destruction, overgrazing, and climate change, which pose significant threats to the biodiversity of the region. This review presents the biogeography and background of conservation efforts made in the countries in the Arabian Peninsula and gives the progress made in botanical research and conservation practices throughout the Peninsula.

2.
Sci Rep ; 14(1): 16604, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39025891

RESUMEN

The Paris Agreement and the Special Report on Global Warming of 1.5 °C from the Intergovernmental Panel on Climate Change (IPCC) highlighted the potential risks of climate change across different global warming levels (GWLs). The increasing occurrence of extreme high-temperature events is linked to a warmer climate that is particularly prevalent in the Arabian Peninsula (AP). This study investigates future changes in temperatures and related extremes over AP, under four GWLs, such as 1.5 °C, 2.0 °C, 3.0 °C, and 4.0 °C, with three different Shared Socioeconomic Pathways (SSPs: SSP1-2.6, SSP2-4.5, and SSP5-8.5). The study uses high-resolution datasets of 27 models from the NASA Earth Exchange Global Daily Downscaled Projections of the Coupled Model Intercomparison Project Phase 6 (NEX-GDDP-CMIP6). The results showed that the NEX-GDDP-CMIP6 individual models and their multi-model means reasonably captured the extreme temperature events. The summer maximum and winter minimum temperatures are projected to increase by 0.11-0.67 °C and 0.09-0.70 °C per decade under the selected SSPs. Likewise, the projected temperature extremes exhibit significant warming with varying degrees across the GWLs under the selected SSPs. The warm temperature extremes are projected to increase, while the cold extremes are projected to decrease under all GWLs and the selected SSPs. Overall, the findings provide a comprehensive assessment of temperature changes over AP in response to global warming, which can be helpful in the development of climate adaptation and mitigation strategies.

3.
Ecol Evol ; 14(7): e11720, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38988343

RESUMEN

Freshwater fishes are facing considerable threats in the Arabian Peninsula which is considered as a highly stressed region in the Middle East. It is predicted that northern Oman is likely to face decreasing rainfall and increasing temperature in coming decades. In this study, we focused on an endemic cyprinid fish Cyprinion muscatense, as a model to investigate impacts of climate change on the mountain fishes inhibiting in this arid region. This species is expected to be strongly affected by climate change because of its limited distribution range in a montane area surrounded by lowlands and sea, limiting the species in shift to other areas. We used an ensemble approach by considering two regressions-based species distribution modeling (SDM) algorithms: generalized linear models (GLM), and generalized additive models (GAM) to model the species habitat suitability and predict the impacts of climate change on the species habitat suitability. Based on the distribution models, the montane area located in northeastern Oman was identified as the most suitable habitat for this species. Our results indicate that, even under the minimum greenhouse gas emissions scenario (RCP 2.6), climate change will produce a high reduction in its potential future habitats. According to the results of percent contribution, elevation and annual minimum temperature were the most important variables in predicting the species suitable habitats. Results also showed that only a small percentage of suitable habitats for the species within boundaries of protected areas. Therefore, the impact of climate change on the species appears particularly alarming. Although our study was restricted to a single cyprinid freshwater species, decreases in potential habitats are likely predicted for other cyprinid fish species restricted to the mountains of this region, suggesting severe consideration is needed for aquatic systems in future conservation planning, especially for endemic freshwater fishes.

4.
Environ Sci Pollut Res Int ; 31(37): 49589-49600, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39080166

RESUMEN

Water-soluble and trace metal species in fine particulate matter (PM2.5) were determined for indoor and outdoor environments in Doha, Qatar. During the study period, PM2.5 concentrations showed significant variability across several indoor locations ranging from 7.1 to 75.8 µg m-3, while the outdoor mass concentration range was 34.7-154.4 µg m-3. The indoor and outdoor PM2.5 levels did not exhibit statistically significant correlation, suggesting efficient building envelope protection against outdoor PM2.5 pollution. Rather than outdoor sources, human activities such as cooking, cleaning, and smoking were the most significant influence on chemical composition of indoor PM2.5. NH4+ concentration was insufficient to neutralize SO42- indoors and outdoors, indicating the predominant presence of NH4HSO4. The enrichment factors indicated that outdoor Fe, Mn, Co, Cr, and Ni in PM2.5 mostly originated from crustal sources. In contrast, the remaining outdoor trace metals (Cu, Zn, As, Cd, Pb, and V) were mainly derived from anthropogenic sources. The indoor/outdoor concentration ratios revealed significant indoor sources for NH4+ and Cu. The crustal matter, water-soluble ions, and sea salt explained 42%, 21%, and 1% of the indoor PM2.5 mass, respectively. The same groups sequentially constituted 41%, 16%, and 1% of the outdoor PM2.5 mass.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Monitoreo del Ambiente , Material Particulado , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Qatar , Humanos
5.
J Fish Biol ; 104(6): 1791-1799, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38480996

RESUMEN

Members of the genus Cyprinion (Cypriniformes: Cyprinidae) are found in the Indus River basin west to the Arabian Peninsula and the Tigris-Euphrates River drainages (Persian Gulf basin). The taxonomic status of Cyprinion including Cyprinion muscatense is poorly understood when compared to other cyprinid genera. C. muscatense has been considered as a member of the Cyprinion watsoni-microphthalmum group and a valid species endemic to the Arabian Peninsula. Here, we redescribe C. muscatense based on an integrative morphological and molecular approach and freshly sampled material from several localities in the Oman Mountains ecoregion. The results showed that C. muscatense is distinguished from the other Cyprinion species in the Arabian Peninsula by having a short, thin, and slightly serrated last unbranched dorsal fin ray; the lower number of circumpeduncular scales; lateral line scales; and also scales between the lateral line and the dorsal-fin origin. Subterminal mouth, presence of one pair of small barbels at the mouth corner, 3-4 unbranched and 9½-10½ dorsal-fin branched rays, 12-14 pectoral-fin rays, 7-8 pelvic-fin rays, 2-3 unbranched and 6½-7½ branched anal-fin rays, and 37-40 lateral line scales are other morphological characteristics of C. muscatense. C. muscatense is also well distinguished by molecular characters among its congeners. The first molecular phylogenetic analysis of the genus, covering all currently recognized Cyprinion species except for C. watsoni, is also presented. C. muscatense is resolved as the sister species to another endemic fish of the Arabian Peninsula Cyprinion mhalense, with a Kimura-2-Parameter model distance of 5.3%.


Asunto(s)
Cyprinidae , Filogenia , Animales , Cyprinidae/genética , Cyprinidae/clasificación , Cyprinidae/anatomía & histología , Omán , ADN Mitocondrial/genética
6.
Front Plant Sci ; 15: 1294173, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38510442

RESUMEN

Introduction: Desert ecosystems harbor a unique microbial diversity that is crucial for ecological stability and biogeochemical cycles. An in-depth understanding of the biodiversity, compositions, and functions of these microbial communities is imperative to navigate global changes and confront potential threats and opportunities applicable to agricultural ecosystems amid climate change. Methods: This study explores microbial communities in the rhizosphere and endosphere of desert plants native to the Arabian Peninsula using next-generation sequencing of the 16S rRNA gene (V3-V4 hypervariable region). Results: Our results reveal that each microbial community has a diverse and unique microbial composition. Based on alpha and beta diversity indices, the rhizosphere microbiome is significantly diverse and richer in microbial taxa compared to the endosphere. The data reveals a shift towards fast-growing microbes with active metabolism, involvement in nutrient cycling, nitrogen fixation, and defense pathways. Our data reveals the presence of habitat-specific microbial communities in the desert, highlighting their remarkable resilience and adaptability to extreme environmental conditions. Notably, we observed the existence of radiation-resistant microbes such as Deinococcus radiotolerans, Kocuria sp., and Rubrobacter radiotolerans which can tolerate high levels of ionizing radiation. Additionally, examples of microbes exhibiting tolerance to challenging conditions include Nocardioides halotolerans, thriving in high-salinity environments, and hyperthermophilic microbes such as Quasibacillus thermotolerans. Moreover, functional analysis reveals enrichment in chaperon biosynthesis pathways associated with correct protein folding under heat stress conditions. Discussion: Our research sheds light on the unique diversity of desert microbes and underscores their potential applications to increase the resilience of agriculture ecosystems, offering a promising strategy to fortify crops against the challenges posed by climate change, ultimately supporting sustainable food production for our ever-expanding global population.

7.
Sci Rep ; 14(1): 3974, 2024 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-38368465

RESUMEN

Anthropogenic climate change has amplified human thermal discomfort in urban environments. Despite the considerable risks posed to public health, there is a lack of comprehensive research, evaluating the spatiotemporal changes in human thermal discomfort and its characteristics in hot-hyper arid regions, such as the Arabian Peninsula (AP). The current study analyzes spatiotemporal changes in human thermal discomfort categories and their characteristics in AP, using the newly developed high-resolution gridded ERA5-HEAT (Human thErmAl comforT) dataset for the period 1979-2022. In addition, the study assesses the interplay between the Universal Thermal Climate Index (UTCI) and El Niño-Southern Oscillation (ENSO) indices for the study period. The results reveal a significant increase in human thermal discomfort and its characteristics, with higher spatial variability in the AP region. The major urban centers in the southwestern, central, and southeastern parts of AP have experienced significant increases in human thermal discomfort (0.4-0.8 °C), with higher frequency and intensity of thermal stress during the study period. The temporal distribution demonstrates a linear increase in UTCI indices and their frequencies and intensities, particularly from 1998 onward, signifying a transition towards a hotter climate characterized by frequent, intense, and prolonged heat stress conditions. Moreover, the UTCI and ENSO indices exhibit a dipole pattern of correlation with a positive (negative) pattern in the southwestern (eastern parts) of AP. The study's findings suggest that policymakers and urban planners need to prioritize public health and well-being in AP's urban areas, especially for vulnerable groups, by implementing climate change adaptation and mitigation strategies, and carefully designing future cities to mitigate the effects of heat stress.


Asunto(s)
El Niño Oscilación del Sur , Trastornos de Estrés por Calor , Humanos , Ciudades , Clima Desértico , Cambio Climático
8.
Evol Appl ; 17(2): e13661, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38405337

RESUMEN

The Aedes aegypti (Linnaeus, 1762) mosquito is the main vector of dengue, chikungunya and Zika and is well established today all over the world. The species comprises two forms: the ancestral form found throughout Africa and a global domestic form that spread to the rest of the tropics and subtropics. In Saudi Arabia, A. aegypti has been known in the southwest since 1956, and previous genetic studies clustered A. aegypti from Saudi Arabia with the global domestic form. The purpose of this study was to assess the genetic structure of A. aegypti in Saudi Arabia and determine their geographic origin. Genetic data for 17 microsatellites were collected for A. aegypti ranging from the southwestern highlands of Saudi Arabia on the border of Yemen to the north-west in Madinah region as well as from Thailand and Uganda populations (as representatives of the ancestral African and global domestic forms, respectively). The low but significant level of genetic structuring in Saudi Arabia was consistent with long-distance dispersal capability possibly through road connectivity and human activities, that is, passive dispersal. There are two main genetic groupings in Saudi Arabia, one of which clusters with the Ugandan population and the other with the Thailand population with many Saudi Arabian individuals having mixed ancestry. The hypothesis of genetic admixture of the ancestral African and global domestic forms in Saudi Arabia was supported by approximate Bayesian computational analyses. The extent of admixture varied across Saudi Arabia. African ancestry was highest in the highland area of the Jazan region followed by the lowland Jazan and Sahil regions. Conversely, the western (Makkah, Jeddah and Madinah) and Najran populations corresponded to the global domesticated form. Given potential differences between the forms in transmission capability, ecology and behaviour, the findings here should be taken into account in vector control efforts in Saudi Arabia.

9.
Saudi J Biol Sci ; 31(2): 103911, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38268781

RESUMEN

Investigations of arbuscular mycorrhizal fungi (AMF) received extreme interests among scientist including agronomists and environmental scientists. This interest is linked to advantages provided by AMF in enhancing the nutrients of their hosts via improving photosynthetic pigments and antioxidant production. Further, it also positively alters the production of plant hormones. AMF through its associations with plants obtain carbon while in exchange, provide nutrients. AMF have been reported to improve the growth of Tageteserecta, Zea mays, Panicum turgidum, Arachis hypogaea, Triticum aestivum and others. This review further documented the occurrence, diversity, distribution, and agricultural applications of AMF species reported in the Arabian Peninsula. Overall, we documented 20 genera and 61 species of Glomeromycota in the Arabian Peninsula representing 46.51 % of genera and 17.88 % of species of AMF known so far. Funneliformis mosseae has found to be the most widely distributed species followed by Claroideoglomus etuicatum. There are 35 research articles focused on Arabian Peninsula where the stress conditions like drought, salinity and pollutants are prevailed. Only one group studied the influence of AMF on disease resistance, while salinity, drought, and cadmium stresses were investigated in 18, 6, and 4 investigations, respectively. The genus Glomus was the focus of most studies. The conducted research in the Arabian Peninsula is not enough to understand AMF taxonomy and their functional role in plant growth. Expanding the scope of detection of AMF, especially in coastal areas is essential. Future studies on biodiversity of AMF are essential.

10.
Antibiotics (Basel) ; 12(7)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37508177

RESUMEN

The rise of antimicrobial resistance is a global challenge that requires a coordinated effort to address. In this study, we examined the genetic similarity of carbapenem-resistant Klebsiella pneumoniae (CRKP) in countries belonging to the Gulf Cooperation Council (GCC) to gain a better understanding of how these bacteria are spreading and evolving in the region. We used in silico genomic tools to investigate the occurrence and prevalence of different types of carbapenemases and their relationship to specific sequence types (STs) of CRKP commonly found in the region. We analyzed 720 publicly available genomes of multi-drug resistant K. pneumoniae isolates collected from six GCC countries between 2011 and 2020. Our findings showed that ST-14 and ST-231 were the most common STs, and 51.7% of the isolates carried blaOXA-48-like genes. Additionally, we identified rare carbapenemase genes in a small number of isolates. We observed a clonal outbreak of ST-231 in Oman, and four Saudi isolates were found to have colistin resistance genes. Our study offers a comprehensive overview of the genetic diversity and resistance mechanisms of CRKP isolates in the GCC region that could aid in developing targeted interventions to combat this pressing global issue.

11.
Cureus ; 15(5): e38924, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37313106

RESUMEN

Epilepsy has a prevalence rate of 6.54 per 1,000 people in Saudi Arabia, making it a prevalent chronic condition. Drug-resistant epilepsy (DRE) is thought to affect one-third of patients; in these circumstances, a complete presurgical examination in the epilepsy monitoring unit (EMU) is necessary. Unfortunately, to accommodate the growing number of referrals, the units' availability and number must be reviewed.

12.
J Expo Sci Environ Epidemiol ; 33(4): 646-651, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37322149

RESUMEN

BACKGROUND: Middle Eastern desert countries like Kuwait are known for intense dust storms and enormous petrochemical industries affecting ambient air pollution. However, local health authorities have not been able to assess the health impacts of air pollution due to limited monitoring networks and a lack of historical exposure data. OBJECTIVE: To assess the burden of PM2.5 on mortality in the understudied dusty environment of Kuwait. METHODS: We analyzed the acute impact of fine particulate matter (PM2.5) on daily mortality in Kuwait between 2001 and 2016. To do so, we used spatiotemporally resolved estimates of PM2.5 in the region. Our analysis explored factors such as cause of death, sex, age, and nationality. We fitted quasi-Poisson time-series regression for lagged PM2.5 adjusted for time trend, seasonality, day of the week, temperature, and relative humidity. RESULTS: There was a total of 70,321 deaths during the study period of 16 years. The average urban PM2.5 was estimated to be 46.2 ± 19.8 µg/m3. A 10 µg/m3 increase in a 3-day moving average of urban PM2.5 was associated with 1.19% (95% CI: 0.59, 1.80%) increase in all-cause mortality. For a 10 µg/m3 reduction in annual PM2.5 concentrations, a total of 52.3 (95% CI: 25.7, 79.1) deaths each year could be averted in Kuwait. That is, 28.6 (95% CI: 10.3, 47.0) Kuwaitis, 23.9 (95% CI: 6.4, 41.5) non-Kuwaitis, 9.4 (95% CI: 1.2, 17.8) children, and 20.9 (95% CI: 4.3, 37.6) elderly deaths each year. IMPACT STATEMENT: The overwhelming prevalence of devastating dust storms and enormous petrochemical industries in the Gulf and the Middle East has intensified the urgency to address air pollution and its detrimental health effects. Alarmingly, the region's epidemiological research lags behind, hindered by a paucity of ground monitoring networks and historical exposure data. In response, we are harnessing the power of big data to generate predictive models of air pollution across time and space, providing crucial insights into the mortality burden associated with air pollution in this under-researched yet critically impacted area.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Niño , Humanos , Anciano , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Kuwait/epidemiología , Clima Desértico , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Material Particulado/efectos adversos , Material Particulado/análisis , Polvo/análisis , Mortalidad
13.
Genes (Basel) ; 14(2)2023 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-36833396

RESUMEN

Wild medicinal plants are the main source of active ingredients and provide a continuous natural source for many folk medicinal products, a role that is important for society's health with an impressive record of utilization. Thus, surveying, conserving, and precisely identifying wild medicinal plants is required. The current study aimed to precisely identify fourteen wild-sourced medicinal plants from southwest Saudi Arabia, within the Fifa mountains area located in Jazan province, using the DNA barcoding technique. Two DNA regions (nuclear ITS and chloroplast rbcL) were sequenced and analyzed for the collected species using BLAST-based and phylogeny-based identification methods. Based on our analysis, ten of the fourteen species were successfully identified by DNA barcoding, five were identified as morphologically inspected, and three were morphologically indifferent. The study was able to distinguish some key medicinal species and highlight the importance of combining morphological observation with DNA barcoding to ensure the precise identification of wild plants, especially if they are medicinally relevant and associated with public health and safety usage.


Asunto(s)
Código de Barras del ADN Taxonómico , Plantas Medicinales , ADN de Plantas/genética , Arabia Saudita , Plantas Medicinales/genética , Secuencia de Bases
14.
Vet Med Sci ; 9(1): 471-480, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36408778

RESUMEN

BACKGROUND: Toxoplasma gondii (T. gondii) is a zoonotic parasite that can be transmitted from animals to humans, with felids acting as its definitive host. Thus, understanding the epidemiology of this parasite in animal populations is vital to controlling its transmission to humans as well as to other animal groups. OBJECTIVES: This systematic review and meta-analysis aims to summarise and analyse reports of T. gondii infection in animal species residing in the Arabian Peninsula. METHODS: It was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), with relevant studies being retrieved from MEDLINE/PubMed, Scopus, Cochrane Library, Google Scholar and ScienceDirect. All articles published in Arabic or English languages between January 2000 and December 2020 were screened for eligibility. Random effects model was used to calculate the pooled prevalence of T. gondii infection in different animal populations which were found to harbour this infection. The critical appraisal tool for prevalence studies designed by the Joanna Briggs Institute (JBI) was used to assess the risk of bias in all included studies. RESULTS: A total of 15 studies were retrieved, reporting prevalence estimates from 4 countries in this region and in 13 animal species. Quantitative meta-analysis estimated a pooled prevalence of 43% in felids [95% confidence interval (CI) = 23-64%, I2 index = 100%], 48% in sheep (95% CI = 27-70%, I2 = 99%) and 21% in camels (95% CI = 7-35%, I2 = 99%). Evidence of possible publication bias was found in both felids and sheep. CONCLUSIONS: This meta-analysis estimates a high prevalence of T. gondii infection in animal species which are of high economic and cultural importance to countries of this region. Hence, these findings provide valuable insight to public health authorities as well as economic and animal resources advisors in countries of the Arabian Peninsula.


Asunto(s)
Enfermedades de las Ovejas , Toxoplasma , Toxoplasmosis , Humanos , Animales , Ovinos , Prevalencia , Camelus
15.
Microsc Res Tech ; 86(1): 97-114, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36420971

RESUMEN

The complex architecture of fish scale has been investigated for several decades to show an existing link between scale morphology/microstructure and systematic/evolutionary relationships of fishes. In the present study, the surface architecture structure associated with the scales of a hill stream cyprinid fish Garra shamal restricted to the Hajar Mountains of the Arabian Peninsula was examined by optical light and scanning electron microscopy; (i) to describe the whole morphology, architectural design and hidden microstructures of scales in an endemic fish of the Arabian Peninsula, G. shamal, (ii) to investigate the phenotypic plasticity of scales in six selected regions of the fish body, (iii) to show an ontogenetic pattern of scale morphology in different size classes, and (iv) to study morphometric parameters for scales, and determine the most valuable indices for differentiating the scales of different body regions and the different size groups of studied species. For this purpose, scales were removed from six body regions of three size classes. The scale of G. shamal, as an ossified platelet and hard structure covering the outer part of fish in different body parts and size groups, demonstrated numerous hidden morphological and structural characteristics, and sculptural design, for example, type, shape, and size in general term, and circuli (thickness, arrangement, and relative spacing of circuli around the focus), radii (number, shape, its origin from focus), lepidonts (the texture, shape, size, orientation, and type of its attachment), and granules (shape, size, number, and configurations) in a specific term, that can contribute efficiently in fish identification and classification at the genus and species levels. Position of focus, presence of radii in all four fields of scales (anterior, posterior, and laterals) and thus tetra-sectioned type, presence of specific tubercle arrangement on the posterior region, and some scale indices can be used as a taxonomic tool in Garra identification. Moreover, scales in G. shamal demonstrated plasticity in different fish size classes, and the origin of scales on the fish body, revealing a kind of ontogenetic variation, and the importance of key scales (scales below the dorsal fin) in the lepidological studies. The quantitative and qualitative traits described here based on the optical light microscopy and electron scanning microscopy can be implemented along with other morphological and molecular characteristics to have a better taxonomic resolution of the genus Garra. RESEARCH HIGHLIGHTS: The optical light microscopy (LM) and scanning electron microscopy (SEM) techniques enhanced our knowledge of scale morphology in a cyprinid fish restricted to the Arabian Peninsula. The scale of G. shamal, in different body parts and size groups, demonstrated numerous hidden morphological and structural characteristics, and sculptural design that can contribute efficiently in fish identification and classification at the genus and species levels. Tetra-sectioned cycloid type, position of focus, presence of specific tubercle arrangement on the posterior region, and some scale indices can be used as a taxonomic tool for identification of the genus Garra. The scales showed plasticity in different fish size classes, and the origin of scales on the fish body, revealing a kind of ontogenetic variation.


Asunto(s)
Cyprinidae , Animales , Microscopía Electrónica de Rastreo , Cyprinidae/anatomía & histología , Ríos , Evolución Biológica
16.
Mitochondrial DNA B Resour ; 7(10): 1797-1799, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36278127

RESUMEN

The genus Mentha encompasses mint species cultivated for their essential oils, which are formulated into a vast array of consumer products. However, the systematics of the genus Mentha is very complicated and still uncertain. This is largely because of the presence of frequent interspecific hybridization, variation in chromosome number, cytomixis, polymorphism in morphology and essential oil composition under different environmental conditions, colonial mutant propagation, as well as the occurrence of polyploidy, aneuploidy, and nothomorphs. Here, we present the plastome assemblies for a wilt-resistant Saudi Arabian accession of Mentha longifolia (L.) Huds and an alien hybrid Mentha × verticillata L. which are 152,078 bp and 152,026 bp in length, respectively, and exhibited large single-copy (LSC) and small single-copy (SSC) regions separated by a pair of inverted repeat regions. The chloroplast genome of M. longifolia has 133 annotated genes, including 88 protein-coding genes and 37 tRNAs while M. × verticillata has 133 annotated genes, including 87 protein-coding genes and 38 tRNAs. Both cp genomes have eight rRNA genes. Phylogenetic analysis using a total chloroplast genome DNA sequence of 17 species revealed that M. longifolia sequenced in this study did not form a sister relationship with M. longifolia from another study. This opens a window for further investigations.

17.
Antibiotics (Basel) ; 11(10)2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36290012

RESUMEN

Antimicrobial resistance (AMR) is a global problem that also includes countries of the Arabian Peninsula. Of particular concern, is the continuing development of extended-spectrum ß-lactamases (ESBLs) in the countries of this region. Additionally, antibiotic treatment options for ESBL-producing bacteria are becoming limited, primarily due to the continuing development of carbapenem resistance (CR), carbapenems being frequently used to treat such infections. An overview of recent publications (2018-2021) indicates the presence of ESBL and/or CR in patients and hospitals in most countries of the Arabian Peninsula, although the delay between microbial isolation and publication inevitably makes an accurate analysis of the current situation rather difficult. However, there appears to be greater emphasis on CR (including combined ESBL and CR) in recent publications. Furthermore, although publications from Saudi Arabia are the most prevalent, this may simply reflect the increased interest in ESBL and CR within the country. Enhanced ESBL/CR surveillance is recommended for all countries in the Arabian Peninsula.

18.
J Neuromuscul Dis ; 9(5): 661-673, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35754286

RESUMEN

Pompe disease is a rare, metabolic, autosomal recessive disorder. Early diagnosis is critical for progressive Pompe disease as delays can significantly alter the clinical course of the disease. Diagnostic modalities, including dried blood spot testing and genetic testing, are available and are effective for diagnosing patients with late-onset Pompe disease (LOPD). However, clinicians face numerous clinical challenges related to the diagnosis of the disease. Two expert group committee meetings, involving 11 experts from the United Arab Emirates, Kuwait, the Kingdom of Saudi Arabia, and Oman, were convened in October 2019 and November 2020 respectively to develop a uniform diagnostic algorithm for the diagnosis of pediatric and adult LOPD in the Arabian Peninsula region. During the first meeting, the specialty-specific clinical presentation of LOPD was defined. During the second meeting, a diagnostic algorithm was developed after a thorough validation of clinical presentation or symptoms, which was performed with the aid of existing literature and expert judgement. A consensus was reached on the diagnostic algorithm for field specialists, such as neurologists, rheumatologists, general practitioners/internal medicine specialists, orthopedic specialists, and pulmonologists. This specialty-specific diagnostic referral algorithm for pediatric and adult LOPD will guide clinicians in the differential diagnosis of LOPD.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno Tipo II , Adulto , Niño , Consenso , Enfermedad del Almacenamiento de Glucógeno Tipo II/diagnóstico , Procesos de Grupo , Humanos
19.
Artículo en Inglés | MEDLINE | ID: mdl-35270199

RESUMEN

The Arabian Peninsula (Arabia) is among the places to have experienced the greatest amount of warming during recent decades, and this trend is projected to continue. Specifics related to the characteristics (frequency, duration, and intensity) of extreme temperature events (ETEs) over Arabia as a whole are either largely outdated or limited only to specific areas. The seasonal ETE definitions commonly used in local studies are neither climatological- nor phenomenon-based. Using a novel and straightforward framework, the seasons of four extreme temperature types (extreme warm days/nights (EWDs/EWNs) and extreme cold days/nights (ECDs/ECNs)) were identified on the simultaneous basis of event occurrence and impact times. Assessments of ETE frequency, duration, and intensity and their recent changes were then provided based on the most recent climate data (1991-2020). Results showed that the use of traditional seasonal definitions (e.g., meteorological seasons) tends to assume a spatiotemporal homogeneity in the seasonality of ETEs and their potential risk levels throughout the year. The developed framework distinguished months with events that have larger potential impacts together with their local seasons. ETE seasons were found to vary at the regional and local scales and are better defined at both the local and phenomenon levels. Early extreme warm events were hotter, and those at locations with longer local warm seasons demonstrated higher intensities. ECDs tended to be more frequent at coastal locations, whereas ECNs were more frequent over southwestern Arabia. Early and late extreme cold events were much colder than those occurring mid-season. Trend analyses revealed generally increasing regional trends in the frequency of extreme warm events, whereas extreme cold events have declined. The duration (i.e., consecutive occurrences) and intensity of EWNs have been increasing at more locations, suggesting that urgent attention is needed within such an arid and hot climate type in which nighttime stress relief is already very limited.


Asunto(s)
Clima , Meteorología , Arabia , Frío , Estaciones del Año , Temperatura
20.
Aeolian Res ; 55: 100786, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35251380

RESUMEN

While anthropogenic pollutants have decreased during the lockdown imposed as an effort to contain the spread of the Coronavirus disease 2019 (COVID-19), changes in particulate matter (PM) do not necessarily exhibit the same tendency. This is the case for the eastern Arabian Peninsula, where in March-June 2020, and with respect to the same period in 2016-2019, a 30 % increase in PM concentration is observed. A stronger than normal nocturnal low-level jet and subtropical jet over parts of Saudi Arabia, in response to anomalous convection over the tropical Indian Ocean, promoted enhanced and more frequent episodes of Shamal winds over the Arabian Peninsula. Increased surface winds associated with the downward mixing of momentum to the surface fostered, in turn, dust lifting and increased PM concentrations. The stronger low-level winds also favoured long-range transport of aerosols, changing the PM values downstream. The competing effects of reduced anthropogenic and increased dust concentrations leave a small positive signal (<5 W m-2) in the net surface radiation flux (Rnet), with the former dominating during daytime and the latter at night. However, in parts of the Arabian Gulf, Sea of Oman and Iran Rnet increased by >20 W m-2 with respect to the baseline period, owing to a clearer environment and weaker winds. It is concluded that a reduction in anthropogenic emissions due to the lockdown does not necessarily go hand in hand with lower particulate matter concentrations. Therefore, emissions reduction strategies need to account for feedback effects in order to reach the planned long-term outcomes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA