Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39028331

RESUMEN

Acrylamide (ACR) is a toxic, probably carcinogenic compound commonly found in fried foods and used in the production of many industrial consumer products. ACR-induced acute kidney injury is mediated through several signals. In this research, we investigated, for the first time, the therapeutic effects of phytochemicals apocynin (APO) and/or umbelliferone (UMB) against ACR-induced nephrotoxicity in rats and emphasized the underlying molecular mechanism. To achieve this goal, five groups of rats were randomly assigned: the control group received vehicle (0.5% CMC; 1 ml/rat), ACR (40 mg/kg, i.p.), ACR + APO (100 mg/kg, P.O.), ACR + UMB (50 mg/kg, P.O.), and combination group for 10 days. In ACR-intoxicated rats, there was a significant reduction in weight gain while the levels of blood urea, uric acid, creatinine, and Kim-1 were elevated, indicating renal injury. Histopathological injury was also observed in the kidneys of ACR-intoxicated rats, confirming the biochemical data. Moreover, MDA, TNF-α, and IL-1ß levels were raised; and GSH and SOD levels were decreased. In contrast, treatment with APO, UMB, and their combination significantly reduced the kidney function biomarkers, prevented tissue damage, and decreased inflammatory cytokines and MDA. Mechanistically, it suppressed the expression of NLRP-3, ASC, GSDMD, caspase-1, and IL-1ß, while it upregulated Nrf-2 and HO-1 in the kidneys of ACR-intoxicated rats. In conclusion, APO, UMB, and their combination prevented ACR-induced nephrotoxicity in rats by attenuating oxidative injury and inflammation, suppressing NLRP-3 inflammasome signaling, enhancing antioxidants, and upregulating Nrf-2 and HO-1 in the kidneys of ACR-induced rats.

2.
Hypertens Pregnancy ; 41(1): 39-50, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34875953

RESUMEN

OBJECTIVE: Pre-eclampsia (PE) is a pregnancy-associated disease characterized by placental dysfunction and increased oxidative stress. Apocyanin is a potent antioxidant and anti-inflammatory which has shown beneficial effects on PE pathogenesis. Aspirin is recognized as the recommendable drug in PE prevention and therapy. Therefore, we aimed to investigate the effects of combining apocyanin and aspirin to treat PE on rat models induced by N-nitro-L-arginine methyl ester (L-NAME) from gestational day (GD) 6 to 16 and elucidate the potential mechanisms. METHODS: First, female pregnant rats were divided into five different groups: pregnant control, PE, PE + apocyanin, PE + aspirin, and PE + apocyanin + aspirin. Animals received apocyanin (16 mg/kg/day) orally or aspirin by gavage (1.5 mg/kg BM/day) from GD 4 to 16. Blood pressure and urine protein content were monitored every 4 days. RESULTS: In the PE rat model, elevated systolic blood pressure and proteinuria were ameliorated by the combination of apocyanin and aspirin. Meanwhile, compared with single-dose apocyanin or aspirin, the combined treatment significantly corrected abnormal pregnancy outcomes, decreased sFlt-1 and PlGF, and alleviated oxidative stress both in blood and placental tissues. Moreover, the combined treatment upregulated PI3K, Akt, Nrf2, and HO-1 protein levels in the placental tissues from PE rats. CONCLUSION: Overall, our results suggested that combined treatment of apocyanin and aspirin ameliorates the PE symptoms compared with single-dose apocyanin or aspirin in a PE rat model. Also, we demonstrated that activating the PI3K/Nrf2/HO-1 pathway can be a valuable therapeutic target to improve the pregnancy outcomes of PE.


Asunto(s)
Preeclampsia , Animales , Aspirina/efectos adversos , Femenino , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/farmacología , Factor 2 Relacionado con NF-E2/uso terapéutico , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/farmacología , Fosfatidilinositol 3-Quinasas/uso terapéutico , Placenta/metabolismo , Embarazo , Ratas , Transducción de Señal
3.
Mol Neurobiol ; 53(5): 3326-3337, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26081143

RESUMEN

Microglia-associated inflammatory processes have been strongly implicated in the development and progression of Parkinson's disease (PD). Specifically, microglia are activated in response to lipopolysaccharide (LPS) and become chronic source of cytokines and reactive oxygen species (ROS) production. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex is responsible for extracellular as well as intracellular production of ROS by microglia and its expression is upregulated in PD. Therefore, targeting NADPH oxidase complex activation using an NADPH oxidase inhibitor, i.e., apocyanin seems to be an effective approach. The aim of present study was to investigate the neuroprotective effects of apocyanin in a LPS-induced PD model. LPS (5 µg) was injected intranigral and apocyanin was administered daily at a dose of 10 mg/kg b.wt (i.p.) during the experiment. LPS when injected into the substantia nigra (SN) reproduced the characteristic hallmark features of PD in rats. It elicited an inflammatory response characterized by glial cell activation (Iba-1, GFAP). Furthermore, LPS upregulated the gene expression of nuclear factor-κB (NFκB), iNOS, and gp91PHOX and resulted in an elevated total ROS production as well as NADPH oxidase activity. Subsequently, this resulted in dopaminergic loss as depicted by decreased tyrosine hydroxylase (TH) expression with substantial loss in neurotransmitter dopamine and its metabolites, whereas treatment with apocyanin significantly reduced the number of glial fibrillary acidic protein (GFAP) and Iba-1-positive cells in LPS-treated animals. It also mitigated microglial activation-induced inflammatory response and elevation in NADPH oxidase activity, thus reducing the extracellular as well as intracellular ROS production. The present study indicated that targeting NADPH oxidase can inhibit microglial activation and reduce a broad spectrum of toxic factors generation (i.e., cytokines, ROS, and reactive nitrogen species [RNS]), thus offering a hope in halting the progression of PD.


Asunto(s)
Acetofenonas/uso terapéutico , Neuronas Dopaminérgicas/patología , Microglía/enzimología , NADPH Oxidasas/antagonistas & inhibidores , Degeneración Nerviosa/tratamiento farmacológico , Degeneración Nerviosa/prevención & control , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/patología , Ácido 3,4-Dihidroxifenilacético/metabolismo , Acetofenonas/farmacología , Animales , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Ácido Homovanílico/metabolismo , Mediadores de Inflamación/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Lipopolisacáridos , Masculino , Mesencéfalo/patología , NADPH Oxidasas/metabolismo , Degeneración Nerviosa/patología , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Tirosina 3-Monooxigenasa/metabolismo
4.
Behav Brain Res ; 296: 177-190, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26367469

RESUMEN

Parkinson's disease (PD), is an age-related, progressive neurodegenerative disorder that affects movement and is characterized by the loss of dopaminergic neurons in the nigrostriatal region. Although the clinical and pathological features of PD are complex, recent studies have indicated that microglial NADPH oxidase play a key role in its pathology. A little information is available regarding the role of apocyanin, an NADPH oxidase inhibitor, in ameliorating α-synuclein aggregation and neurobehavioral consequences of PD. Therefore, the present study evaluated its therapeutic potentials for the treatment of neurobehavioral consequences in lipolysaccharide (LPS) induced PD model. For the establishment of PD model LPS (5 µg/5 µl PBS) was injected into the Substantia nigra (SN) of rats. Apocyanin (10mg/kgb.wt) was injected intraperitoneal. Statistical analysis revealed that apocynin significantly ameliorated LPS induced inflammatory response characterized by NFkB, TNF-α and IL-1ß upregulation as assessed by ELISA. It also prevented dopaminergic neurons from toxic insult of LPS as indicated by inhibition of apoptotic markers i.e., caspase 3 and caspase 9 as depicted from RT-PCR and ELISA studies. This was further supported by TUNEL assay for DNA fragmentation. Effectiveness of apocyanin in protecting dopaminergic neuronal degeneration was further confirmed by assessment of α-synuclein deposition as depicted by IHC analysis. Consequently, an improvement in the behavioral outcome was observed following apocyanin treatment as depicted from various behavioral tests performed. Hence the data suggests that specific NADPH oxidase inhibitors, such as apocynin, may provide a new therapeutic approach to the control of neurological disabilities induced by LPS induced PD.


Asunto(s)
Acetofenonas/farmacología , Conducta Animal/efectos de los fármacos , Citocinas/efectos de los fármacos , Neuronas Dopaminérgicas/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Lipopolisacáridos/farmacología , NADPH Oxidasas/antagonistas & inhibidores , Enfermedad de Parkinson Secundaria/tratamiento farmacológico , alfa-Sinucleína/efectos de los fármacos , Acetofenonas/administración & dosificación , Animales , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/administración & dosificación , Lipopolisacáridos/administración & dosificación , Masculino , Enfermedad de Parkinson Secundaria/inducido químicamente , Ratas , Ratas Sprague-Dawley
5.
Bot Stud ; 57(1): 7, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28597416

RESUMEN

BACKGROUND: Picrorhiza kurroa Royle commonly known as 'Kutki or Kutaki' is an important medicinal plant in Ayurvedic system of medicine and has traditionally been used to treat disorders of the liver and upper respiratory tract. The plant is the principle source of iridoid glycosides, picrosides I, II and kutkoside used in various herbal drug formulations mainly as strong hepatoprotective and immune-modulatory compound. The species has become endangered to near extinction due to the unregulated collection from the wild, slower plant growth and ecological destruction of natural habitats. There is a severe shortage of plant material, while the market demand is ever increasing. Hence, it is very important to apply a simple and precise analytical method to determine and validate the concentration of the major bioactive constituents in different populations of this plant species for development of a high yielding chemotype for large scale production and its commercial exploitation on scientific lines. RESULTS: This study assessed and validated a fast and reliable chromatography method for the determination of picroside-I and picroside-II in different populations of this priortized medicinal plant species. Separation and resolution of picrosides was carried out on a reversed phase (C-18) column by using a mobile phase of methanol and water (40:60 v/v). The detection of picrosides was carried out at 270 nm. The average levels of these two major marker compounds in all the seven accessions showed significant quantitative variation (ANOVA, p < 0.05) between mean levels of marker compounds and their accumulation in different parts of the plant viz. roots, rhizomes and leaves. The highest content of pk-I was found in the accession from Gurez altitude (3750 masl) while the highest content of pk-II was found in accession from Keller (Shopian) altitude (3300 masl) demonstrate that picroside accusation is directly correlated with altitudinal variation. The method was validated in terms of linearity, accuracy and precision (within- and between-assay variation). CONCLUSION: A simple chromatographic method with the ability to separate both the major chemical constituents effectively in different herbal extracts of P. kurroa and other related species has been standardized and validated, which is more suitable for regular and normal analysis of picrosides in different herbal formulations. The paper accomplish that picroside concentration in different samples showed significant variation based on altitude and other agroclimatic factors, which can be useful in the selection and collection of superior genotypes with higher concentration of these marker compounds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA