Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Brain Sci ; 13(5)2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37239235

RESUMEN

(1) Background: there is an urgent clinical need for rapid and effective antidepressants. (2) Methods: We employed proteomics to profile proteins in two animal models (n = 48) of Chronic Unpredictable Stress and Chronic Social Defeat Stress. Additionally, partial least squares projection to latent structure discriminant analysis and machine learning were used to distinguish the models and the healthy control, extract and select protein features and build biomarker panels for the identification of different mouse models of depression. (3) Results: The two depression models were significantly different from the healthy control, and there were common changes in proteins in the depression-related brain regions of the two models; i.e., SRCN1 was down-regulated in the dorsal raphe nucleus in both models of depression. Additionally, SYIM was up-regulated in the medial prefrontal cortex in the two depression models. Bioinformatics analysis suggested that perturbed proteins are involved in energy metabolism, nerve projection, etc. Further examination confirmed that the trends of feature proteins were consistent with mRNA expression levels. (4) Conclusions: To the best of our knowledge, this is the first study to probe new targets of depression in multiple brain regions of two typical models of depression, which could be targets worthy of study.

2.
Cancer Biomark ; 28(1): 91-100, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32176628

RESUMEN

BACKGROUND: Elevated Anoctamin 7 (ANO7) expression is associated with poor survival in prostate cancer patients. OBJECTIVE: The aim was to discover proteins that interact with ANO7 to understand its functions and regulatory mechanisms. METHODS: The proximity-dependent biotin identification (BioID) method was utilized. ANO7 fused to biotin ligase was transiently transfected into LNCaP cells, and the biotinylated proteins were collected and analysed by mass spectrometry. Four identified proteins were stained with dual fluorescent immunostaining and visualized using Stimulated emission depletion microscopy (STED). RESULTS: After bioinformatic filtering steps, 64 potentially ANO7-interacting proteins were identified and analysed with the GO enrichment analysis tool. One of the most prominently enriched cellular components was cellular vesicle. Co-localization was showed for staphylococcal nuclease and tudor domain containing 1 (SND1), heat shock protein family A (Hsp70) member 1A (HSPA1A), adaptor related protein complex 2 subunit beta 1 (AP2B1) and coatomer protein complex subunit gamma 2 (COPG2). CONCLUSIONS: This is the first study in which ANO7 interacting proteins have been identified. Although further studies are needed, the findings reported here expand our understanding of the role and regulation of ANO7 in prostate cancer cells. Furthermore, these results are likely to introduce new targets for the novel cancer therapies.


Asunto(s)
Anoctaminas/metabolismo , Neoplasias de la Próstata/metabolismo , Subunidades beta de Complejo de Proteína Adaptadora/metabolismo , Línea Celular Tumoral , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Masculino , Pronóstico , Transfección
3.
J Virol ; 94(2)2020 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-31694949

RESUMEN

Influenza A virus (IAV) coopts numerous host factors to complete its replication cycle. Here, we identify free fatty acid receptor 2 (FFAR2) as a cofactor for IAV entry into host cells. We found that downregulation of FFAR2 or Ffar2 expression significantly reduced the replication of IAV in A549 or RAW 264.7 cells. The treatment of A549 cells with small interfering RNA (siRNA) targeting FFAR2 or the FFAR2 pathway agonists 2-(4-chlorophenyl)-3-methyl-N-(thiazol-2-yl)butanamide (4-CMTB) and compound 58 (Cmp58) [(S)-2-(4-chlorophenyl)-3,3-dimethyl-N-(5-phenylthiazol-2-yl)butanamide] dramatically inhibited the nuclear accumulation of viral nucleoprotein (NP) at early time points postinfection, indicating that FFAR2 functions in the early stage of the IAV replication cycle. FFAR2 downregulation had no effect on the expression of sialic acid (SA) receptors on the cell membrane, the attachment of IAV to the SA receptors, or the activity of the viral ribonucleoprotein (vRNP) complex. Rather, the amount of internalized IAVs was significantly reduced in FFAR2-knocked-down or 4-CMTB- or Cmp58-treated A549 cells. Further studies showed that FFAR2 associated with ß-arrestin1 and that ß-arrestin1 interacted with the ß2-subunit of the AP-2 complex (AP2B1), the essential adaptor of the clathrin-mediated endocytosis pathway. Notably, siRNA knockdown of either ß-arrestin1 or AP2B1 dramatically impaired IAV replication, and AP2B1 knockdown or treatment with Barbadin, an inhibitor targeting the ß-arrestin1/AP2B1 complex, remarkably decreased the amount of internalized IAVs. Moreover, we found that FFAR2 interacted with three G protein-coupled receptor (GPCR) kinases (i.e., GRK2, GRK5, and GRK6) whose downregulation inhibited IAV replication. Together, our findings demonstrate that the FFAR2 signaling cascade is important for the efficient endocytosis of IAV into host cells.IMPORTANCE To complete its replication cycle, IAV hijacks the host endocytosis machinery to invade cells. However, the underlying mechanisms of how IAV is internalized into host cells remain poorly understood, emphasizing the need to elucidate the role of host factors in IAV entry into cells. In this study, we identified FFAR2 as an important host factor for the efficient replication of both low-pathogenic and highly pathogenic IAV. We revealed that FFAR2 facilitates the internalization of IAV into target cells during the early stage of infection. Upon further characterization of the role of FFAR2-associated proteins in virus replication, we found that the FFAR2-ß-arrestin1-AP2B1 signaling cascade is important for the efficient endocytosis of IAV. Our findings thus further our understanding of the biological details of IAV entry into host cells and establish FFAR2 as a potential target for antiviral drug development.


Asunto(s)
Endocitosis , Virus de la Influenza A/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Internalización del Virus , Células A549 , Subunidades beta de Complejo de Proteína Adaptadora/genética , Subunidades beta de Complejo de Proteína Adaptadora/metabolismo , Animales , Perros , Células HEK293 , Humanos , Células de Riñón Canino Madin Darby , Ratones , Células RAW 264.7 , Receptores Acoplados a Proteínas G/genética , Replicación Viral/fisiología , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo
4.
FASEB J ; 33(10): 11148-11162, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31291551

RESUMEN

Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) α is the first identified isoform of the well-known tumor suppressor PTEN. PTENα has an evolutionarily conserved 173-aa N terminus compared with canonical PTEN. Recently, PTENα has been shown to play roles in multiple biologic processes including learning and memory, cardiac homeostasis, and antiviral immunity. Here, we report that PTENα maintains mitral cells in olfactory bulb (OB), regulates endocytosis in OB neurons, and controls olfactory behaviors in mice. We show that PTENα directly dephosphorylates the endocytic protein amphiphysin and promotes its binding to adaptor-related protein complex 2 subunit ß1 (Ap2b1). In addition, we identified mutations in the N terminus of PTENα in patients with Parkinson disease and Lewy-body dementia, which are neurodegenerative disorders with early olfactory loss. Overexpression of PTENα mutant H169N in mice OB reduces odor sensitivity. Our data demonstrate a role of PTENα in olfactory function and provide insight into the mechanism of olfactory dysfunction in neurologic disorders.-Yuan, Y., Zhao, X., Wang, P., Mei, F., Zhou, J., Jin, Y., McNutt, M. A., Yin, Y. PTENα regulates endocytosis and modulates olfactory function.


Asunto(s)
Endocitosis/fisiología , Bulbo Olfatorio/metabolismo , Bulbo Olfatorio/fisiología , Fosfohidrolasa PTEN/metabolismo , Subunidades beta de Complejo de Proteína Adaptadora/metabolismo , Animales , Línea Celular , Femenino , Células HEK293 , Humanos , Masculino , Memoria/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Neuronas/fisiología , Odorantes , Trastornos del Olfato/metabolismo , Isoformas de Proteínas/metabolismo
5.
Mol Neurobiol ; 55(2): 1590-1606, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28190237

RESUMEN

The formation of dendritic arbors in neurons is a highly regulated process. Among the regulators of dendritogenesis are numerous membrane proteins that are eventually internalized via clathrin-mediated endocytosis. AP2 is an adaptor complex that is responsible for recruiting endocytic machinery to internalized cargo. Its direct involvement in dendritogenesis in mammalian neurons has not yet been tested. We found that the knockdown of AP2b1 (ß2-adaptin), an AP2 subunit, reduced the number of dendrites in developing rat hippocampal neurons and decreased α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit GluA2 levels by inhibiting mechanistic/mammalian target of rapamycin (mTOR). The dendritic tree abruption that was caused by AP2b1 knockdown was rescued by the overexpression of GluA2 or restoration of the activity of the mTOR effector p70S6 kinase (S6K1). Altogether, this work provides evidence that the AP2 adaptor complex is needed for the dendritogenesis of mammalian neurons and reveals that mTOR-dependent GluA2 biosynthesis contributes to this process.


Asunto(s)
Complejo 2 de Proteína Adaptadora/metabolismo , Dendritas/metabolismo , Neuronas/metabolismo , Receptores AMPA/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Línea Celular , Forma de la Célula/fisiología , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Hipocampo/citología , Hipocampo/metabolismo , Neuronas/citología , Ratas , Sinapsis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA