Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Más filtros











Intervalo de año de publicación
1.
Acta Trop ; 251: 107116, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38159713

RESUMEN

Neglected tropical diseases (NTD) like Leishmaniasis and trypanosomiasis affect millions of people annually, while currently used antiprotozoal drugs have serious side effects. Drug research based on natural products has shown that microalgae and cyanobacteria are a promising platform of biochemically active compounds with antiprotozoal activity. These unicellular photosynthetic organisms are rich in polyunsaturated fatty acids, pigments including phycocyanin, chlorophylls and carotenoids, polyphenols, bioactive peptides, terpenes, alkaloids, which have proven antioxidant, antimicrobial, antiviral, antiplasmodial and antiprotozoal properties. This review provides up-to-date information regarding ongoing studies on substances synthesized by microalgae and cyanobacteria with notable activity against Leishmania spp., Trypanosoma cruzi, and Trypanosoma brucei, the causative agents of Leishmaniasis, Chagas disease, and human African trypanosomiasis, respectively. Extracts of several freshwater or marine microalgae have been tested on different strains of Leishmania and Trypanosoma parasites. For instance, ethanolic extract of Chlamydomonas reinhardtii and Tetraselmis suecica have biological activity against T. cruzi, due to their high content of carotenoids, chlorophylls, phenolic compounds and flavonoids that are associated with trypanocidal activity. Halophilic Dunaliella salina showed moderate antileishmanial activity that may be attributed to the high ß-carotene content in this microalga. Peptides such as almiramides, dragonamides, and herbamide that are biosynthesized by marine cyanobacteria Lyngbya majuscula were found to have increased activity in micromolar scale IC50 against L. donovani, T. Cruzi, and T. brucei parasites. The cyanobacterial peptides symplocamide and venturamide isolated from Symploca and Oscillatoria species, respectively, and the alkaloid nostocarbonile isolated from Nostoc have shown promising antiprotozoal properties and are being explored for pharmaceutical and medicinal purposes. The discovery of new molecules from microalgae and cyanobacteria with therapeutic potential against Leishmaniasis and trypanosomiasis may address an urgent medical need: effective and safe treatments of NTDs.


Asunto(s)
Antiprotozoarios , Enfermedad de Chagas , Cianobacterias , Leishmania , Leishmaniasis , Microalgas , Parásitos , Trypanosoma cruzi , Tripanosomiasis , Animales , Humanos , Antiprotozoarios/uso terapéutico , Enfermedad de Chagas/tratamiento farmacológico , Tripanosomiasis/tratamiento farmacológico , Leishmaniasis/tratamiento farmacológico , Carotenoides/farmacología , Carotenoides/uso terapéutico , Péptidos
2.
Trans R Soc Trop Med Hyg ; 117(10): 733-740, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37377375

RESUMEN

BACKGROUND: Three obligate intracellular protozoan parasite species, which are responsible for significant morbidity and mortality and settle in macrophage cells, affect more than one-half of the world's population, namely, Trypanosoma cruzi, Leishmania tropica and Toxoplasma gondii, which are causative agents of Chagas disease, leishmaniasis and toxoplasmosis, respectively. In the current study, it was aimed to investigate the in vitro and ex vivo antiprotozoal activity of auranofin on T. cruzi, L. tropica and T. gondii. METHODS: The in vitro drug efficacy (IC50) of auranofin was investigated by haemocytometry and the CellTiter-Glo assay methods and the ex vivo drug efficacy (IC50) by light microscopic examination of Giemsa-stained slides. Also, the cytotoxic activity (CC50) of auranofin was examined by the CellTiter-Glo assay. The selectivity index (SI) was calculated for auranofin. RESULTS: According to IC50, CC50 and SI data, auranofin did not exhibit cytotoxic activity on Vero cells, but exhibited antiprotozoal activity on epimastigotes and intracellular amastigotes of T. cruzi, promastigotes and intracellular amastigotes of L. tropica and intracellular tachyzoites of T. gondii (p<0.05). CONCLUSIONS: The detection antiprotozoal activity of auranofin on T. cruzi, L. tropica and T. gondii according to the IC50, CC50 and SI values is considered an important and promising development. This is significant because auranofin may be an effective alternative treatment for Chagas disease, leishmaniasis and toxoplasmosis in the future.


Asunto(s)
Antiprotozoarios , Enfermedad de Chagas , Leishmania tropica , Leishmaniasis , Toxoplasma , Toxoplasmosis , Trypanosoma cruzi , Humanos , Animales , Chlorocebus aethiops , Auranofina/farmacología , Auranofina/uso terapéutico , Células Vero , Enfermedad de Chagas/parasitología , Antiprotozoarios/farmacología , Antiprotozoarios/uso terapéutico
3.
Biochim Biophys Acta Biomembr ; 1865(7): 184184, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37301246

RESUMEN

As part of our ongoing studies involving the discovery of new natural prototypes with antiprotozoal activity against Trypanosoma cruzi from Brazilian plant species, the chromatographic fractionation of hexane extract from leaves of Nectandra barbellata afforded one new pseudo-disesquiterpenoid, barbellatanic acid. The structure of this compound was elucidated by NMR and HR-ESIMS data analysis. Barbellatanic acid displayed a trypanocidal effect with IC50 of 13.2 µM to trypomastigotes and no toxicity against NCTC cells (CC50 > 200 µM), resulting in an SI value higher than 15.1. The investigation of the lethal mechanism of barbellatanic acid in trypomastigotes, using both fluorescence microscopy and spectrofluorimetric analysis, revealed a time-dependent permeation of the plasma membrane. Based on these results, this compound was incorporated in cellular membrane models built with lipid Langmuir monolayers. The interaction of barbellatanic acid with the models was inferred by tensiometric, rheological, spectroscopical, and morphological techniques, which showed that this compound altered the thermodynamic, viscoelastic, structural, and morphological properties of the film. Taking together, these results could be employed when this prodrug interacts with lipidic interfaces, such as protozoa membranes or liposomes for drug delivery systems.


Asunto(s)
Antiprotozoarios , Tripanocidas , Trypanosoma cruzi , Tripanocidas/farmacología , Tripanocidas/química , Antiprotozoarios/farmacología , Membrana Celular , Hojas de la Planta
4.
Biomedicines ; 11(4)2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37189733

RESUMEN

Protozoal infections are a world-wide problem. The toxicity and somewhat low effectiveness of the existing drugs require the search for new ways of protozoa suppression. Snake venom contains structurally diverse components manifesting antiprotozoal activity; for example, those in cobra venom are cytotoxins. In this work, we aimed to characterize a novel antiprotozoal component(s) in the Bungarus multicinctus krait venom using the ciliate Tetrahymena pyriformis as a model organism. To determine the toxicity of the substances under study, surviving ciliates were registered automatically by an original BioLaT-3.2 instrument. The krait venom was separated by three-step liquid chromatography and the toxicity of the obtained fractions against T. pyriformis was analyzed. As a result, 21 kDa protein toxic to Tetrahymena was isolated and its amino acid sequence was determined by MALDI TOF MS and high-resolution mass spectrometry. It was found that antiprotozoal activity was manifested by ß-bungarotoxin (ß-Bgt) differing from the known toxins by two amino acid residues. Inactivation of ß-Bgt phospholipolytic activity with p-bromophenacyl bromide did not change its antiprotozoal activity. Thus, this is the first demonstration of the antiprotozoal activity of ß-Bgt, which is shown to be independent of its phospholipolytic activity.

5.
Fitoterapia ; 168: 105517, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37121409

RESUMEN

Seven undescribed sesquiterpene derivatives, Azerins A-G (3-6, 8, 14 and 15), three known sesquiterpene phenols, kopetdaghin A (1), kopetdaghin B (2) and latisectin (7), together with five known sesquiterpene coumarins (9-13), were isolated from the roots of Dorema glabrum. The structures were elucidated by comprehensive 1D- and 2D-NMR spectral analysis as well as HR-ESI-MS. Compounds were assessed for their in vitro antiprotozoal activity against Trypanosoma brucei rhodesiense, T. cruzi, Leishmania donovani, and Plasmodium falciparum. Cytotoxic potentials of the compounds were also tested on L6 rat skeletal myoblasts. Azerin G (15) showed a potent preferential growth inhibitory activity against T. b. rhodesiense with IC50 value of 0.01 µM and selectivity index of 329. Compounds 1, 4, 7 and 8 were also found as the most active compounds with selective growth inhibitory effects toward P. falciparum with selectivity indices ranging from 11.6 to 16.7 (IC50: 1.8-24.6 µM).


Asunto(s)
Antiprotozoarios , Ferula , Leishmania donovani , Sesquiterpenos , Trypanosoma cruzi , Animales , Ratas , Estructura Molecular , Antiprotozoarios/farmacología , Sesquiterpenos/farmacología , Sesquiterpenos/química , Espectroscopía de Resonancia Magnética , Plasmodium falciparum , Trypanosoma brucei rhodesiense , Concentración 50 Inhibidora , Pruebas de Sensibilidad Parasitaria
6.
Vet World ; 16(1): 187-193, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36855350

RESUMEN

Background and Aim: Blastocystis hominis is an intestinal protozoan in humans and animals. The parasite causes mild-to-severe intestinal complications, such as diarrhea, in healthy humans and immunocompromised hosts. This study aimed to determine the antiprotozoal activity of Boesenbergia rotunda (L.) Mansf and Ganoderma lucidum (Fr.) Kart extracts against B. hominis. Materials and Methods: Antiprotozoal activity of B. rotunda and G. lucidum extracts against B. hominis subtype 3 was determined using the erythrosin B exclusion assay, confirmed by a time-kill study. The morphology of the parasite treated with the extracts was observed by a scanning electron microscope. The phytochemicals present in B. rotunda and G. lucidum extracts were identified by gas chromatography-mass spectrometry analysis. Results: Both B. rotunda and G. lucidum extracts demonstrated strong antiprotozoal activity with similar minimum inhibitory concentration (MIC) values of 62.5 µg/mL. At 4× MIC and 8× MIC, both B. rotunda and G. lucidum extracts, and metronidazole inhibited the growth of B. hominis by up to 90% after 12 h treatment. Blastocystis hominis cells treated with B. rotunda extract, G. lucidum extract, and metronidazole were deformed and withered when compared with the control. Geraniol and versalide were found as the main compounds in B. rotunda and G. lucidum extracts, respectively. Conclusion: These results indicate the potential medicinal benefits of B. rotunda and G. lucidum extracts in the growth inhibition of B. hominis.

7.
Pathogens ; 12(3)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36986345

RESUMEN

Phytomonas serpens is a trypanosomatid phytoparasite, found in a great variety of species, including tomato plants. It is a significant problem for agriculture, causing high economic loss. In order to reduce the vegetal infections, different strategies have been used. The biological activity of molecules obtained from natural sources has been widely investigated to treat trypanosomatids infections. Among these compounds, chalcones have been shown to have anti-parasitic and anti-inflammatory effects, being described as having a remarkable activity on trypanosomatids, especially in Leishmania species. Here, we evaluated the antiprotozoal activity of the chalcone derivative (NaF) on P. serpens promastigotes, while also assessing its mechanism of action. The results showed that treatment with the derivative NaF for 24 h promotes an important reduction in the parasite proliferation (IC50/24 h = 23.6 ± 4.6 µM). At IC50/24 h concentration, the compound induced an increase in reactive oxygen species (ROS) production and a shortening of the unique flagellum of the parasites. Electron microscopy evaluation reinforced the flagellar phenotype in treated promastigotes, and a dilated flagellar pocket was frequently observed. The treatment also promoted a prominent autophagic phenotype. An increased number of autophagosomes were detected, presenting different levels of cargo degradation, endoplasmic reticulum profiles surrounding different cellular structures, and the presence of concentric membranar structures inside the mitochondrion. Chalcone derivatives may present an opportunity to develop a treatment for the P. serpens infection, as they are easy to synthesize and are low in cost. In order to develop a new product, further studies are still necessary.

8.
Bol. latinoam. Caribe plantas med. aromát ; 21(6): 737-756, nov. 2022. tab, graf, ilus
Artículo en Inglés | LILACS | ID: biblio-1554687

RESUMEN

The objective of this study was to investigate the seasonal variance of the content and chemical composition of the essential oil from Lantana camara accessions at two harvest times, and to analyze the trypanocidal activity on Phytomonas serpens. Essential oil content ranged from 0.13 to 0.29% in the rainy season and from 0.13 to 0.33% in the dry season. The compounds E-caryophyllene, α-humulene, α-curcumene and germacrene D defined the formation of four chemical clusters in the rainy and dry seasons, classified as: Cluster 1 (E-caryophyllene + germacrene D); Cluster 2 (germacrene D + E-caryophyllene); Cluster 3 (α-humulene + E-caryophyllene); and Cluster 4 (α-curcumene + E-caryophyllene). All L. camara essential oils, representing the four chemical clusters, inhibited P. serpenswith low concentrations, considering the following IC50 values: 18.34±6.60 µg/mL (LAC-018, Cluster 1); 9.14±3.87 µg/mL (LAC-027, Cluster 2); 14.56±3.40 µg/mL (LAC-037, Cluster 3); and 14.97±2.68 µg/mL (LAC-019, Cluster 4).


El objetivo de este estudio fue investigar la variación estacional del contenido y la composición química del aceite esencial de accesiones de Lantana camara en dos tiempos de cosecha y analizar la actividad tripanocida en Phytomonas serpens. El contenido de aceite esencial osciló entre 0,13% y 0,29% en la temporada de lluvias y entre 0,13% y 0,33% en la temporada seca. Los compuestos E-cariofileno, α-humuleno, α-curcumeno y germacreno D definieron la formación de cuatro grupos químicos en las estaciones lluviosa y seca, clasificados como: Grupo 1 (E-cariofileno + germacreno D); Grupo 2 (germacreno D + E-cariofileno); Grupo 3 (α-humuleno + E-cariofileno); y Grupo 4 (α-curcumeno + E-cariofileno). Todos los aceites esenciales de L. camara, que representan los cuatro grupos químicos, inhibieron P. serpens con bajas concentraciones, considerando los siguientes valores de CI50:18,34 ± 6,60 µg / mL (LAC-018, grupo 1); 9,14 ± 3,87 µg / ml (LAC-027, grupo 2); 14,56 ± 3,40 µg / ml (LAC-037, grupo 3); y 14,97 ± 2,68 µg / ml (LAC-019, grupo 4).


Asunto(s)
Estaciones del Año , Aceites Volátiles/química , Verbenaceae/química , Antiprotozoarios/química , Terpenos/análisis , Aceites Volátiles/farmacología , Trypanosomatina/efectos de los fármacos , Estación Seca , Estación Lluviosa , Antiprotozoarios/farmacología
9.
Molecules ; 27(19)2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36235096

RESUMEN

Quinones and quinols are secondary metabolites of higher plants that are associated with many biological activities. The oxidative dearomatization of phenols induced by hypervalent iodine(III) reagents has proven to be a very useful synthetic approach for the preparation of these compounds, which are also widely used in organic synthesis and medicinal chemistry. Starting from several substituted phenols and naphthols, a series of cyclohexadienone and naphthoquinone derivatives were synthesized using different hypervalent iodine(III) reagents and evaluated for their in vitro antiprotozoal activity. Antiprotozoal activity was assessed against Plasmodium falciparum NF54 and Trypanosoma brucei rhodesiense STIB900. Cytotoxicity of all compounds towards L6 cells was evaluated and the respective selectivity indices (SI) were calculated. We found that benzyl naphthoquinone 5c was the most active and selective molecule against T. brucei rhodesiense (IC50 = 0.08 µM, SI = 275). Furthermore, the antiprotozoal assays revealed no specific effects. In addition, some key physicochemical parameters of the synthesised compounds were calculated.


Asunto(s)
Antiprotozoarios , Yodo , Malaria Falciparum , Naftoquinonas , Antiprotozoarios/química , Antiprotozoarios/farmacología , Ciclohexenos , Humanos , Hidroquinonas/farmacología , Indicadores y Reactivos , Naftoles/farmacología , Naftoquinonas/farmacología , Estrés Oxidativo , Pruebas de Sensibilidad Parasitaria , Fenoles/farmacología , Plasmodium falciparum , Trypanosoma brucei rhodesiense
10.
Mar Drugs ; 20(8)2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-36005535

RESUMEN

Two new ircinianin-type sesterterpenoids, ircinianin lactone B and ircinianin lactone C (7 and 8), together with five known entities from the ircinianin compound family (1, 3-6) were isolated from the marine sponge Ircinia wistarii. Ircinianin lactones B and C (7 and 8) represent new ircinianin terpenoids with a modified oxidation pattern. Despite their labile nature, the structures could be established using a combination of spectroscopic data, including HRESIMS and 1D/2D NMR techniques, as well as computational chemistry and quantum-mechanical calculations. In a broad screening approach for biological activity, the class-defining compound ircinianin (1) showed moderate antiprotozoal activity against Plasmodium falciparum (IC50 25.4 µM) and Leishmania donovani (IC50 16.6 µM).


Asunto(s)
Poríferos , Sesterterpenos , Animales , Lactonas/química , Lactonas/farmacología , Estructura Molecular , Poríferos/química , Sesterterpenos/química , Sesterterpenos/farmacología , Terpenos/farmacología
11.
Phytother Res ; 36(9): 3505-3528, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35858779

RESUMEN

Phytolaccaceae is a plant family of the order Caryophyllales, which includes species used in traditional medicine to treat diseases. The purpose of this study was to investigate Phytolaccaceae family plants with potential antimicrobial action, through a systematic review. The study was conducted following the criteria of PRISMA protocol. The search was performed in the electronic databases PubMed, Web of Science, Scopus, and LILACS, in March 2021. The search strategy used free descriptors and terms, limiting articles to the English language, regardless of publication year. The risk of bias and the quality of publications were based on the CONSORT checklist, modified for in vitro studies and SYRCLE's RoB tool for in vivo study. Five independent judges performed quality assessments of publications and risk of bias analysis. Ninety-five publications were retrieved from the databases and, after screening and eligibility criteria, 22 articles remained, from 1998 to 2019. In the selected studies, the plants were obtained from eight countries. In vivo and in vitro studies of extracts from the Phytolaccaceae family plants, evaluating antibacterial (8 publications), antifungal (8), anti-Trypanosoma (2), anti-Leishmania (2), antiviral (1), and antiamoebic (1) activities, are included. The plant species identified belong to genera Petiveria, Phytolacca, Gallesia, Trichostigma, and Seguieria. The risk of bias in the 22 publications both in vitro and in vitro was suboptimal. The evidence obtained showed that the Phytolaccaceae family, a source of plants with antimicrobial action, can serve as a basis for the creation of new herbal medicines, expanding the possibility of treatment for infectious diseases and stimulating their preservation and biodiversity. However, more high-quality studies are needed to establish the clinical efficacy of the plant.


Asunto(s)
Phytolaccaceae , Plantas Medicinales , Antifúngicos/uso terapéutico , Medicina Tradicional , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico
12.
Heliyon ; 8(7): e09884, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35865986

RESUMEN

Sesquiterpenes are bitter secondary metabolites characteristic to the genus Ambrosia (Asteraceae) and constitute one of the most diverse classes of terpenoids. These compounds exhibit broad-spectrum bioactivities, such as antiproliferative, cytotoxic, antimicrobial, anti-inflammatory, molluscicidal, schistomicidal, larvicidal, and antiprotozoal activities. This review compiles and discusses the chemistry and pharmacology of sesquiterpenes of the Ambrosia species covering the period between 1950 and 2021. The review identified 158 sesquiterpenes previously isolated from 23 different Ambrosia species collected from across the American, African, and Asian continents. These compounds have guaiane, pseudoguaiane, seco-pseudoguaiane, daucane, germacrane, eudesmane, oplopane, clavane, and aromadendrane carbon skeletons. Most sesquiterpene compounds predominantly harbor the pseudoguaiane skeleton, whereas the eudesmanes have the most varied substituents. Antiproliferative and antiprotozoal activities are the most promising bioactivities of sesquiterpenes in Ambrosia and could lead to new pathways toward drug discovery.

13.
Dokl Biochem Biophys ; 503(1): 98-103, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35538287

RESUMEN

To search for compounds with antiprotozoal activity, effects of snake venoms on the ciliates Tetrahymena pyriformis was studied. T. pyriformis from subkingdom of Protozoa, including the protozoal pathogens, was used as a model organism to select the venoms that are the most active against parasitic protozoans. Various concentrations of venoms were added to the cells, and the cells that survived after 24 h were counted. Among the six snake species from the Viperidae family, the venom of the viper Vipera berus, which completely killed the cells at 49 µg/mL, was the most active. Among four species from the Elapidae family, the previously studied cobra venoms containing cytotoxins with strong antiprotozoal activity as well as the venom of krait Bungarus multicinctus (10 µg/mL) were the most active. The venoms of the pit vipers and Nikolsky's viper did not show any activity at 12.5 mg/mL. Thus, the venoms of V. berus and B. multicinctus are promising for the isolation of new antiprotozoal compounds.


Asunto(s)
Tetrahymena pyriformis , Viperidae , Animales , Bungarus , Venenos Elapídicos , Elapidae , Venenos de Serpiente , Venenos de Víboras
14.
Molecules ; 27(7)2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35408605

RESUMEN

Species of the genus Pleiocarpa are used in traditional medicine against fever and malaria. The present study focuses on the isolation and identification of bioactive compounds from P. bicarpellata extracts, and the evaluation of their antiprotozoal activity. Fractionation and isolation combined to LC-HRMS/MS-based dereplication provided 16 compounds: seven indole alkaloids, four indoline alkaloids, two secoiridoid glycosides, two iridoid glycosides, and one phenolic glucoside. One of the quaternary indole alkaloids (7) and one indoline alkaloid (15) have never been reported before. Their structures were elucidated by analysis of spectroscopic data, including 1D and 2D NMR experiments, UV, IR, and HRESIMS data. The absolute configurations were determined by comparison of the experimental and calculated ECD data. The extracts and isolated compounds were evaluated for their antiprotozoal activity towards Trypanosoma brucei rhodesiense, Trypanosoma cruzi, Leishmania donovani, and Plasmodium falciparum, as well as for their cytotoxicity against rat skeletal myoblast L6 cells. The dichloromethane/methanol (1:1) root extract showed strong activity against P. falciparum (IC50 value of 3.5 µg/mL). Among the compounds isolated, tubotaiwine (13) displayed the most significant antiplasmodial activity with an IC50 value of 8.5 µM and a selectivity index of 23.4. Therefore, P. bicarpallata extract can be considered as a source of indole alkaloids with antiplasmodial activity.


Asunto(s)
Antimaláricos , Antiprotozoarios , Apocynaceae , Leishmania donovani , Malaria Falciparum , Animales , Antiprotozoarios/química , Antiprotozoarios/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Plasmodium falciparum , Ratas , Trypanosoma brucei rhodesiense
15.
Molecules ; 27(4)2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35209156

RESUMEN

Essential oils (EOs) are a mixture of chemical compounds with a long history of use in food, cosmetics, perfumes, agricultural and pharmaceuticals industries. The main object of this study was to find chemical patterns between 45 EOs and antiprotozoal activity (antiplasmodial, antileishmanial and antitrypanosomal), using different machine learning algorithms. In the analyses, 45 samples of EOs were included, using unsupervised Self-Organizing Maps (SOM) and supervised Random Forest (RF) methodologies. In the generated map, the hit rate was higher than 70% and the results demonstrate that it is possible find chemical patterns using a supervised and unsupervised machine learning approach. A total of 20 compounds were identified (19 are terpenes and one sulfur-containing compound), which was compared with literature reports. These models can be used to investigate and screen for bioactivity of EOs that have antiprotozoal activity more effectively and with less time and financial cost.


Asunto(s)
Antiprotozoarios/análisis , Antiprotozoarios/farmacología , Aprendizaje Automático , Aceites Volátiles/análisis , Aceites Volátiles/farmacología , Aceites de Plantas/análisis , Aceites de Plantas/farmacología , Cuba , Bases de Datos Factuales , Pruebas de Sensibilidad Parasitaria
16.
Dokl Biochem Biophys ; 507(1): 334-339, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36786997

RESUMEN

The effects of extracts of ten plant species from Russia and five species from Vietnam on the growth and survival of ciliates Tetrahymena pyriformis were studied. T. pyriformis belongs to the subkingdom Protozoa, which also includes pathogens of protozoan infections. Extraction of dried plants was carried out with acidic and alkaline aqueous solutions, as well as with an aqueous ethanol. Various amounts of extracts were added to the ciliate cells, and the number of cells survived after incubation for 1 and 24 h was recorded. We found that our samples of several plants, including wormwood, harmala, and licorice, similarly to those studied earlier, exhibit antiprotozoal activity, which may indicate that the secondary metabolites are the same in plants from different regions. Using the ciliate T. pyriformis as a model organism, the presence of antiprotozoal activity in extracts of lilac, chondrilla, cinquefoil, hop, and elm was shown for the first time.


Asunto(s)
Antiprotozoarios , Extractos Vegetales , Plantas , Federación de Rusia , Plantas/química , Antiprotozoarios/química , Antiprotozoarios/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Tetrahymena pyriformis/efectos de los fármacos
17.
Mol Biol ; 55(6): 786-812, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34955556

RESUMEN

The emergence of new viruses and resistant strains of pathogenic microorganisms has become a powerful stimulus in the search for new drugs. Nucleosides are a promising class of natural compounds, and more than a hundred drugs have already been created based on them, including antiviral, antibacterial and antitumor agents. The review considers the structural and functional features and mechanisms of action of known nucleoside analogs with antiviral, antibacterial or antiprotozoal activity. Particular attention is paid to the mechanisms that determine the antiviral effect of nucleoside analogs containing hydrophobic fragments. Depending on the structure and position of the hydrophobic substituent, such nucleosides can either block the process of penetration of viruses into cells or inhibit the stage of genome replication. The mechanisms of inhibition of viral enzymes by compounds of nucleoside and non-nucleoside nature have been compared. The stages of creation of antiparasitic drugs, which are based on the peculiarities of metabolic transformations of nucleosides in humans body and parasites, have been considered. A new approach to the creation of drugs is described, based on the use of prodrugs of modified nucleosides, which, as a result of metabolic processes, are converted into an effective drug directly in the target organ or tissue. This strategy makes it possible to reduce the general toxicity of the drug to humans and to increase the effectiveness of its action on cells infected by the virus.

18.
Mol Biol (Mosk) ; 55(6): 897-926, 2021.
Artículo en Ruso | MEDLINE | ID: mdl-34837696

RESUMEN

The emergence of new viruses and resistant strains of pathogenic microorganisms has become a powerful stimulus in the search for new drugs. Nucleosides are a promising class of natural compound, and more than a hundred drugs have already been created based on them, including antiviral, antibacterial and antitumor agents. The review considers the structural and functional features and mechanisms of action of known nucleoside analogs with antiviral, antibacterial, or antiprotozoal activity. Particular attention is paid to the mechanisms that determine the antiviral effect of nucleoside analogs containing hydrophobic fragments. Depending on the structure and position of the hydrophobic substituent, such nucleosides can either block the process of penetration of viruses into cells or inhibit the stage of genome replication. The mechanisms of inhibition of viral enzymes by compounds of nucleoside and non-nucleoside nature have been compared. The stages of creation of antiparasitic drugs, which are based on the peculiarities of metabolic transformations of nucleosides in humans body and parasites, have been considered. A new approach to the creation of drugs is described, based on the use of prodrugs of modified nucleosides, which, as a result of metabolic processes, are converted into an effective drug directly in the target organ or tissue. This strategy makes it possible to reduce the general toxicity of the drug to humans and to increase the effectiveness of its action on cells infected by the virus.


Asunto(s)
Nucleósidos , Virus , Antibacterianos , Antivirales/farmacología , Humanos
19.
Molecules ; 26(20)2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34684761

RESUMEN

Various nor-triterpene alkaloids of Buxus (B.) sempervirens L. have shown remarkable in vitro activity against the causative agents of tropical malaria and East African sleeping sickness. To identify further antiprotozoal compounds of this plant, 20 different fractions of B. sempervirens L., exhibiting a wide range of in vitro bioactivity, were analyzed by UHPLC/+ESI-QqTOF-MS/MS. The analytical profiles were investigated by partial least squares regression (PLS) for correlations between the intensity of LC/MS signals, bioactivity and cytotoxicity. The resulting models highlighted several compounds as mainly responsible for the antiprotozoal activity and thus, worthwhile for subsequent isolation. These compounds were dereplicated based on their mass spectra in comparison with isolated compounds recently reported by us and with literature data. Moreover, an estimation of the cytotoxicity of the highlighted compounds was derived from an additional PLS model in order to identify plant constituents with strong selectivity. In conclusion, high levels of antitrypanosomal and antiplasmodial activity were predicted for eight and four compounds, respectively. These include three hitherto unknown constituents of B. sempervirens L., presumably new natural products.


Asunto(s)
Antiprotozoarios/aislamiento & purificación , Productos Biológicos/uso terapéutico , Buxus/metabolismo , Alcaloides/uso terapéutico , Antiinfecciosos/uso terapéutico , Antiprotozoarios/química , Buxus/enzimología , Cromatografía Liquida/métodos , Extractos Vegetales/uso terapéutico , Espectrometría de Masas en Tándem/métodos , Triterpenos/química , Triterpenos/uso terapéutico
20.
Antibiotics (Basel) ; 10(6)2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34200688

RESUMEN

Malaria and human African trypanosomiasis (HAT; sleeping sickness) are life-threatening tropical diseases caused by protozoan parasites. Due to limited therapeutic options, there is a compelling need for new antiprotozoal agents. In a previous study, O-tigloylcyclovirobuxeine-B was recovered from a B. sempervirens L. (common box; Buxaceae) leaf extract by bioactivity-guided isolation. This nor-cycloartane alkaloid was identified as possessing strong and selective in vitro activity against the causative agent of malaria tropica, Plasmodium falciparum (Pf). The purpose of this study is the isolation of additional alkaloids from B. sempervirens L. to search for further related compounds with strong antiprotozoal activity. In conclusion, 25 alkaloids were obtained from B. sempervirens L., including eight new natural products and one compound first described for this plant. The structure elucidation was accomplished by UHPLC/+ESI-QqTOF-MS/MS and NMR spectroscopy. The isolated alkaloids were tested against Pf and Trypanosoma brucei rhodesiense (Tbr), the causative agent of East African sleeping sickness. To assess their selectivity, cytotoxicity against mammalian cells (L6 cell line) was tested as well. Several of the compounds displayed promising in vitro activity against the pathogens in a sub-micromolar range with concurrent high selectivity indices (SI). Consequently, various alkaloids from B. sempervirens L. have the potential to serve as a novel antiprotozoal lead structure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA