Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Vet Parasitol ; 332: 110294, 2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-39244921

RESUMEN

The main agents for tick control are chemical acaricides. However, when used without technical guidance, they can lead to environmental damage and the development of resistant tick strains. In this context, vaccines are alternative o be used in integrated tick management format by combining with other effective tools. We isolated RNA from ticks Rhipicephalus microplus, prepared the library, and performed next-generation sequencing; a pipeline analysis was applied to identify the hypothetical proteins having immunogenic potential and their predicted immunogenic peptides. Twelve peptides, ranging from 12 to 38 amino acid residues, containing the selected epitopes from different targets were selected and synthesized in two forms: the pure peptide; and the peptide conjugated to keyhole limpet hemocyanin (KLH) carrier. These peptides were divided into two groups of six peptides each. The antigen formulations (groups 1 and 2) were prepared with conjugated peptides containing 200 µg of each peptide per dose emulsified with Montanide ISA 61VG (SEPPIC); the control treatment had the adjuvant formulation without peptides (group 3). To evaluate the protective efficacy, 15 weaned male calves (Angus breed) aged around 6 months to one year and weighing approximately 200-250 kg were divided into three groups of five animals each; they were immunized thrice, at an interval of 28 days. After immunization, all the calves infested with 15,000 larvae of Rhipicephalus microplus. Peptide epitopes were recognized by antibodies against host-specific IgGs using indirect ELISA. The mean of the antibody level was determined for each group and compared using analysis of variance with two factors (ANOVA). F-test was used to determine the significance of differences observed between the groups. The percentage efficacy was calculated based on the number of ticks, the weight of teleoginas, and the weight and hatchability of the eggs, compared to that in the control group. The evaluation of immunoprotection indicated efficacies of 69 and 51 %, respectively in Group 1 and 2.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39286798

RESUMEN

The spread of tick-borne disease (TBD) is escalating globally, driven by climate change and socio-economic shifts, underlining the urgency to improve surveillance, diagnostics, and control strategies. Ticks can transmit a range of pathogens increasing the risk of transmission of human and veterinary diseases such as Lyme disease, tick-borne encephalitis, theileriosis, anaplasmosis, or Crimean-Congo hemorrhagic fever. Surveillance methods play a crucial role in monitoring the spread of tick-borne pathogens (TBP). However, there are shortcomings in the current surveillance methods regarding risks related to ticks. Human-tick encounters offer a novel metric for disease risk assessment, integrating human behavior into traditional surveillance models. However, to more reliably measure tick exposure, a molecular marker is needed. The identification of antibodies against arthropod salivary proteins as biomarkers for vector exposure represents a promising avenue for enhancing existing diagnostic and surveillance metrics. Here we explore how the use of tick saliva biomarkers targeting recombinant proteins and synthetic peptides could significantly improve the assessment of TBD transmission risk and the effectiveness of vector control measures. With focused efforts on creating a biomarker against tick exposure suitable for humans and domestic animals alike, tick surveillance, diagnosis and control would be more achievable and aid in reducing the mounting threat of TBP through a One Health lens.

3.
Biomedicines ; 12(8)2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39200275

RESUMEN

BACKGROUND: Celiac disease (CD) is an immune-mediated disease characterized by disruptions of the small intestine. Factors such as viral and bacterial infections can trigger CD. Recently, the reactivation of Human Endogenous Retroviruses (HERVs) has also been implicated, but little is known about their specific role in patients with celiac disease. METHODS: The purpose of this study is to explore the humoral immune response mounted against epitopes derived from the envelope portion of three families of HERVs (HERV-K, HERV-H, and HERV-W) in CD patients. Reactivity against the HERV-K, HERV-H, and HERV-W env-su peptides was tested by indirect ELISAs in plasma of 40 patients with celiac disease and 41 age-matched healthy subjects (HCs). RESULTS: HERV-K, HERV-H, and HERV-W env-su peptides triggered different antibody responses in CD patients compared to HCs, with a stronger reactivity (p = 0.0001). CONCLUSIONS: Present results show, for the first time, that epitopes of HERV-K, HERV-H, and HERV-W are more recognized in patients with CD. Taking into consideration their proinflammatory and autoimmune features, this might suggest that HERVs may contribute to the development of CD or its exacerbation in genetically predisposed subjects. Finally, to elucidate the interplay between gut inflammation and HERVs during the inflammatory process, further studies are required. Those investigations should focus on the expression levels of HERVs and their relationship with the immune response, specifically examining anti-transglutaminase 2 (TG2) antibody levels under both gluten-free and gluten-containing dietary conditions.

4.
Acta Trop ; 254: 107208, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38621620

RESUMEN

The study aimed to elicit protective immune responses against murine schistosomiasis mansoni at the parasite lung- and liver stage. Two peptides showing amino acid sequence similarity to gut cysteine peptidases, which induce strong memory immune effectors in the liver, were combined with a peptide based on S. mansoni thioredoxin peroxidase (TPX), a prominent lung-stage schistosomula excretory-secretory product, and alum as adjuvant. Only one of the 2 cysteine peptidases-based peptides in a multiple antigenic peptide construct (MAP-3 and MAP-4) appeared to adjuvant protective immune responses induced by the TPX peptide in a MAP form. Production of TPX MAP-specific IgG1 serum antibodies, and increase in lung interleukin-1 (IL-1), uric acid, and reactive oxygen species (ROS) content were associated with significant (P < 0.05) 50 % reduction in recovery of lung-stage larvae. Increase in lung triglycerides and cholesterol levels appeared to provide the surviving worms with nutrients necessary for a stout double lipid bilayer barrier at the parasite-host interface. Surviving worms-released products elicited memory responses to the MAP-3 immunogen, including production of specific IgG1 antibodies and increase in liver IL-33 and ROS. Reduction in challenge worm burden recorded 45 days post infection did not exceed 48 % associated with no differences in parasite egg counts in the host liver and small intestine compared to unimmunized adjuvant control mice. Alum adjuvant assisted the second peptide, MAP-4, in production of IgG1, IgG2a, IgG2b and IgA specific antibodies and increase in liver ROS, but with no protective potential, raising doubt about the necessity of adjuvant addition. Accordingly, different vaccine formulas containing TPX MAP and 1, 2 or 3 cysteine peptidases-derived peptides with or without alum were used to immunize parallel groups of mice. Compared to unimmunized control mice, significant (P < 0.05 to < 0.005) 22 to 54 % reduction in worm burden was recorded in the different groups associated with insignificant changes in parasite egg output. The results together indicated that a schistosomiasis vaccine able to entirely prevent disease and halt its transmission still remains elusive.


Asunto(s)
Adyuvantes Inmunológicos , Anticuerpos Antihelmínticos , Inmunoglobulina G , Hígado , Pulmón , Schistosoma mansoni , Esquistosomiasis mansoni , Vacunas de Subunidad , Animales , Schistosoma mansoni/inmunología , Esquistosomiasis mansoni/prevención & control , Esquistosomiasis mansoni/inmunología , Esquistosomiasis mansoni/parasitología , Pulmón/parasitología , Pulmón/inmunología , Ratones , Anticuerpos Antihelmínticos/inmunología , Anticuerpos Antihelmínticos/sangre , Hígado/parasitología , Hígado/inmunología , Inmunoglobulina G/sangre , Adyuvantes Inmunológicos/administración & dosificación , Vacunas de Subunidad/inmunología , Vacunas de Subunidad/administración & dosificación , Femenino , Antígenos Helmínticos/inmunología , Modelos Animales de Enfermedad , Compuestos de Alumbre/administración & dosificación , Ratones Endogámicos BALB C , Vacunas de Subunidades Proteicas
5.
Mater Today Bio ; 25: 100955, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38312800

RESUMEN

Tumor vaccines are emerging as one of the most promising therapeutic strategies for cancer treatment. With the advantages of low toxicity, convenient production and stable quality control, peptide vaccines have been widely used in preclinical and clinical trials involving various malignancies. However, when used alone, they still suffer from significant challenges including poor stability and immunogenicity as well as the low delivery efficiency, leading to limited therapeutic success. Herein, the STING-activating peptide nanovaccine based on human serum albumin (HSA) and biodegradable MnO2 was constructed, which can improve the stability and immunogenicity of antigenic peptides as well as facilitate their uptake by dendritic cells (DCs). Meanwhile, Mn2+ degraded from the nanovaccine can activate the STING pathway and further promote DCs maturation. In this way, the prepared nanovaccine can efficiently mediate T-cell immune responses, thereby exerting the effects of tumor prevention and therapy. Moreover, the prepared nanovaccine possesses the advantages of low cost, convenient preparation and good biocompatibility, showing great potential for practical applications.

6.
Eur J Med Chem ; 268: 116224, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38387338

RESUMEN

The emergence of bacterial strains resistant to antibiotics is a major issue in the medical field. Antimicrobial peptides are widely studied as they do not generate as much resistant bacterial strains as conventional antibiotics and present a broad range of activity. Among them, the homopolypeptide poly(l-arginine) presents promising antibacterial properties, especially in the perspective of its use in biomaterials. Linear poly(l-arginine) has been extensively studied but the impact of its 3D structure remains unknown. In this study, the antibacterial properties of newly synthesized branched poly(l-arginine) peptides, belonging to the family of multiple antigenic peptides, are evaluated. First, in vitro activities of the peptides shows that branched poly(l-arginine) is more efficient than linear poly(l-arginine) containing the same number of arginine residues. Surprisingly, peptides with more arms and more residues are not the most effective. To better understand these unexpected results, interactions between these peptides and the membranes of Gram positive and Gram negative bacteria are simulated thanks to molecular dynamic. It is observed that the bacterial membrane is more distorted by the branched structure than by the linear one and by peptides containing smaller arms. This mechanism of action is in full agreement with in vitro results and suggest that our simulations form a robust model to evaluate peptide efficiency towards pathogenic bacteria.


Asunto(s)
Antibacterianos , Simulación de Dinámica Molecular , Péptidos , Antibacterianos/farmacología , Antibacterianos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Bacterias Gramnegativas , Bacterias Grampositivas , Arginina/farmacología , Bacterias , Pruebas de Sensibilidad Microbiana
7.
J Genet Eng Biotechnol ; 21(1): 167, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38091180

RESUMEN

BACKGROUND: Human leukocyte antigen (HLA) can bind and present the processed antigenic peptide derived from the vaccine to the T cell receptor, and this capability is crucial in determining the effectivity of the vaccine to terminate virus-infected cells, activate macrophages, and induce B cells to produce antibodies. A recombinant vaccine candidate based on protein L1 HPV45 was designed and analysed whether it is recognisable by T cells through the binding of their epitopes to HLAs. METHODS: The study consisted of two parts: part one was the analysis of the L1 recombinant protein binding to HLA-1 and 2 epitopes, whereas part two was the distribution analysis of HPV-linked HLA allele. HLA allele sets found at high frequency in the general population and in specific Indonesian population were listed for the binding analysis of the recombinant L1 HPV45 protein. In part one, immunoepitope servers from IEDB were used to predict the binding of the designed proteins to HLA alleles. The prediction method for MHC-I binding prediction was the NetMHCpan EL 4.1 whilst for MHC-II binding prediction was the Consensus approach. Antigenicity analysis for each peptide was conducted using VaxiJen 2.0 with the threshold 1.0 to select the highly antigenic peptides, and positions of these epitopes in the secondary and tertiary structure of the recombinant protein were also predicted. The percent population coverage of the alleles capable of binding to these epitopes worldwide was also estimated. In part two, the worldwide distribution and frequency of HPV-related HLA-1 and 2 were studied. RESULT: Two highly antigenic peptides (EEYDLQFIF and KLKFWTVDLK) were recognised by high-frequency HLA-1 alleles in both, the general and Western Javanese. In addition to these two epitopes, a few more peptides are also recognised by the high-frequency Western Javanese HLA-1 alleles, which are not in Weiskopf's list of high-frequency HLA-1 alleles in the general population. Analysis of the highly antigenic epitopes binding to HLA-DRB1 alleles in general (YIKGTSANM) and Western Javanese (LRRRPTIGP) populations showed that these peptide cores associate to HLA-DRB1*04, albeit the different sub-types, due to the presence of different allele in each population group. Analysis of the epitopes and the positive binding alleles showed on average 25.65% population coverage. CONCLUSION: The recombinant vaccine candidate based on protein L1 HPV45 is presumed to contain highly antigenic peptides that can bind to high-frequency HLA-1 and 2 alleles present in general and Western Javanese populations. It was expected that the protein is capable of eliciting T cell-mediated responses in both populations; however, in vitro study is needed to prove the protectiveness of the designed recombinant protein.

8.
MedComm (2020) ; 4(5): e361, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37667740

RESUMEN

The profile of antibodies against antigenic epitopes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) during neutralizing antibody (NAb) decay has not been clarified. Using a SARS-CoV-2 proteome microarray that contained viral antigenic peptides, we analyzed the characteristics of the humoral response in patients with coronavirus disease 19 (COVID-19) in a longitudinal study. A total of 89 patients were recruited, and 226 plasma samples were serially collected in 2020. In the antigenic peptide microarray, the level of immunoglobulin G (IgG) antibodies against peptides within the S2 subunit (S-82) and a conserved gene region in variants of interest, open reading frame protein 10 (ORF10-3), were closely associated with the presence of SARS-CoV-2 NAbs. In an independent evaluation cohort of 232 plasma samples collected from 116 COVID-19 cases in 2020, S82-IgG titers were higher in NAbs-positive samples (p = 0.002) than in NAbs-negative samples using enzyme-linked immunosorbent assay. We further collected 66 plasma samples from another cohort infected by Omicron BA.1 virus in 2022. Compared with the samples with lower S82-IgG titers, NAb titers were significantly higher in the samples with higher S82-IgG titers (p = 0.04). Our findings provide insights into the understanding of the decay-associated signatures of SARS-CoV-2 NAbs.

9.
Acta Pharm Sin B ; 13(5): 1976-1989, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37250147

RESUMEN

Immunoproteasome is a variant of proteasome with structural differences in 20S subunits optimizing them for the production of antigenic peptides with higher binding affinity to major histocompatibility complex (MHC)-I molecules. Apart from this primary function in antigen presentation, immunoproteasome is also responsible for the degradation of proteins, both unfolded proteins for the maintenance of protein homeostasis and tumor suppressor proteins contributing to tumor progression. The altered expression of immunoproteasome is frequently observed in cancers; however, its expression levels and effects vary among different cancer types exhibiting antagonistic roles in tumor development. This review focuses on the dichotomous role of immunoproteasome in different cancer types, as well as summarizes the current progression in immunoproteasome activators and inhibitors. Specifically targeting immunoproteasome may be a beneficial therapeutic intervention in cancer treatment and understanding the role of immunoproteasome in cancers will provide a significant therapeutic insight for the prevention and treatment of cancers.

10.
Methods Mol Biol ; 2628: 505-533, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36781804

RESUMEN

Antigenic peptides are commonly used in serological test settings such as enzyme-linked immunosorbent assays (ELISA) to determine reactive antibodies (ABs) from serum or plasma samples. The use of synthetic peptides provides advantages like lower production effort and easier incorporation of specific chemical modifications compared to full-length antigenic proteins. Multiplexed antibody (AB) profiling methods such as microarray technologies enable the simultaneous identification of multiple novel biomarkers for the use in early disease diagnostics, vaccine development, or monitoring of immune responses. Despite various benefits they still show major limitations which can be overcome with bead-based assay technologies like the multi-analyte profiling (xMAP) technology developed by Luminex. In this chapter we introduce our established workflow for AB profiling with a multiplexed bead-based peptide immunoassay. The workflow is based on copper-catalyzed click chemistry to immobilize designed synthetic peptides onto uniquely color-coded paramagnetic beads in an orientation-specific manner. The individual peptide-coupled beads can be distinguished by their unique emission spectra during readout in the xMAP instrument and therefore allow testing of up to 500 different antigenic peptides in one multiplexed reaction. The multistep process described in this chapter is divided into separate sections for peptide design, coupling of functionalized peptides to MagPlex beads via click chemistry, confirmation of successful peptide immobilization, processing of serum or plasma samples, or preferably purified IgG thereof, with the multiplexed bead-based peptide immunoassay and subsequent data export and analysis.


Asunto(s)
Anticuerpos , Suero , Inmunoensayo/métodos , Ensayo de Inmunoadsorción Enzimática/métodos , Suero/química , Péptidos
11.
Acta Pharmaceutica Sinica B ; (6): 1976-1989, 2023.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-982824

RESUMEN

Immunoproteasome is a variant of proteasome with structural differences in 20S subunits optimizing them for the production of antigenic peptides with higher binding affinity to major histocompatibility complex (MHC)-I molecules. Apart from this primary function in antigen presentation, immunoproteasome is also responsible for the degradation of proteins, both unfolded proteins for the maintenance of protein homeostasis and tumor suppressor proteins contributing to tumor progression. The altered expression of immunoproteasome is frequently observed in cancers; however, its expression levels and effects vary among different cancer types exhibiting antagonistic roles in tumor development. This review focuses on the dichotomous role of immunoproteasome in different cancer types, as well as summarizes the current progression in immunoproteasome activators and inhibitors. Specifically targeting immunoproteasome may be a beneficial therapeutic intervention in cancer treatment and understanding the role of immunoproteasome in cancers will provide a significant therapeutic insight for the prevention and treatment of cancers.

12.
Med Res Arch ; 10(5)2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-36381196

RESUMEN

The immune system defends our body by fighting infection from pathogens utilizing both the innate and adaptive immune responses. The innate immune response is generated rapidly as the first line of defense. It is followed by the adaptive immune response that selectively targets infected cells. The adaptive immune response is generated more slowly, but selectively, by targeting a wide range of foreign particles (i.e., viruses or bacteria) or molecules that enter the body, known as antigens. Autoimmune diseases are the results of immune system glitches, where the body's adaptive system recognizes self-antigens as foreign. Thus, the host immune system attacks the self-tissues or organs with a high level of inflammation and causes debilitation in patients. Many current treatments for autoimmune diseases (i.e., multiple sclerosis (MS), rheumatoid arthritis (RA)) have been effective but lead to adverse side effects due to general immune system suppression, which makes patients vulnerable to opportunistic infections. To counter these negative effects, many different avenues of antigen specific treatments are being developed to selectively target the autoreactive immune cells for a specific self-antigen or set of self-antigens while not compromising the general immune system. These approaches include soluble antigenic peptides, bifunctional peptide inhibitors (BPI) including IDAC and Fc-BPI, polymer conjugates, and peptide-drug conjugates. Here, various antigen-specific methods of potential treatments, their efficacy, and limitations will be discussed along with the potential mechanisms of action.

13.
Pathogens ; 11(6)2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35745548

RESUMEN

Ornithodoros moubata transmits African swine fever and human relapsing fever in Africa. The elimination of O. moubata populations from anthropic environments is expected to improve the prevention and control of these diseases. Tick vaccines have emerged as a sustainable method for tick control, and tick aquaporins (AQPs) are promising targets for tick vaccines due to their vital functions, immunogenicity and ease of access by neutralising host antibodies. This study aimed at the systematic identification of the AQPs expressed by O. moubata (OmAQPs) and their characterisation as vaccine targets. Therefore, AQP coding sequences were recovered from available transcriptomic datasets, followed by PCR amplification, cloning, sequence verification and the analysis of the AQP protein structure and epitope exposure. Seven OmAQPs were identified and characterised: six were aquaglyceroporins, and one was a water-specific aquaporin. All of these were expressed in the salivary glands and midgut and only three in the coxal glands. Epitope exposure analysis identified three extracellular domains in each AQP, which concentrate overlapping B and T cell epitopes, making them interesting vaccine targets. Based on these domain sequences, a set of ten antigenic peptides was designed, which showed adequate properties to be produced and tested in pilot vaccine trials.

14.
Pathogens ; 10(8)2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34451420

RESUMEN

CD8+ T-cell responses to pathogens are directed against infected cells that present pathogen-encoded peptides on MHC class-I molecules. Although natural responses are polyclonal, the spectrum of peptides that qualify for epitopes is remarkably small even for pathogens with high coding capacity. Among those few that are successful at all, a hierarchy exists in the magnitude of the response that they elicit in terms of numbers of CD8+ T cells generated. This led to a classification into immunodominant and non-immunodominant or subordinate epitopes, IDEs and non-IDEs, respectively. IDEs are favored in the design of vaccines and are chosen for CD8+ T-cell immunotherapy. Using murine cytomegalovirus as a model, we provide evidence to conclude that epitope hierarchy reflects competition on the level of antigen recognition. Notably, high-avidity cells specific for non-IDEs were found to expand only when IDEs were deleted. This may be a host's back-up strategy to avoid viral immune escape through antigenic drift caused by IDE mutations. Importantly, our results are relevant for the design of vaccines based on cytomegaloviruses as vectors to generate high-avidity CD8+ T-cell memory specific for unrelated pathogens or tumors. We propose the deletion of vector-encoded IDEs to avoid the suppression of epitopes of the vaccine target.

15.
Microorganisms ; 9(8)2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34442863

RESUMEN

Human endogenous retrovirus (HERV)-K env-su glycoprotein has been documented in amyotrophic lateral sclerosis (ALS), where HERV-K env-su 19-37 antibody levels significantly correlated with clinical measures of disease severity. Herein, we investigated further the humoral and cell-mediated immune response against specific antigenic peptides derived from HERV-K in ALS. HERV-K env glycoprotein expression on peripheral blood mononuclear cells (PBMCs) membrane and cytokines and chemokines after stimulation with HERV-K env 19-37 and HERV-K env 109-126 were quantified in patients and healthy controls (HCs). HERV-K env glycoprotein was more expressed in B cells and NK cells of ALS patients compared to HCs, whereas HERV-K env transcripts were similar in ALS and HCs. In ALS patients, specific stimulation with HERV-K env 109-126 peptide showed a higher expression of IL-6 by CD19/B cells. Both peptides, however, were able to induce a great production of IFN-γ by stimulation CD19/B cells, and yielded a higher expression of MIP-1α and a lower expression of MCP-1. HERV-K env 19-37 peptide induced a great production of TNF-α in CD8/T cells. In conclusion, we observed the ability of HERV-K to modulate the immune system, generating mediators mainly involved in proinflammatory response.

16.
Biologicals ; 73: 24-30, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34389244

RESUMEN

The present study describes the development of a novel affordable and rapid visual dot-blot assay using synthetic multiple antigenic peptides (MAP) for simultaneous detection of antibodies to infectious bronchitis virus (IBV) and Newcastle disease virus (NDV). Antibody detection efficiencies of MAP peptides namely, NP1 MAP (Nucleoprotein IBV) and HN MAP (Haemagglutinin-neuraminidase NDV) were studied in solid-phase indirect peptide ELISA. In comparison with the commercial kit, the NP1 MAP showed 89.20% diagnostic sensitivity (DSn) and 85.90% diagnostic specificity (DSp) at 19.45% ROC cut-off. Similarly, HN MAP was evaluated and showed 89.70% DSn and 92.90% DSp at 19.90 % ROC cut-off. The peptides after evaluating their ELISA performance were further used to device a flow-through dot-blot assay (FT-DBA) for simultaneous detection of IBV and NDV antibodies. The kappa value for IBV by FT-DBA in comparison to commercial ELISA was 0.64 whereas for NDV, FT-DBA gave a kappa value of 0.68 in comparison to commercial ELISA indicating substantial agreement between the assays. In essence, the divergent MAP based diagnostic design could provide an alternative for antibody detection of IBV and NDV. Further, the FT-DBA approach could be used for low cost, rapid and pen-side detection of IBV and NDV antibodies simultaneously.


Asunto(s)
Anticuerpos Antivirales/aislamiento & purificación , Infecciones por Coronavirus , Inmunoensayo , Enfermedad de Newcastle , Enfermedades de las Aves de Corral , Animales , Pollos , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/veterinaria , Virus de la Bronquitis Infecciosa/inmunología , Enfermedad de Newcastle/diagnóstico , Virus de la Enfermedad de Newcastle/inmunología , Péptidos , Enfermedades de las Aves de Corral/diagnóstico , Enfermedades de las Aves de Corral/virología
17.
J Immunol Methods ; 495: 113071, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33991531

RESUMEN

Several diagnostic tools have been developed for clinical and epidemiological assays. RT-PCR and antigen detection tests are more useful for diagnosis of acute disease, while antibody tests allow the estimation of exposure in the population. Currently, there is an urgent need for the development of diagnostic tests for COVID-19 that can be used for large-scale epidemiological sampling. Through a comprehensive strategy, potential 16 mer antigenic peptides suited for antibody-based SARS-CoV-2 diagnosis were identified. A systematic scan of the three structural proteins (S,N and M) and the non-structural proteins (ORFs) present in the SARS-CoV-2 virus was conducted through the combination of immunoinformatic methods, peptide SPOT synthesis and an immunoassay with cellulose-bound peptides (Pepscan). The Pepscan filter paper sheets with synthetic peptides were tested against pools of sera of COVID-19 patients. Antibody recognition showed a strong signal for peptides corresponding to the S, N and M proteins of SARS-CoV-2 virus, but not for the ORFs proteins. The peptides exhibiting higher signal intensity were found in the C-terminal region of the N protein. Several peptides of this region showed strong recognition with all three immunoglobulins in the pools of sera. The differential reactivity observed between the different immunoglobulin isotypes (IgA, IgM and IgG) within different regions of the S and N proteins, can be advantageous for ensuring accurate diagnosis of all infected patients, with different times of exposure to infection. Few peptides of the M protein showed antibody recognition and no recognition was observed for peptides of the ORFs proteins.


Asunto(s)
Prueba Serológica para COVID-19/métodos , Proteínas M de Coronavirus/inmunología , Proteínas de la Nucleocápside de Coronavirus/inmunología , Informática/métodos , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , Anticuerpos Antivirales/sangre , Biología Computacional , Proteínas M de Coronavirus/genética , Proteínas de la Nucleocápside de Coronavirus/genética , Mapeo Epitopo , Epítopos de Linfocito B/genética , Humanos , Inmunoglobulina A/sangre , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Péptidos/genética , Glicoproteína de la Espiga del Coronavirus/genética
18.
Pathogens ; 9(11)2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33126686

RESUMEN

Synthetic peptide vaccines were designed to target the neuropeptides innervating Ixodes ricinus salivary glands and hindgut and they were tested for their capacity to afford protective immunity against nymphs or larvae and Anaplasma phagocytophilum-infected nymph infestation, in mice and sheep, respectively. In both models, the assembly of SIFamide (SIFa) or myoinhibitory peptide (MIP) neuropeptides into multiple antigenic peptide constructs (MAPs) elicited a robust IgG antibody response following immunization. Nevertheless, no observable detrimental impact on nymphs was evidenced in mice, and, unfortunately, the number of engorged nymphs on sheep was insufficient for firm conclusions to be drawn, including for bacterial transmission. Regarding larvae, while vaccination of the sheep did not globally diminish tick feeding success or development, analyses of animals at the individual level revealed a negative correlation between anti-SIFa and MIP antibody levels and larva-to-nymph molting success for both antigens. Our results provide a proof of principle and precedent for the use of MAPs for the induction of immunity against tick peptide molecules. Although the present study did not provide the expected level of protection, it inaugurates a new strategy for protection against ticks based on the immunological targeting of key components of their nervous system.

19.
3 Biotech ; 10(10): 437, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32999814

RESUMEN

The objective of the study was to develop a bio-safe synthetic peptide ELISA for the detection of antibodies against the infectious bronchitis virus (IBV) using a novel multiple antigenic peptide approach (MAP). After initial ELISA optimization, diagnostic sensitivity (DSn) and specificity (DSp) for the linear peptides were determined using receiver operator curve (ROC) analysis. The peptide IBVP1 showed 90.44% DSn and 88.64% DSp at ROC cut off 22.8% while IBVP2 showed 88.24% DSn and 85.23% DSp at ROC cut off 23.05%. The multimerization of linear peptides to MAP design resulted in the improvement of the diagnostic efficiency up to 94.85% DSn and 92.05% DSp for IBVM1 with 19.95% cut off. A similar improvement in the performance was also observed with 92.65% DSn and 90.91% DSp for IBVM2 at 20.72% cut off. All the peptides were tested for diagnostic specificity and did not show the cross-reactivity with Newcastle disease virus and infectious bursal disease virus positive serum samples. In addition, repeatability testing for all linear and multimeric peptide showed that the coefficient of variation for intra-assay was within the expected limits, ranging from 2.4 to 10.4% and inter-assay coefficient of variation was ranging from 5.56 to 14.3%. In a nutshell, the present study used predicted B cell epitope, the synthetic peptide in linear and multimeric design for IBV antibody detection. The study also highlights peptide antigen with modified scaffold design could be a safe alternative to whole virion-based ELISA for IBV antibody detection.

20.
Eur J Med Chem ; 189: 112051, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31968280

RESUMEN

Researches on tumor-associated antigen have become a hot target in immunotherapy, but it stagnated in the pre-clinical/clinical stages. Here, we developed a series of MAGE-A1-restricted antigenic peptides, which exhibited prominent inhibiting effect on specific breast cancer. Peptides were synthesized by Fmoc solid phase method and analyzed by online servers. The stability and affinity to HLA-A2 was assessed by inverted fluorescence and flow cytometry qualitatively and quantitatively. In vitro effect on dendritic cells (DCs) maturation was observed by morphology and surface markers. The secretion of IFN-γ in the supernatant was detected by co-incubation of DCs loaded with as-synthesized peptides and CD8+ T lymphocytes. The specific immune response was evaluated against 4 cell lines, and the response in MCF-7 xenografted BALB/c nude mice were further assessed. Most of the derived peptides, especially I-6, showed great HLA-A2 binding ability. Compared with cytokines, I-6 significantly induced DCs maturation and promoted CD8+ T lymphocytes activation. Additionally, it is more specific for the lethality of MAGE & HLA-A2 double positive cells compared with others. We successfully developed I-6 with a high affinity to HLA-A2 which could induce strong specific immune response. It could be a potential candidate for breast cancer immunotherapy, which deserves further studies.


Asunto(s)
Neoplasias de la Mama/inmunología , Linfocitos T CD8-positivos/inmunología , Células Dendríticas/inmunología , Antígeno HLA-A2/inmunología , Antígenos Específicos del Melanoma/inmunología , Proteínas de Neoplasias/inmunología , Fragmentos de Péptidos/farmacología , Animales , Apoptosis , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/metabolismo , Proliferación Celular , Células Dendríticas/efectos de los fármacos , Células Dendríticas/metabolismo , Femenino , Antígeno HLA-A2/metabolismo , Humanos , Antígenos Específicos del Melanoma/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Proteínas de Neoplasias/metabolismo , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA