Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39364577

RESUMEN

Valproic acid (VA) is a widely used drug for the treatment of diseases affecting the central nervous system. Due to its epigenetic modulatory potential, it has been studied for possible therapeutic application in anticancer therapies. However, the VA exhibits different side effects in its application. Thus, synthetic coordination complexes with valproate can generate promising candidates for new active drugs with reduced toxicity. In this sense, we investigated the genotoxic and mutagenic potential of the sodium valproate and of the mixed ternary mononuclear Mg complex based on VA with 1,10-phenanthroline (Phen) ligand - [Mg (Valp)2Phen], in Saccharomyces cerevisiae and V79 cells. The MTT and clonal survival assays in V79 cells indicated that the Mg complex has higher cytotoxicity than sodium valproate. A similar cytotoxicity profile is observed in yeast. This fact is possibly due to the intercalation capacity of [Mg(Valp)2Phen], inducing DNA strand breaks, as observed in the comet assay and micronucleus test. In this sense, members of the NER, HR, NHEJ and TLS repair pathways are required for the repair of DNA lesions induced by [Mg(Valp)2Phen]. Interestingly, BER proteins apparently increase the cytotoxic potential of the drug. Furthermore, the [Mg(Valp)2Phen] showed higher cytotoxicity in V79 cells and yeast when compared to sodium valproate indicating applicability as a cytotoxic agent.

2.
Pharmaceutics ; 16(8)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39204314

RESUMEN

Lung cancer is the leading cause of cancer-related mortality worldwide, largely due to the limited efficacy of anticancer drugs, which is primarily attributed to insufficient doses reaching the lungs. Additionally, patients undergoing treatment experience severe systemic adverse effects due to the distribution of anticancer drugs to non-targeted sites. In light of these challenges, there has been a growing interest in pulmonary administration of drugs for the treatment of lung cancer. This route allows drugs to be delivered directly to the lungs, resulting in high local concentrations that can enhance antitumor efficacy while mitigating systemic toxic effects. However, pulmonary administration poses the challenge of overcoming the mechanical, chemical, and immunological defenses of the respiratory tract that prevent the inhaled drug from properly penetrating the lungs. To overcome these drawbacks, the use of nanoparticles in inhaler formulations may be a promising strategy. Nanoparticles can assist in minimizing drug clearance, increasing penetration into the lung epithelium, and enhancing cellular uptake. They can also facilitate increased drug stability, promote controlled drug release, and delivery to target sites, such as the tumor environment. Among them, chitosan-based nanoparticles demonstrate advantages over other polymeric nanocarriers due to their unique biological properties, including antitumor activity and mucoadhesive capacity. These properties have the potential to enhance the efficacy of the drug when administered via the pulmonary route. In view of the above, this paper provides an overview of the research conducted on the delivery of anticancer drug-loaded chitosan-based nanoparticles incorporated into inhaled drug delivery devices for the treatment of lung cancer. Furthermore, the article addresses the use of emerging technologies, such as siRNA (small interfering RNA), in the context of lung cancer therapy. Particularly, recent studies employing chitosan-based nanoparticles for siRNA delivery via the pulmonary route are described.

3.
Artículo en Inglés | MEDLINE | ID: mdl-39060878

RESUMEN

Developing anticancer drugs from preclinical to clinical takes approximately a decade in a cutting-edge biomedical lab and still 97% of most fail at clinical trials. Cell line usage is critical in expediting the advancement of anticancer therapies. Yet developing appropriate cell lines has been challenging and overcoming these obstacles whilst implementing a systematic approach of utilizing 3D models that recapitulate the tumour microenvironment is prudent. Using a robust and continuous supply of cell lines representing all ethnic groups from all locales is necessary to capture the evolving tumour landscape in culture. Next, the conversion of these models to systems on a chip that can by way of high throughput cytotoxic assays identify drug leads for clinical trials should fast-track drug development while markedly improving success rates. In this review, we describe the challenges that have hindered the progression of cell line models over seven decades and methods to overcome this. We outline the gaps in breast and prostate cancer cell line pathology and racial representation alongside their involvement in relevant drug development.

4.
Molecules ; 28(13)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37446555

RESUMEN

INTRODUCTION: The third-generation of aromatase inhibitors (AIs)-Exemestane (Exe), Letrozole (Let), and Anastrozole (Ana)-is the main therapeutic approach applied for estrogen receptor-positive (ER+) breast cancer (BC), the most common neoplasm in women worldwide. Despite their success, the development of resistance limits their efficacy. Genistein (G), a phytoestrogen present in soybean, has promising anticancer properties in ER+ BC cells, even when combined with anticancer drugs. Thus, the potential beneficial effects of combining G with AIs were investigated in sensitive (MCF7-aro) and resistant (LTEDaro) BC cells. METHODS: The effects on cell proliferation and expression of aromatase, ERα/ERß, and AR receptors were evaluated. RESULTS: Unlike the combination of G with Ana or Let, which negatively affects the Ais' therapeutic efficacy, G enhanced the anticancer properties of the steroidal AI Exe, increasing the antiproliferative effect and apoptosis relative to Exe. The hormone targets studied were not affected by this combination when compared with Exe. CONCLUSIONS: This is the first in vitro study that highlights the potential benefit of G as an adjuvant therapy with Exe, emphasizing, however, that soy derivatives widely used in the diet or applied as auxiliary medicines may increase the risk of adverse interactions with nonsteroidal AIs used in therapy.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Femenino , Humanos , Inhibidores de la Aromatasa/farmacología , Inhibidores de la Aromatasa/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Genisteína/farmacología , Genisteína/uso terapéutico , Letrozol , Antineoplásicos/uso terapéutico , Nitrilos/uso terapéutico
5.
J Inorg Biochem ; 246: 112303, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37413946

RESUMEN

Cancer is one of the main public health problems globally, there is a public demand for better drugs. Rational strategies or approaches are used to improve the success of drug discovery. Our strategy was to the repurposing of well-known antifungal agents as potential anticancer drugs, such as Clotrimazole (CTZ) and Ketoconazole (KTZ). We prepared the respective iodide imidazolium salt L1: (CTZ-Me)I and L2: (KTZ-Me)I to be the intermediates toward the synthesis of its respective NHC ligand and achieve the respective silver(I)-monoNHC and silver(I)-bisNHC derivatives: [Ag(L1)I] (1), [AgI(L2)] (2) [Ag(L1)2]I. (3), [Ag(L2)2]I. (4), as well as their corresponding coordination compounds [Ag(CTZ)2]NO3 (5) and [Ag(KTZ)2]NO3 (6) where these ligands (CTZ and KTZ) coordinate to silver through the N-imidazole atom. These compounds (L1, L2 and complexes 1-6) exhibited significant activity against the tested cancer cell lines (B16-F1, murine melanoma strains and CT26WT, murine colon carcinoma). The silver(I) complexes were more active than the free ligands, complexes 2 and 4 being the most selective in B16-F1 cancer cell line. Two possibles biological targets such as DNA and albumin were examined for the observed anticancer activity. Results show that DNA is not the main target, however, the interactions with albumin suggest it can transport/delivery the metal complexes.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Neoplasias , Humanos , Animales , Ratones , Preparaciones Farmacéuticas , Azoles/farmacología , Plata/farmacología , Ligandos , Antineoplásicos/farmacología , Cetoconazol , Complejos de Coordinación/farmacología , Clotrimazol
6.
Curr Cancer Drug Targets ; 23(5): 333-345, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35792126

RESUMEN

BACKGROUND: In the last decade, cancer has been a leading cause of death worldwide. Despite the impressive progress in cancer therapy, firsthand treatments are not selective to cancer cells and cause serious toxicity. Thus, the design and development of selective and innovative small molecule drugs is of great interest, particularly through in silico tools. OBJECTIVE: The aim of this review is to analyze different subsections of computer-aided drug design (CADD) in the process of discovering anticancer drugs. METHODS: Articles from the 2008-2021 timeframe were analyzed and based on the relevance of the information and the JCR of its journal of precedence, were selected to be included in this review. RESULTS: The information collected in this study highlights the main traditional and novel CADD approaches used in anticancer drug discovery, its sub-segments, and some applied examples. Throughout this review, the potential use of CADD in drug research and discovery, particularly in the field of oncology, is evident due to the many advantages it presents. CONCLUSION: CADD approaches play a significant role in the drug development process since they allow a better administration of resources with successful results and a promising future market and clinical wise.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Diseño Asistido por Computadora , Diseño de Fármacos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Descubrimiento de Drogas/métodos , Neoplasias/tratamiento farmacológico
7.
Pharmaceutics ; 14(8)2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-36015347

RESUMEN

Nature is the largest pharmacy in the world. Doxorubicin (DOX) and paclitaxel (PTX) are two examples of natural-product-derived drugs employed as first-line treatment of various cancer types due to their broad mechanisms of action. These drugs are marketed as conventional and nanotechnology-based formulations, which is quite curious since the research and development (R&D) course of nanoformulations are even more expensive and prone to failure than the conventional ones. Nonetheless, nanosystems are cost-effective and represent both novel and safer dosage forms with fewer side effects due to modification of pharmacokinetic properties and tissue targeting. In addition, nanotechnology-based drugs can contribute to dose modulation, reversion of multidrug resistance, and protection from degradation and early clearance; can influence the mechanism of action; and can enable drug administration by alternative routes and co-encapsulation of multiple active agents for combined chemotherapy. In this review, we discuss the contribution of nanotechnology as an enabling technology taking the clinical use of DOX and PTX as examples. We also present other nanoformulations approved for clinical practice containing different anticancer natural-product-derived drugs.

8.
Artículo en Inglés | MEDLINE | ID: mdl-35848127

RESUMEN

The present study investigates the use of UV light and the ozone process for doxorubicin, daunorubicin, epirubicin, and irinotecan degradation. The process was carried out using different pH values in hospital wastewater. The use of UV radiation reduces the concentration of anticancer drugs, but in all cases, this technology was not able enough to remove on the whole these contaminants from hospital wastewater. The best condition was achieved when using pH 9 for most of the analytes. Doxorubicin, daunorubicin, and epirubicin were degraded at 97.3%, 88.3%, and 99.0%, respectively. Irinotecan showed the lowest degradation, just 55.6%; a slightly higher degradation (63.8%) was obtained when pH 5 was used. Complete removal of doxorubicin, daunorubicin, epirubicin, and irinotecan was achieved when ozone treatment was used for all the pH studied. The results indicated that UV light and the ozone process can be used as a tertiary treatment to reduce the concentration of anticancer drugs in the effluents. Ozonation, therefore, proved to be more efficient than the photolysis process, when considering the percentual degradation of the original compounds in shorter timespans.


Asunto(s)
Antineoplásicos , Ozono , Contaminantes Químicos del Agua , Purificación del Agua , Epirrubicina , Hospitales , Irinotecán , Oxidación-Reducción , Ozono/química , Fotólisis , Rayos Ultravioleta , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos
10.
Nanomaterials (Basel) ; 12(5)2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35269324

RESUMEN

Polymersomes are biomimetic cell membrane-like model structures that are self-assembled stepwise from amphiphilic copolymers. These polymeric (nano)carriers have gained the scientific community's attention due to their biocompatibility, versatility, and higher stability than liposomes. Their tunable properties, such as composition, size, shape, and surface functional groups, extend encapsulation possibilities to either hydrophilic or hydrophobic cargoes (or both) and their site-specific delivery. Besides, polymersomes can disassemble in response to different stimuli, including light, for controlling the "on-demand" release of cargo that may also respond to light as photosensitizers and plasmonic nanostructures. Thus, polymersomes can be spatiotemporally stimulated by light of a wide wavelength range, whose exogenous response may activate light-stimulable moieties, enhance the drug efficacy, decrease side effects, and, thus, be broadly employed in photoinduced therapy. This review describes current light-responsive polymersomes evaluated for anticancer therapy. It includes light-activable moieties' features and polymersomes' composition and release behavior, focusing on recent advances and applications in cancer therapy, current trends, and photosensitive polymersomes' perspectives.

11.
Appl Microbiol Biotechnol ; 106(5-6): 1855-1878, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35188588

RESUMEN

Microorganisms are remarkable producers of a wide diversity of natural products that significantly improve human health and well-being. Currently, these natural products comprise half of all the pharmaceuticals on the market. After the discovery of penicillin by Alexander Fleming 85 years ago, the search for and study of antibiotics began to gain relevance as drugs. Since then, antibiotics have played a valuable role in treating infectious diseases and have saved many human lives. New molecules with anticancer, hypocholesterolemic, and immunosuppressive activity have now been introduced to treat other relevant diseases. Smaller biotechnology companies and academic laboratories generate novel antibiotics and other secondary metabolites that big pharmaceutical companies no longer develop. The purpose of this review is to illustrate some of the recent developments and to show the potential that some modern technologies like metagenomics and genome mining offer for the discovery and development of new molecules, with different functions like therapeutic alternatives needed to overcome current severe problems, such as the SARS-CoV-2 pandemic, antibiotic resistance, and other emerging diseases. KEY POINTS: • Novel alternatives for the treatment of infections caused by bacteria, fungi, and viruses. • Second wave of efforts of microbial origin against SARS-CoV-2 and related variants. • Microbial drugs used in clinical practice as hypocholesterolemic agents, immunosuppressants, and anticancer therapy.


Asunto(s)
Productos Biológicos , Tratamiento Farmacológico de COVID-19 , Antibacterianos/metabolismo , Bacterias/metabolismo , Productos Biológicos/uso terapéutico , Humanos , SARS-CoV-2
12.
Cancers (Basel) ; 14(2)2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35053565

RESUMEN

Colorectal cancer (CRC) ranks second in the number of cancer deaths worldwide, mainly due to late diagnoses, which restrict treatment in the potentially curable stages and decrease patient survival. The treatment of CRC involves surgery to remove the tumor tissue, in addition to radiotherapy and systemic chemotherapy sessions. However, almost half of patients are resistant to these treatments, especially in metastatic cases, where the 5-year survival rate is only 12%. This factor may be related to the intratumoral heterogeneity, tumor microenvironment (TME), and the presence of cancer stem cells (CSCs), which is impossible to resolve with the standard approaches currently available in clinical practice. CSCs are APC-deficient, and the search for alternative therapeutic agents such as small molecules from natural sources is a promising strategy, as these substances have several antitumor properties. Many of those interfere with the regulation of signaling pathways at the central core of CRC development, such as the Wnt/ß-catenin, which plays a crucial role in the cell proliferation and stemness in the tumor. This review will discuss the use of naturally occurring small molecules inhibiting the Wnt/ß-catenin pathway in experimental CRC models over the past decade, highlighting the molecular targets in the Wnt/ß-catenin pathway and the mechanisms through which these molecules perform their antitumor activities.

13.
Environ Sci Pollut Res Int ; 29(28): 42168-42184, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34403053

RESUMEN

Antineoplastic agents present potential hazards to human health and the environment. For this reason, these compounds have attracted a great deal of attention from researchers in the environmental sciences field. In order to help guide future research, it is important to understand the current state of investigation of the occurrence of these microcontaminants and methods for their removal, especially focusing on Fenton and photo-Fenton processes applied to various aqueous matrices in which this class of pharmaceuticals is present. For this purpose, a systematic review of these topics was performed by bibliometric analysis of articles published during the last decade and available in the Scopus and Web of Science databases. This study enables visualization of the current panorama and trends in this field, providing a guide for future collaborative research and exchange of knowledge. Various strategies have been suggested to improve the efficiency of Fenton and photo-Fenton processes, mainly by means of the application of multiples additions of iron, the use of heterogeneous catalysts, and/or the use of chelating agents. Some studies have evaluated different radiation sources employed for photo-Fenton processes, such as solar and/or artificial radiation. In turn, the identification of transformation products generated by Fenton and photo-Fenton treatments, together with their evaluation by in silico (Q)SAR predictions or experimental toxicological bioassays, are related subjects that have been less reported in published works and that should be studied in depth. These subjects can support treatment evaluations that are more realistic, considering their limitations or potentials.


Asunto(s)
Antineoplásicos , Contaminantes Químicos del Agua , Bibliometría , Humanos , Peróxido de Hidrógeno , Oxidación-Reducción , Agua
14.
In. Frigo, Lucio; da Fonseca, Guilherme Aparecido Monteiro Duque; Favero, Giovani Marino; Maria, Durvanei Augusto. Managing issues: Tumor lysis, extravasation, adverse effects, and others. , Springer, 2022. .
Monografía en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5103

RESUMEN

Modern medicine has contributed to enhance human longevity and quality of life. On the other hand, an elderly population inhabiting a continuously polluted environment certainly contributes to the raise of cancer development. In this context, anticancer drugs are in high demand in recent decades, and oncology pharmacology is one of the medical fields experiencing a remarkable research activity and development of new drugs. However, anticancer drugs are among the more toxic drugs legally available, and more than 750 different types of adverse reaction scan be attributed to cancer treatments. Adverse drug reactions (ADRs) are among the leading concerns when drug research and development are considered once they are potentially related to therapeutic failures, and consequently, drugs withdraw from the market. ADRs have been estimated to contribute up to 60% of the total costs involved in chemotherapy. The physicochemical drug features are highly related to the onset of ADRs. These drug features are directly involved in key aspects of drug metabolism, like absorption, distribution, efficacy, transformation, excretion, and drug promiscuity. Hepatotoxicity, kidney toxicity, cardiovascular toxicity, neurotoxicity, nausea and vomiting, diarrhea, alopecia, rheumatic manifestations, neutropenia, and thrombocytopenia are among the most common ADRs described in literature, and they are described in the context of the different anticancer drugs families.

15.
World J Stem Cells ; 13(7): 861-876, 2021 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-34367481

RESUMEN

Cancer stem cells (CSCs) are tumor cells that share functional characteristics with normal and embryonic stem cells. CSCs have increased tumor-initiating capacity and metastatic potential and lower sensitivity to chemo- and radiotherapy, with important roles in tumor progression and the response to therapy. Thus, a current goal of cancer research is to eliminate CSCs, necessitating an adequate phenotypic and functional characterization of CSCs. Strategies have been developed to identify, enrich, and track CSCs, many of which distinguish CSCs by evaluating the expression of surface markers, the initiation of specific signaling pathways, and the activation of master transcription factors that control stemness in normal cells. We review and discuss the use of reporter gene systems for identifying CSCs. Reporters that are under the control of aldehyde dehydrogenase 1A1, CD133, Notch, Nanog homeobox, Sex-determining region Y-box 2, and POU class 5 homeobox can be used to identify CSCs in many tumor types, track cells in real time, and screen for drugs. Thus, reporter gene systems, in combination with in vitro and in vivo functional assays, can assess changes in the CSCs pool. We present relevant examples of these systems in the evaluation of experimental CSCs-targeting therapeutics, demonstrating their value in CSCs research.

16.
Front Cardiovasc Med ; 8: 690533, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34277738

RESUMEN

Cancer and cardiovascular diseases are the leading causes of death and morbidity worldwide. Strikingly, cardiovascular disorders are more common and more severe in cancer patients than in the general population, increasing incidence rates. In this context, it is vital to consider the anticancer efficacy of a treatment and the devastating heart complications it could potentially cause. Oncocardiology has emerged as a promising medical and scientific field addressing these aspects from different angles. Interestingly, nanomedicine appears to have great promise in reducing the cardiotoxicity of anticancer drugs, maintaining or even enhancing their efficacy. Several studies have shown the benefits of nanocarriers, although with some flaws when considering the concept of oncocardiology. Herein, we discuss how preclinical studies should be designed as closely as possible to clinical protocols, considering various parameters intrinsic to the animal models used and the experimental protocols. The sex and age of the animals, the size and location of the tumors, the doses of the nanoformulations administered, and the acute vs. the long-term effects of treatments are essential aspects. We also discuss the perspectives offered by non-invasive imaging techniques to simultaneously assess both the anticancer effects of treatment and its potential impact on the heart. The overall objective is to accelerate the development and validation of nanoformulations through high-quality preclinical studies reproducing the clinical conditions.

17.
Chem Biol Interact ; 343: 109444, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33939975

RESUMEN

Quinones are plant-derived secondary metabolites that present diverse pharmacological properties, including antibacterial, antifungal, antiviral, anti-inflammatory, antipyretic and anticancer activities. In the present study, we evaluated the cytotoxic effect of a new naphthoquinone 6b,7-dihydro-5H-cyclopenta [b]naphtho [2,1-d]furan-5,6 (9aH)-dione) (CNFD) in different tumor cell lines. CNFD displayed cytotoxic activity against different tumor cell lines, especially in MCF-7 human breast adenocarcinoma cells, which showed IC50 values of 3.06 and 0.98 µM for 24 and 48 h incubation, respectively. In wound-healing migration assays, CNFD promoted inhibition of cell migration. We have found typical hallmarks of apoptosis, such as cell shrinkage, chromatin condensation, phosphatidylserine exposure, increase of caspases-9 and-3 activation, increase of internucleosomal DNA fragmentation without affecting the cell membrane permeabilization, increase of ROS production, and loss of mitochondrial membrane potential induced by CNFD. Moreover, gene expression experiments indicated that CNFD increased the expression of the genes CDKN1A, FOS, MAX, and RAC1 and decreased the levels of mRNA transcripts of several genes, including CCND1, CDK2, SOS1, RHOA, GRB2, EGFR and KRAS. The CNFD treatment of MCF-7 cells induced the phosphorylation of c-jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinases (MAPKs) and inactivation of extracellular signal-regulated protein kinase 1/2 (ERK1/2). In a study using melanoma cells in a murine model in vivo, CNFD induced a potent anti-tumor activity. Herein, we describe, for the first time, the cytotoxicity and anti-tumor activity of CNFD and sequential mechanisms of apoptosis in MCF-7 cells. CNFD seems to be a promising candidate for anti-tumor therapy.


Asunto(s)
Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Melanoma/tratamiento farmacológico , Naftoquinonas/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Animales , Antineoplásicos/farmacología , Caspasas/metabolismo , Línea Celular Tumoral , ADN/metabolismo , Fragmentación del ADN/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , MAP Quinasa Quinasa 4/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Naftoquinonas/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
18.
Cancer Biol Ther ; 21(12): 1087-1094, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33180600

RESUMEN

Heparan sulfate proteoglycans (HSPGs) play important roles in cancer initiation and progression, by interacting with the signaling pathways that affect proliferation, adhesion, invasion and angiogenesis. These roles suggest the possibility of various strategies of regulation of these molecules. In this review, we demonstrated that the anticancer drugs can regulate the heparan sulfate proteoglycans activity in different ways: some act directly in core protein, and can bind to a specific type of HSPG. Others drugs interact with glycosaminoglycans chains, and others can act directly in enzymes that regulate HSPGs levels. We also demonstrated that the HSPGs drug targets can be divided into four groups: monoclonal antibodies, antitumor antibiotic, natural products, and mimetics peptide. Interestingly, many drugs demonstrated in this review are approved by FDA and is used in cancer therapy (Food and Drug Administration) like trastuzumab, panitumumab, bleomycin and bisphosphonate zoledronic acid (ASCO) or are in clinical trials like codrituzumab and genistein. This review should help researchers to understand the mechanism of action of anticancer drugs existing and also may inspire the discovery of new drugs that regulate the heparan sulfate proteoglycans activity.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Proteoglicanos de Heparán Sulfato/uso terapéutico , Neoplasias/terapia , Anticuerpos Monoclonales/farmacología , Proteoglicanos de Heparán Sulfato/farmacología , Humanos
19.
Toxicol In Vitro ; 65: 104772, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31935485

RESUMEN

Lapachol is a plant-derived naphthoquinone that kills several types of cancer cells. Derivatives of this molecule may therefore prove to be useful chemotherapeutic agents. In this study, we explored whether glycosylation increases the cytotoxic potency of lapachol towards HL-60 human leukemia cells. Two beta-glycosides were synthesized and characterized: LA4A (lapachol-ß-glucoside) and LA4C (lapachol-N-acetylglucosamine-ß-glucoside). The sugar moieties of both novel molecules were per-acetylated to facilitate cellular uptake. The IC50 values (in µM) for LA4A (5.7) and LA4C (5.3) were lower than those for lapachol (25). LA4A and LA4C triggered typical signs of apoptosis, such as the exposure of phosphatidylserine on the outside of cells, chromatin condensation, DNA fragmentation and a decrease of the mitochondrial transmembrane potential (ΔΨm) prior to cell lysis. Moreover, DNA fragmentation triggered by the lapachol-glycosides was reduced by pre-treatment with the caspase inhibitor, z-VAD-fmk. While LA4A and LA4C activated caspases-3, -8 and -9, lapachol failed to activate these apoptotic proteases, even when used at high concentrations. Finally, the toxicity of lapachol and its derivatives was also tested on non-tumor cells. We used human peripheral neurons (PeriTox test) to evaluate the side effect potential of these compounds. LA4C was clearly less toxic than LA4A. We conclude that LA4C had the most favorable profile as drug candidate (high tumor cell toxicity, reduced neurotoxicity). In general, this study shows that the cytotoxicity of lapachol towards HL-60 can be enhanced by glycosylation, and that the therapeutic ratio may be modified by the type of sugar added.


Asunto(s)
Antineoplásicos/toxicidad , Naftoquinonas/toxicidad , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Glicosilación/efectos de los fármacos , Células HL-60 , Humanos
20.
Appl Microbiol Biotechnol ; 104(1): 23-31, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31745575

RESUMEN

Anticancer drugs are a class of pharmaceutical compounds that have been found in hospital, domestic, and industrial wastewaters and also in surface waters. They have been showing recalcitrance to conventional wastewater treatment technologies and present a potential risk to environment and human health, since they exhibit cytotoxic, teratogenic, and carcinogenic among other effects in higher organisms, even at low concentrations. The presence of these compounds in the environment is a recent challenge for wastewater treatment and some alternative strategies to remove them were already studied, such as white-rot fungi (WRF) technologies. Despite promising results, processes involving fungi are complex, have high reaction times, and require nutrient addition for fungus growth and maintenance. Due to this potential, strategies to make the technology feasible were studied, such as the possibility for direct application of enzymes secreted by WRF. Enzymatic processes were studied in the removal of other pharmaceuticals such as antibiotics, anti-inflammatory, and steroid hormones; however, to the best of our knowledge, there is a gap on literature about their direct action on anticancer drugs.


Asunto(s)
Antineoplásicos/metabolismo , Lacasa/metabolismo , Aguas Residuales/análisis , Contaminantes Químicos del Agua/metabolismo , Purificación del Agua/métodos , Biodegradación Ambiental , Activación Enzimática , Eliminación de Residuos Líquidos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA