Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros











Intervalo de año de publicación
1.
Virus Res ; 339: 199266, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-37944758

RESUMEN

Surveillance of mosquito vectors is critical for early detection, prevention and control of vector borne diseases. In this study we used advanced molecular tools, such as DNA barcoding in combination with novel sequencing technologies to discover new and already known viruses in genetically identified mosquito species. Mosquitoes were captured using BG sentinel traps in Western Kenya during May and July 2019, and homogenized individually before pooled into groups of ten mosquitoes. The pools and individual samples were then used for molecular analysis and to infect cell cultures. Of a total of fifty-four (54) 10-pools, thirteen (13) showed cytopathic effect (CPE) on VeroB4 cells, eighteen (18) showed CPE on C6/36 cells. Eight (8) 10-pools out of the 31 CPE positive pools showed CPE on both VeroB4 and C6/36 cells. When using reverse transcriptase polymerase chain reaction (RT-PCR), Sanger sequencing and Twist Comprehensive Viral Research Panel (CVRP) (Twist Biosciences), all pools were found negative by RT-PCR when using genus specific primers targeting alphaviruses, orthobunyaviruses and virus specific primers towards o'nyong-nyong virus, chikungunya virus and Sindbis virus (previously reported to circulate in the region). Interestingly, five pools were RT-PCR positive for flavivirus. Two of the RT-PCR positive pools showed CPE on both VeroB4 and C6/36 cells, two pools showed CPE on C6/36 cells alone and one pool on VeroB4 cells only. Fifty individual mosquito homogenates from the five RT-PCR positive 10-pools were analyzed further for flavivirus RNA. Of these, 19 out of the 50 individual mosquito homogenates indicated the presence of flavivirus RNA. Barcoding of the flavivirus positive mosquitoes revealed the mosquito species as Aedes aegypti (1), Mansonia uniformis (6), Anopheles spp (3), Culex pipiens (5), Culex spp (1), Coquilletidia metallica (2) and Culex quinquefasciatus (1). Of the 19 flavivirus positive individual mosquitoes, five (5) virus positive homogenates were sequenced. Genome sequences of two viruses were completed. One was identified as the single-stranded RNA Culex flavivirus and the other as the double-stranded RNA Hubei chryso-like virus 1. Both viruses were found in the same Anopheles spp. homogenate extracted from a sample that showed CPE on both VeroB4 and C6/36 cells. The detection of both viruses in a single mosquito homogenate indicated coinfection. Phylogenetic analyses suggested that the Culex flavivirus sequence detected was closely related to a Culex flavivirus isolated from Uganda in 2008. All four Hubei chryso-like virus 1 segments clusters closely to Hubei chryso-like virus 1 strains isolated in Australia, China and USA. Two novel strains of insect-specific viruses in Anopheles mosquitoes were detected and characterized.


Asunto(s)
Anopheles , Culex , Flavivirus , Virus de Insectos , Animales , Anopheles/genética , Filogenia , Kenia , Virus de Insectos/genética , ARN
2.
Emerg Infect Dis ; 30(1): 151-154, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38147068

RESUMEN

Delayed Plasmodium falciparum malaria in immigrants from disease-endemic countries is rare. Such cases pose a challenge for public health because mosquitoborne transmission must be rigorously investigated. We report a case of delayed P. falciparum malaria in a pregnant woman with sickle cell trait 11 years after immigration to the United States.


Asunto(s)
Emigrantes e Inmigrantes , Malaria Falciparum , Rasgo Drepanocítico , Femenino , Embarazo , Humanos , Oregon , Rasgo Drepanocítico/complicaciones , Emigración e Inmigración , Malaria Falciparum/diagnóstico
3.
Pathogens ; 12(12)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38133290

RESUMEN

Lymphatic Filariasis (LF) affects over 120 million people in 72 countries, with sub-periodic filariasis common in the Pacific. Wuchereria bancrofti has three physiological races, each with a unique microfilarial periodicity, and each race is isolated to a specific geographical region. Sub-periodic W. bancrofti is transmitted by various Aedes mosquito species, with Aedes polynesiensis and Aedes samoanus being the primary vectors in Samoa. The Aedes scutellaris and Aedes kochi groups are also important vectors in the South Pacific Islands. Anopheles species are important vectors of filariasis in rural areas of Asia and Africa. The Anopheles gambiae complex, Anopheles funestus, and the Anopheles punctulatus group are the most important vectors of W. bancrofti. These vectors exhibit indoor nocturnal biting behaviour and breed in a variety of habitats, including freshwater, saltwater, and temporary water bodies. Effective vector surveillance is central to LF control and elimination programs. However, the traditional Human Landing Collection (HLC) method, while valuable, poses ethical concerns and risks to collectors. Therefore, this review critically analyses alternative trapping tools for Aedes and Anopheles vectors in LF-endemic regions. We looked at 14 research publications that discussed W. bancrofti vector trapping methods. Pyrethrum Spray Catches (PSC), one of the seven traps studied for Anopheles LF vectors, was revealed to be the second most effective strategy after HLC, successfully catching Anopheles vectors in Nigeria, Ghana, Togo, and Burkina Faso. The PSC method has several drawbacks, such as the likelihood of overlooking exophilic mosquitoes or underestimating Anopheles populations. However, exit traps offered hope for capturing exophilic mosquitoes. Anopheles populations could also be sampled using the Anopheles Gravid Trap (AGT). In contrast, the effectiveness of the Double Net Traps (DNT) and the CDC Light Trap (CDC LT) varied. Gravid mosquito traps like the OviArt Gravid Trap (AGT) were shown to be useful tools for identifying endophilic and exophilic vectors during the exploration of novel collection techniques. The Stealth trap (ST) was suggested for sampling Anopheles mosquitoes, although specimen damage may make it difficult to identify the species. Although it needs more confirmation, the Ifakara Tent Trap C design (ITT-C) showed potential for outdoor mosquito sampling in Tanzania. Furvela tent traps successfully captured a variety of Anopheles species and are appropriate for use in a variety of eco-epidemiological settings. By contrast, for Aedes LF vectors, no specific sampling tool was identified for Aedes niveus, necessitating further research and development. However, traps like the Duplex cone trap, Resting Bucket Trap (RB), and Sticky Resting Bucket trap (SRB) proved effective for sampling Aedes albopictus, offering potential alternatives to HLC. This review emphasises the value of looking into alternative trapping methods for Aedes and Anopheles vectors in the LF-endemic region. Further research is required to determine the efficacy of novel collection techniques in various contexts, even if PSC and AGT show promise for sampling Anopheles vectors. The identified traps, along with ongoing research, provide valuable contributions to vector surveillance efforts in LF-endemic regions, enabling LF control and elimination strategies to advance.

4.
Malar J ; 22(1): 57, 2023 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-36805673

RESUMEN

BACKGROUND: Vector populations are a key target for malaria control and elimination. In Honduras, there are at least 12 reported anopheline species, however, the definitive number of species remains uncertain. Due to the inherent limitations of morphological identification of Anopheles species, molecular approaches have been developed to provide accurate identification and robust surveillance of local malaria vectors. The aim of this study was to design and assess three PCR-RFLP assays to identify anopheline species known to presently occur in Honduras. METHODS: Mosquitoes captured between 2018 and 2022 in seven malaria-endemic and non-endemic departments in Honduras were analysed. The ITS2 ribosomal region and three restriction enzyme-based assays were evaluated in silico and experimentally. RESULTS: A total of 132 sequences from 12 anopheline species were analysed. The ITS2 marker showed length polymorphisms that generated products between 388 and 592 bp and no relevant intraspecies polymorphisms were found. Furthermore, the three PCR-RFLP assays were able to differentiate 11 species with sufficient precision and resolution. CONCLUSION: The ITS2 region was shown to be a useful molecular marker for identifying local Anopheles species. In addition, the PCR-RFLP assays evaluated here proved to be capable of discriminating most of the anopheline species present in Honduras. These methods provide alternatives to improve entomological surveillance of Anopheles in Honduras and other Mesoamerican countries.


Asunto(s)
Anopheles , Animales , Anopheles/genética , Polimorfismo de Longitud del Fragmento de Restricción , Honduras , Mosquitos Vectores/genética , Reacción en Cadena de la Polimerasa
5.
Insects ; 13(6)2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35735885

RESUMEN

Anopheles species are the vectors of malaria, one of the diseases with the greatest impact on the health of the inhabitants of the tropics. Due to their epidemiological relevance and biological complexity, monitoring of anopheline populations in current and former malaria-endemic areas is critical for malaria risk assessment. Recent efforts have described the anopheline species present in the main malaria foci in Honduras. This study updates and expands knowledge about Anopheles species composition, geographical distribution, and genetic diversity in the continental territory of Honduras as in the Bay Islands. Outdoor insect collections were carried out at 25 sites in eight municipalities in five departments of Honduras between 2018 and 2021. Specimens were identified using taxonomic keys. Partial COI gene sequences were used for molecular species identification and phylogenetic analyses. In addition, detection of Plasmodium DNA was carried out in 255 female mosquitoes. Overall, 288 Anopheles mosquitoes were collected from 8 municipalities. Eight species were morphologically identified. Anopheles albimanus was the most abundant and widely distributed species (79.5%). A subset of 175 partial COI gene sequences from 8 species was obtained. Taxonomic identifications were confirmed via sequence analysis. Anopheles albimanus and An. apicimacula showed the highest haplotype diversity and nucleotide variation, respectively. Phylogenetic clustering was found for An. argyritarsis and An. neomaculipalpus when compared with mosquitoes from other Neotropical countries. Plasmodium DNA was not detected in any of the mosquitoes tested. This report builds upon recent records of the distribution and diversity of Anopheles species in malaria-endemic and non-endemic areas of Honduras. New COI sequences are reported for three anopheline species. This is also the first report of COI sequences of An. albimanus collected on the island of Roatán with apparent gene flow relative to mainland populations.

6.
Parasit Vectors ; 14(1): 605, 2021 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-34895309

RESUMEN

BACKGROUND: Mosquito-borne diseases have a devastating impact on human civilization. A few species of Anopheles mosquitoes are responsible for malaria transmission, and while there has been a reduction in malaria-related deaths worldwide, growing insecticide resistance is a cause for concern. Aedes mosquitoes are known vectors of viral infections, including dengue, yellow fever, chikungunya, and Zika. Aminoacyl-tRNA synthetases (aaRSs) are key players in protein synthesis and are potent anti-infective drug targets. The structure-function activity relationship of aaRSs in mosquitoes (in particular, Anopheles and Aedes spp.) remains unexplored. METHODS: We employed computational techniques to identify aaRSs from five different mosquito species (Anopheles culicifacies, Anopheles stephensi, Anopheles gambiae, Anopheles minimus, and Aedes aegypti). The VectorBase database ( https://vectorbase.org/vectorbase/app ) and web-based tools were utilized to predict the subcellular localizations (TargetP-2.0, UniProt, DeepLoc-1.0), physicochemical characteristics (ProtParam), and domain arrangements (PfAM, InterPro) of the aaRSs. Structural models for prolyl (PRS)-, and phenylalanyl (FRS)-tRNA synthetases-were generated using the I-TASSER and Phyre protein modeling servers. RESULTS: Among the vector species, a total of 37 (An. gambiae), 37 (An. culicifacies), 37 (An. stephensi), 37 (An. minimus), and 35 (Ae. aegypti) different aaRSs were characterized within their respective mosquito genomes. Sequence identity amongst the aaRSs from the four Anopheles spp. was > 80% and in Ae. aegypti was > 50%. CONCLUSIONS: Structural analysis of two important aminoacyl-tRNA synthetases [prolyl (PRS) and phenylanalyl (FRS)] of Anopheles spp. suggests structural and sequence similarity with potential antimalarial inhibitor [halofuginone (HF) and bicyclic azetidine (BRD1369)] binding sites. This suggests the potential for repurposing of these inhibitors against the studied Anopheles spp. and Ae. aegypti.


Asunto(s)
Aedes/efectos de los fármacos , Aminoacil-ARNt Sintetasas/antagonistas & inhibidores , Anopheles/efectos de los fármacos , Dengue/transmisión , Insecticidas/farmacología , Malaria/transmisión , Mosquitos Vectores/efectos de los fármacos , Aedes/enzimología , Aedes/genética , Secuencia de Aminoácidos , Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/genética , Animales , Anopheles/enzimología , Anopheles/genética , Sistemas de Liberación de Medicamentos , Descubrimiento de Drogas , Genómica , Humanos , Resistencia a los Insecticidas , Modelos Estructurales , Mosquitos Vectores/enzimología , Mosquitos Vectores/genética , Alineación de Secuencia , Relación Estructura-Actividad
7.
Parasit Vectors ; 13(1): 333, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32611432

RESUMEN

BACKGROUND: Anopheles mosquitoes are the vectors of malaria, one of the most important infectious diseases in the tropics. More than 500 Anopheles species have been described worldwide, and more than 30 are considered a public health problem. In Honduras, information on the distribution of Anopheles spp. and its genetic diversity is scarce. This study aimed to describe the distribution and genetic diversity of Anopheles mosquitoes in Honduras. METHODS: Mosquitoes were captured in 8 locations in 5 malaria endemic departments during 2019. Two collection methods were used. Adult anophelines were captured outdoors using CDC light traps and by aspiration of mosquitoes at rest. Morphological identification was performed using taxonomic keys. Genetic analyses included the sequencing of a partial region of the cytochrome c oxidase 1 gene (cox1) and the ribosomal internal transcribed spacer 2 (ITS2). RESULTS: A total of 1320 anophelines were collected and identified through morphological keys. Seven Anopheles species were identified. Anopheles albimanus was the most widespread and abundant species (74.02%). To confirm the morphological identification of the specimens, 175 and 122 sequences were obtained for cox1 and ITS2, respectively. Both markers confirmed the morphological identification. cox1 showed a greater nucleotide diversity than ITS2 in all species. High genetic diversity was observed within the populations of An. albimanus while An. darlingi proved to be a highly homogeneous population. Phylogenetic analyses revealed clustering patterns in An. darlingi and An. neivai in relation to specimens from South America. New sequences for An. crucians, An. vestitipennis and An. neivai are reported in this study. CONCLUSIONS: Here we report the distribution and genetic diversity of Anopheles species in endemic areas of malaria transmission in Honduras. According to our results, both taxonomic and molecular approaches are useful tools in the identification of anopheline mosquitoes. However, both molecular markers differ in their ability to detect intraspecific genetic diversity. These results provide supporting data for a better understanding of the distribution of malaria vectors in Honduras.


Asunto(s)
Anopheles , Mosquitos Vectores , Animales , Anopheles/clasificación , Anopheles/genética , Clasificación/métodos , ADN Espaciador Ribosómico/genética , Vectores de Enfermedades/clasificación , Complejo IV de Transporte de Electrones/genética , Genes de Insecto , Marcadores Genéticos , Variación Genética , Honduras/epidemiología , Malaria/transmisión , Mosquitos Vectores/clasificación , Mosquitos Vectores/genética , Filogenia
8.
Insects ; 11(7)2020 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-32708582

RESUMEN

Malaria remains a life-threatening disease in many tropical countries. Honduras has successfully reduced malaria transmission as different control methods have been applied, focusing mainly on indoor mosquitoes. The selective pressure exerted by the use of insecticides inside the households could modify the feeding behavior of the mosquitoes, forcing them to search for available animal hosts outside the houses. These animal hosts in the peridomicile could consequently become an important factor in maintaining vector populations in endemic areas. Herein, we investigated the blood meal sources and Plasmodium spp. infection on anophelines collected outdoors in endemic areas of Honduras. Individual PCR reactions with species-specific primers were used to detect five feeding sources on 181 visibly engorged mosquitoes. In addition, a subset of these mosquitoes was chosen for pathogen analysis by a nested PCR approach. Most mosquitoes fed on multiple hosts (2 to 4), and 24.9% of mosquitoes had fed on a single host, animal or human. Chicken and bovine were the most frequent blood meal sources (29.5% and 27.5%, respectively). The average human blood index (HBI) was 22.1%. None of the mosquitoes were found to be infected with Plasmodium spp. Our results show the opportunistic and zoophilic behavior of Anopheles mosquitoes in Honduras.

9.
Med Vet Entomol ; 34(3): 295-301, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32154608

RESUMEN

Species of the genus Anopheles vary with regard to their vector capacity for Plasmodium spp., the causative agent of malaria, and their accurate identification is often required. Loop-mediated isothermal amplification (LAMP) is a rapid, simple and low-cost method for specific DNA amplification. Primers for LAMP assays specific for the Anopheles funestus group and Anopheles gambiae complex species as well as for the species Anopheles arabiensis, An. funestus, An. gambiae s.s/Anopheles coluzzii (major vectors) and Anopheles rivulorum (minor vector) were designed targeting specific genome or rDNA internal transcribed spacer regions. Reaction conditions (buffer composition, primer concentrations, incubation time) were evaluated and the specificities of the assays confirmed with DNA from non-target Anopheles species. DNA release from the mosquitoes is achieved simply by heating them for 5 min in water. An aliquot of the DNA solutions is transferred to the reaction tube using disposable inoculation loops. The outcome of the LAMP amplifications after 1 h incubation at 65 °C can easily be visualized by a colour change visible to the naked eye. The assays are operable under field conditions requiring only basic equipment (portable heat block programmable at 65 and 80 °C, cooler for master mixes).


Asunto(s)
Anopheles/clasificación , Técnicas de Diagnóstico Molecular/instrumentación , Mosquitos Vectores/clasificación , Técnicas de Amplificación de Ácido Nucleico/instrumentación , Animales , Anopheles/genética , Mosquitos Vectores/genética
10.
Trop Med Infect Dis ; 4(3)2019 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-31438608

RESUMEN

West Nile virus (WNV) is a zoonotic flavivirus whose transmission cycle in nature includes wild birds as amplifying hosts and ornithophilic mosquito vectors. Bridge vectors can transmit WNV to mammal species potentially causing West Nile Fever. Wild bird migration is a mode of WNV introduction into new areas. The Danube Delta Biosphere Reserve (DDBR) is a major stopover of wild birds migrating between Europe and Africa. The aim of this study was to investigate the presence of WNV in the DDBR during the 2016 transmission season in wild birds and mosquitoes. Blood from 68 wild birds (nine different species) trapped at four different locations was analyzed by competitive ELISA and Virus Neutralization Test (VNT), revealing positive results in 8/68 (11.8%) of the wild birds by ELISA of which six samples (three from juvenile birds) were confirmed seropositive by VNT. Mosquitoes (n = 6523, 5 genera) were trapped with CDC Mini Light traps at two locations and in one location resting mosquitoes were caught. The presence of WNV RNA was tested in 134 pools by reverse transcription quantitative PCR (RT-qPCR). None of the pools was positive for WNV-specific RNA. Based on the obtained results, WNV was circulating in the DDBR during 2016.

11.
Malar J ; 18(1): 151, 2019 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-31036019

RESUMEN

BACKGROUND: Europe and Italy were declared malaria free since the 1970s although the presence of competent vectors and the high number of yearly imported malaria cases make this disease a potential rising health issue. In September 2017, a cryptic fatal case of Plasmodium falciparum malaria in the Province of Trento, Italy, raised the concern of health authorities on the possible resurgence of this disease in the Mediterranean Basin. METHODS: An entomological surveillance by means of BG traps, CDC light traps and larval search was performed. Sites were chosen among urban and suburban environments (e.g. private houses, public parks, schools, cemeteries, ecotone urban/forest, farms), ranging from an altitude of 91 to 1332 m above sea level. All the mosquitoes collected were morphologically identified and about half of them (103; 49%) were confirmed with the sequencing analysis of the rRNA internal transcribed spacer 2 (ITS-2). RESULTS: In the present study 287 sites were screened for the presence of Anopheles spp. and 211 specimens were collected and identified. Hundred-eighteen individuals (56%) belonged to Anopheles plumbeus, 56 (26.5%) to Anopheles maculipennis complex, 10 (4.7%) to Anopheles claviger and 27 were identified only at genus level. This is the first record for the presence of An. plumbeus in the study area. CONCLUSIONS: The presence of Anopheles spp. mosquitoes in the Province of Trento, Italy, has been updated with the occurrence of An. plumbeus. The risk of malaria endemicity in the area is to be considered very low, but urban and peri-urban habitat may act as potential breeding sites for the presence of mosquito vectors and should be constantly monitored.


Asunto(s)
Anopheles/genética , Anopheles/parasitología , Malaria Falciparum/epidemiología , Mosquitos Vectores/parasitología , Distribución Animal , Animales , ADN Protozoario/genética , ADN Espaciador Ribosómico/genética , Monitoreo Epidemiológico , Femenino , Genes de ARNr , Italia/epidemiología , Larva/parasitología , Masculino , Plasmodium falciparum
12.
Rev. bras. entomol ; 62(4): 267-274, Oct.-Dec. 2018. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1045522

RESUMEN

ABSTRACT Mosquitoes belonging to the Anopheles genus are of great relevance in the epidemiology and transmission of malaria, with their larval phase developing in clean waters in the presence of organic matter. However, the human presence in the Amazon has increasingly influenced the emergence of new breeding sites and larval habitats, such as clay pits, fish ponds and dams, among others. The objective of the study was to characterize mosquito larval habitats using the biotic and abiotic parameters in the metropolitan area of Manaus. We collected in 23 artificial larval habitats in Manaus, classified in dams, fish ponds and clay pits. Water samples, Anopheles larvae, aquatic macrophytes and limnological parameters were collected from each artificial larval habitat. The Larvae Index per Man/Hour and canonical correspondence analysis were used for data analysis. Results indicate that artificial larval habitats with characteristics similar to natural sites present higher larval density, displaying a high abundance of An. triannulatus and An. darlingi. More than 90% of the determined limnological parameters were in agreement with the environmental resolution stipulated by the Brazilian environmental resolution, while pH, dissolved oxygen and phosphorus levels were below the established limits at some of the larval habitats. Conductivity, total suspended solids and phosphorus were positively correlated to the presence of An. albitarsis, An. peryassui and An. nuneztovari in fish ponds, and An. trianulatus and An. braziliensis in dams. Thus, the evaluated limnological variables and habitat structure explain Anopheles species distribution in artificial larval habitats in the metropolitan Manaus region.

13.
Euro Surveill ; 23(41)2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30326993

RESUMEN

In August 2018 a Moroccan man living in Tuscany developed Plasmodium falciparum malaria. The patient declared having not recently visited any endemic country, leading to diagnostic delay and severe malaria. As susceptibility to P. falciparum of Anopheles species in Tuscany is very low, and other risk factors for acquiring malaria could not be completely excluded, the case remains cryptic, similar to other P. falciparum malaria cases previously reported in African individuals living in Apulia in 2017.


Asunto(s)
Malaria Falciparum/diagnóstico , Plasmodium falciparum/aislamiento & purificación , Administración Intravenosa , Administración Oral , Antimaláricos/administración & dosificación , Antimaláricos/uso terapéutico , Artemisininas/administración & dosificación , Artemisininas/uso terapéutico , Artesunato/administración & dosificación , Artesunato/uso terapéutico , Humanos , Italia , Malaria Falciparum/tratamiento farmacológico , Masculino , Persona de Mediana Edad , Marruecos , Quinolinas/administración & dosificación , Quinolinas/uso terapéutico , Migrantes , Resultado del Tratamiento
15.
Emerg Infect Dis ; 23(5): 782-789, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28418299

RESUMEN

We assessed window screens and eave baffles (WSEBs), which enable mosquitoes to enter but not exit houses, as an alternative to indoor residual spraying (IRS) for malaria vector control. WSEBs treated with water, the pyrethroid lambda-cyhalothrin, or the organophosphate pirimiphos-methyl, with and without a binding agent for increasing insecticide persistence on netting, were compared with IRS in experimental huts. Compared with IRS containing the same insecticide, WSEBs killed similar proportions of Anopheles funestus mosquitoes that were resistant to pyrethroids, carbamates and organochlorines and greater proportions of pyrethroid-resistant, early exiting An. arabiensis mosquitoes. WSEBs with pirimiphos-methyl killed greater proportions of both vectors than lambda-cyhalothrin or lambda-cyhalothrin plus pirimiphos-methyl and were equally efficacious when combined with binding agent. WSEBs required far less insecticide than IRS, and binding agents might enhance durability. WSEBs might enable affordable deployment of insecticide combinations to mitigate against physiologic insecticide resistance and improve control of behaviorally resistant, early exiting vectors.


Asunto(s)
Mosquiteros Tratados con Insecticida , Malaria/prevención & control , Control de Mosquitos , Mosquitos Vectores , Animales , Humanos , Malaria/epidemiología , Malaria/transmisión , Mortalidad , Control de Mosquitos/métodos , Mosquitos Vectores/parasitología
16.
Parasit Vectors ; 9: 479, 2016 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-27580694

RESUMEN

BACKGROUND: The total contact rates (TCRs) between mosquito vectors and their potential hosts have a serious impact on disease transmission dynamics. Culex pipiens (sensu stricto) (s.s.) is considered the main vector of the West Nile Virus (WNV) in Europe and birds are the reservoir hosts. The results of our previous study showed that WNV seroreactors are significantly more prevalent among raptors compared to a range of other wild avian groups. The current study aims to assess the role of bird type (raptor vs others) and bird size on mosquito feeding preferences in a free-choice experiment using bird-baited traps. METHODS: From July to September 2014, a battery of six bird-baited traps was operated in twelve mosquito capture sessions. Eight bird species, belonging to five different orders, including raptors, were used. After each session, the trapped mosquitoes were collected and identified using standard keys. Two sets of independent generalized linear mixed models (GLMM) were used to assess mosquito vector feeding preferences (MFp) among different bird species and types. RESULTS: A total of 304 mosquitoes belonging to seven taxa were collected, C. pipiens being by far the most abundant (84.2 % of the total mosquito catch). Most C. pipiens were engorged (83.59 %). The selected model showed that 25.6 % of the observed variability of MFp is explained by the interaction between bird size and bird type, with C. pipiens preferring to feed on large birds, especially raptors. The proportion of engorged mosquitoes was 1.9-fold higher in large (22.88 %; range 0-42 %) than in medium-sized raptors (11.71 %; range 0-33 %), and was nearly the same in medium-sized (9.08 %; range 0-26 %) and large (8.5 %; 6-24 %) non-raptor species. CONCLUSION: Culex pipiens showed an obvious preference for large raptors, which concurs with the higher seroprevalence to WNV in our previous study. The appreciable feeding by C. pipiens on large raptors makes them useful alternative sentinels to poultry for WNV surveillance. Thus, wildlife parks and rehabilitation centers can contribute to surveillance efforts to a greater extent.


Asunto(s)
Aves/sangre , Culicidae/clasificación , Conducta Alimentaria/fisiología , Virus del Nilo Occidental/fisiología , Animales , Culicidae/virología , Especificidad de la Especie
20.
Emerg Infect Dis ; 21(7): 1122-7, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26079141

RESUMEN

A fast, precise, noninvasive, high-throughput, and simple approach for detecting malaria in humans and mosquitoes is not possible with current techniques that depend on blood sampling, reagents, facilities, tedious procedures, and trained personnel. We designed a device for rapid (20-second) noninvasive diagnosis of Plasmodium falciparum infection in a malaria patient without drawing blood or using any reagent. This method uses transdermal optical excitation and acoustic detection of vapor nanobubbles around intraparasite hemozoin. The same device also identified individual malaria parasite-infected Anopheles mosquitoes in a few seconds and can be realized as a low-cost universal tool for clinical and field diagnoses.


Asunto(s)
Malaria/diagnóstico , Piel/patología , Animales , Anopheles/parasitología , Femenino , Humanos , Nanotecnología , Piel/parasitología , Vapor
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA